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Abstract. We further explore the relation between random coeflicients regression
(RCR) and computerized tomography. Recently, Beran et al (1996, Ann. Statist.,
24, 2569-2592) explored this connection to derive an estimation method for the non-
parametric RCR problem which is closely related to image reconstruction methods in
X-ray computerized tomography. In this paper we emphasize the close connection of
the RCR problem with positron emission tomography (PET). Specifically, we show
that the RCR problem can be viewed as an idealized (continuous) version of a PET
experiment, by demonstrating that the nonparametric likelihood of the RCR problem
is equivalent to that of a specific PET experiment. Consequently, methods indepen-
dently developed for either of the two problems can be adapted from one problem to
the other. To demonstrate the close relation between the two problems we use the
estimation method of Beran, Feuerverger and Hall for image reconstruction in PET.

Key words and phrases: Computerized tomography, fast Fourier transform, non-
parametric likelihoad, positron emission tomography, projection-slice theorem, Radon
transform, random coefficients regression, regularization, smoothed EM algorithm.

1. Introduction and summary

In this paper we explore the connection between random coefficients regression
(RCR)—which is of interest in econometrics and other fields—and the image recon-
struction problem in positron emission tomography (PET)—a nuclear medicine tech-
nique for imaging of, among other things, the brain metabolism. Specifically, we show
that the nonparametric likelihood function for the RCR problem is the same as that
of a PET reconstruction problem with a suitably specified conditional probability of
detection function “p(b,d)”, in the formulation of Shepp and Vardi (1982), and Vardi
et al. (1985). This relation automatically enriches both areas of application by making
methodologies that were independently developed for one area readily adaptable to the
other. In particular, many of the statistical methods for image reconstruction in PET
and SPECT (single photon emission tomography) which were developed in recent years,
including convolution backprojection, regularized inversions, Bayes methods, penalized
likelihood, smoothed EM algorithms, and sieve methods can be modified to suit the RCR
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problem. (See, for instance, Green (1990a, 1990b), Silverman et al. (1990), Iusem and
Svaiter (1994), Eggermont and LaRiccia (1995), Chang and Hsiung (1994), O’Sullivan
(1995), Gehman and McClure (1987), Higdon et al (1994) and references therein for
some recent methodologies.) On the other hand, methods originally developed for RCR
can also be modified to suit PET reconstruction problems. We demonstrate this below
by showing that the recently proposed nonparametric method for RCR estimation in
Beran et al. (1996) can be successfully used for image reconstruction in PET.

Consider the random coefficients regression model where we are given data (X, ¥;),
i=1,...,n generated according to the model

(11) Y; = A, + B; X, i=1,...,n.

There is no explicit error term in this model, however the (unobserved) coefficients
(A;, B;) are assumed to be independent random vectors generated from some unknown
distribution having bivariate density f1p(a,b), say. The X’s may be chosen by design, or
may be sampled randomly from a density fx (z), say, and independently of the (A;, B;)’s.
The problem of interest is to estimate f4g from the observed (X;,Y;)’s. In the present
context we are specifically concerned with the case where f4p is permitted to be an
arbitrary member of a nonparametric class of density functions.

Random coefficients linear regression models occur naturally in econometric sam-
pling, in studies of panel data, and in semiconductor materials research, to mention just
a few applications. For further background and references see, for example, Longford
(1993), Nicholls and Pagan (1985), and Raj and Ullah (1981). These models are useful in
contexts where regression coefficients cannot be assumed constant and a less restrictive
approach is required. Nevertheless, the RCR model imposes more structure on the data
generation mechanism than may at first appear. Observe however that the usual (non-
random coefficient) regression model corresponds to the special case of (1.1) when the
distribution of B; is taken to be degenerate. Previous work on RCR has considered only
certain special cases, and not the fully non-parametric context. See also Beran (1993),
Beran and Hall (1992) and Beran and Millar (1994).

To appreciate the connection between computerized tomography—which is an in-
tensely researched and highly developed field in medical imaging—and the problem of
nonparametric random coefficients regression, two relationships are of special impor-
tance: Firstly, since Y = A + BX, we have that

o0 y—pPx
PY<y|X=z)=P(A+Bz<y) =/ / fasla, B)dads;
therefore the conditional density function of Y, given that X = z, is found to be

(12) Frixwl2) = [ fasly -5z, 00dp.

Secondly, since the conditional characteristic function ¢y |x for Y, given that X =z, is
(1.3) E(e | X = z) = Bet(A+5a),

we have that

(1.4) dyix(t | z) = dap(t,tz),
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where ¢ 4p is the characteristic function of (A4, B). Equation (1.2} in effect says that fv|x
is the Radon transform of f4 g, while equation (1.4} in effect is the so-called prejection-
slice theorem of Radon transform theory. (In particular, see the transformation (3.4)
and equation (3.5) below for further amplification of these points.) Consequently the
determination of the density function fa4p from the data (X;,Y;) can be viewed, via
(L.2}, as a problem of inverting a Radon transform, but with the added complication
that the conditional density fy(x (which essentially is the Radon transform) is unknown
and can only be estimated from the data. For some background on Radon transforms
see, for example, Deans (1983).

There is another corplication relative to analytical Radon inversion, and that is that
the projection angles will not be evenly represented in random coefficients regression data
because of the randomness of the slopes (in (a, b}-space) of the lines which are determined
by the (X;,Y;) data points. Indeed the distribution of these angles is determined by fx;
and only if fx is a standard Cauchy density are the angles uniformly distributed. To
understand the key issues here note that the standard Radon transform inversion theory
assumes that all line integrals of the original function are given. In particular, for any
given direction, all the integrals along parallel lines in that direction are assumed to be
given. In applications, where the number of lines that occur is always finite, the theory
as it stands is therefore not directly applicable. To close this gap between theory and
practice, one needs to estimate the line integrals for all possible lines, and this essentially
is done by smoothly averaging over the available line integrals using methods similar in
spirit to kernel density estimation. The variability of any estimated line integral then
depends on the distribution of the parameters of the lines. For instance, if there is a
direction which is relatively empty of lines (this will be determined by the distribution
of X) then the estimated values of the line integrals in that direction, will have much
higher mean squared error than similar estimates where there is high concentration of
lines. Thus if the projection angles are evenly distributed, our approximation of the
continnous case from the discrete case will have approximately constant variance, and
otherwise it will not. The former case will obviously result in the better overall statistical
properties. This fine detail suggests a close similarity of RCR to PET problems, more
so than to X-ray CT, as we shall further explore below.

It is useful, at this stage, to focus on the comparative geometries of the RCR and
PET problems. Consider firstly the situation in random coefficient regression, depicted
in Figs. la-1d. The panel (1a) shows a single point (4;, B;), equal to (—1,2} in this
instance. The value of X; was taken to equal 1 here, so that ¥; = 1. In practice,
the point (A;, B;} shown here will not be known, but (X;,Y¥;) will be. The line ‘L;’
shown in (la) consists of the set {{a,b) : ¥; = a + bX;} of values for (A;, B;) that are
consistent with what has been observed. The panel (1b) shows ten such points and
lines. These were generated by taking the A; and B; to have independent standard
normal distributions, and by taking X; (independently of the A’s and B’s) also to have
a standard normal distribution. In practice, the situation will be as illustrated in panels
(1c) and (1d); these no longer show the (A;, B;)'s, but otherwise were generated in
the manner just described. Panel (lc) corresponds to a data set of only 50 points,
while panel (1d) corresponds to 300 points—which is a more realistic sample size for the
nonparametric context. Figures 2a-2d depict the corresponding situation for positron
emission tomography (as further described in Section 2 below). In these figures, the
circle (chosen to have unit radius here for simplicity) represents the ‘detector ring’ which
surrounds the skull being imaged, while the points shown represent locations where
positron emissions have occurred. These points of emission are not observed, however the
(nearly) straight lines defined from the resulting flight (at nearly the speed of light) of a
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Fig. 1. The random coefficient regression context.
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Fig. 2. The positron emission tomography context.
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pair of photons in opposite directions are observed; in fact these lines become determined
as photon pairs cross the detector ring at (nearly) the same instant. These lines have
uniformly random angular orientation. (This will be the case in RCR also if the X;’s
are standard Cauchy distributed.) Panel (2a) shows the situation for a single emission
point only, while panel (2b) shows ten such points which here were chosen uniformly at
random within the sphere, and lines (chords) drawn through these points with uniformly
randorm angular orientations. Panels (2¢) and {2d) show oaly the observed lines, and not
the unobserved points, using 25 and 200 lines respectively. In real PET experiments,
the number of these lines must be many orders of magnitude larger. The fundamental
connexion between the RCR and PET statistical problems is that in each case the data
which arises may be regarded as consisting of independently sampled random lines;
these occur as randomly oriented lines through randomly chosen points, and it is the
nonparametric distribution of the random points which is of primary interest.
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Fig. 3. Parameterization of lines in RCR.

It should also prove helpful, throughout the discussion below, to refer to Figs. 3 and 4
which illustrate the parameterizations to be adapted here for the random lines in the RCR
and PET contexts respectively. In the RCR context, the line L; = {{a,b) : ¥; = a+bX;}
will be parameterized via its ‘signed distance’ R; from the origin, and the corresponding
angle @; as shown; here we take ©; € (—n/2,7/2|, so that B; € (—co,00). Note
that R; equals both Y; cos®; as well as (Y;/X;)sin®; so that X; = tan©;. Therefore
©; = arctan X; and R; = Y;/+/1 + XZ. In the PET context (Fig. 4) the line (chord) L; is
determined by the positions of two detectors on the detection ring, located at angles ¢y,
and ;2, say, as shown. This line is again parameterized by its signed distance R; from
the origin, and corresponding angle ©; shown, with the ranges for R; and ©; being as
before, Note that the angle ©; here will be the average of the angles (o;; and ;o modulo
#, while R; will be the inner product of (cos ©;,sin 8;) with either (cos;,sing; ) or
(cos @iz, 8inp;n), since our detector ring has unit radius.

The tomographic viewpoint for RCR was first noted in Beran ef al. (1996}. In that
paper, a methodology for the nonparametric estimation problem in RCR was developed
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Fig. 4. Parameterization of lines in PET.

based on mathematical methods used in transmission tomography. In particular, that
paper implements a direct-type Fourier reconstruction approach based on the projection-
slice result (1.4). Our focus in the present paper will be on the connections between RCR
and PET. Specifically, in Section 2 we show that the nonparametric likelihood functions
for RCR and for a particular (idealized) PET experiment are in fact equivalent. In
Section 3 we show explicitly how methodologies developed for either RCR or PET can be
carried over from one problem to the other. Finally, as an example of this, in Section 4 we
carry out a numerical implementation for PET by means of the RCR algorithm of Beran
et al. (1996) using the simulated data of Vardi et al. (1985). Numerical implementation
of RCR based on the EM or other algorithms for PET is, of course, also possible but
will not be undertaken here.

2. Nonparametric likelihoods for RCR and PET

In this section we develop the nonparametric likelihood functions for RCR and for a
particular (idealized) PET experiment. The two likelihood functions differ only in that
the angular orientations for the PET experiment are assumed to be known and uniform,
but are otherwise seen o be equivalent.

2.1 The nonparametric likelihood for RCR

Suppose that the RCR vectors (4;, B;} are sampled from the density f4 s(a,d), and
that (independently of the A’s and B’s) the X;’s are sampled from the density fx (x).
Then the likelihood of the data (X;,Y;), i = 1,...,n, as a function of the unknown
“parameters” fs g and fx, is given by

n n
L' (fapr fx |z gisi=1,...,n) = [ | fx(z:) x HleX(yi | z:).
i=1 i=1
Now from (1.2), the conditional density fy|x (4 | z:) of ¥; given X, is given by

/:"" fas(yi — ﬁl‘i,ﬁ)dﬁ;
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on changing variables of integration, this can be written as

; = L x3 3 _;
m/;waB(yt V/l'f"r‘?,\/l_l_x?)d/@—m/;iﬁq,a(a,b)ds

where ¢; is the line a = y; — z;b in (a,b)-space, and ds is an element of length along
that line. (Note that this change of variables is related to the transformation of variables
defined below at (3.4).) Since factors of the likelihood function in the s have no bearing
on the inference for fa p they may be removed. Thus the conditional likelihood of f4,5,
given {X; = z;,4=1,...,n}, can be taken to be either

(2.1 L= H/ fas(y; — Bz, B)dB
S

or, alternatively,

(2.2) L= H ff fa,5(a, byds.

Note that the terms in these products are in fact values of the Radon transform of f4 5.

We shall next relate the conditional likelihood £ to that of a particular PET experi-
ment. We start with a brief review of the mathematical model for a PET reconstruction
problem. More details (including medical applications) can be found for instance in
Vardi et al. (1985).

2.2 The mathematical model for PET (idealized)

Consider a (nonhomogeneous) spatial Poisson process with a two-dimensional in-
tensity function A(z,y), where (z,y) € B. The set B, called the “brain space”, is a
closed bounded region in R? containing the planar head section that is being imaged.
The Poisson events, occurring in the set B, are points of emission of positrons from a
radicactive labeled metabolite which is distributed in brain space according to A. When
the positrons are emitted they find a nearby electron to annihilate with, and as a result
a pair of photons, originating at the point of annihilation, fly off in (nearly) opposite
direction along an (approximately) straight line having a uniformly random orientation.
Ignoring second order effects, such as the distance traveled by the positron from point of
emission to point of annihilation, and the slight deviation from linearity, we see that each
emission gives rise to a line in random orientation defined by the flight of the photons.
The observed data are these random lines. The points of emission themselves are not
observed. The problem is to estimate the intensity function A{z,y) on the basis of the
data consisting of these lines.

We note that in real PET experiments these lines would be grouped according to
cylindrical regions (“detector tubes")} defined by matching pairs of detectors that the
lines fall into. These detectors—which are arranged on a ring surrounding the planar
head section—have light-sensitive crystals and photo-multipliers, and are wired for time-
coincident detection of the photons. We shall use the term idealized PET experiment
here for the case where the actual lines {not grouped) are considered to be observed,
together with the other simplifying approximations indicated above.
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2.3 Nonparametric likelihood of the (idealized) PET experiment
The contribution to the conditional likelihood of a specific line ¢, in the idealized
PET experiment, given that a line is observed, is

1 Mz, y)

"+ 5 Jo AB) %

where ds is an infinitesimal increment of length along the line £, and B is the observed
slope of £ relative to a fixed axis, and

A(B)=Lk(x,y)dwdy.

This may be seen as follows. Given an observed line ¢, the pdf for the emission to have
occurred at a point {(z,y) on £ is A(z,y)/A(B) and the pdf for the slope to be 7, is
1/m(L + %) (same for all (z,)). This is then integrated over all points (z,y) on the
observed line £. Note, incidentally, that if instead of observing the slope of the line, we
observe (equivalently) its angular orientation instead, then the factor 1/x(1 + 37) in the
likelihood would be replaced by 1/2x. The two resulting likelihoods—which correspond
to a one to one transformation on the data—will of course be equivalent.

Now, in a PET experiment A(8) is a function of the original dosage of the radioac-
tively labeled metabolite and the duration of the scan and is of no particular interest {it
can be easily estimated by the total Poisson event count)} while the quantity of interest,
of course, is the relative intensity A{z,y)/A(B). Thus, without loss in generality, we
can simply take A(B) = 1, and the conditional likelihood based on the observed lines
£1,...,4, is then proportional to

(2.3) g ‘/g; Mz, y)ds.

Note that this is of the same form as £ at (2.2) with A/A(B) now playing the role of
fa,B.

The reason why this conditional likelihood is different from the one commonly ap-
pearing in most PET literature lies in the ‘idealization’ of the experiment. In particular,
there are two levels of quantization (discretization) that distinguish the situation here
from the ‘standard’ PET model: (a) the grouping of the lines (into ‘detector tubes’)
and (b) the pixelization of the set B. The grouping (a) is typically introduced into the
PET model to conform to the data collection mechanism, which registers lines as they
cross a pair of scintillation detectors in the scanner ring that surrounds the region B.
The pixelization (b) is usually introduced into the model for a variety of mathematical
and statistical justifications, such as numerical computability and statistical consistency.
(See, for example, the discussion in Chapter 7 of Bickel et al (1993) regarding incon-
sistency of the nonparametric MLE and regularization, and Chang and Hsiung (1994)
regarding consistency of the nonparametric MLE in the PET model when pixelization
is viewed as sieving.)
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3. Estimation

In this section we discuss the implementation and transfer of methodologies from one
discipline to the other. We discuss first how maximum likelihood, based for example on
the EM algorithm for PET, can be adopted to RCR. Our focus will be on how to fit the
idealized version of PET (which is equivalent to RCR} to the standard PET methodology,
thereby making the numerous PET reconstruction approaches relevant to RCR. We then
continue with a discussion of transferring RCR methodology to PET. Here we will focus
on a recent methodology, developed in Beran et al {1996) and show how it can be
applied to the PET reconstruction problem. As an example, we shall demonstrate the
latter method with an actual RCR-based PET reconstruction in Section 4. Computer
implementation of RCR via the EM algorithm for PET is left for future research. For
further background on the EM algorithm, see, for example, Dempster et al. (1997).

3.1 Implementation of PET methodology to RCR

We assume that the support of the unknown RCR density fa p(a,b) is bounded
and contained in some known region B. In practice this assumption generally is not very
restrictive as the unobserved (A;, B;)’s will necessarily be contained in a bounded region.
Without loss of generality we assume that B is a square; in fact, with the appropriate
scaling, we can take B = {(a,b);]a| < 1,|b| < 1}. Consider now a circle surrounding B,
which is partitioned into D arcs of equal length. This is the analogue of our ‘detector
ring’. A line through B must cross two of the ‘detectors’ on the ring and hence lie in the
corresponding ‘tube’. (The probability of falling on a boundary between detectors is zero
for continuously distributed line angles.) We can ignore the possibility of a line crossing
the same detector twice, as we agsume that the detector arclengths are small and that
the region B is strictly interior to the disc defined by the ‘detector ring’. Let n*(d) be
the number of lines crossing the detector pair d = (d1,da}. The random coefficient pair
(@,b) will be detected at the tube d = (d;, dz) only if the intercept y and slope —z of the
line @ == y — xb are such that the line crosses both d; and ds. Thus the probability that a
pair of random coefficients (a,b) is ‘detected’ at d = (dy, d3) is just the probability that
the line @ = y — xb crosses the detectors d; and d;. As the partition of the ring becomes
finer (D T o0), this probability would infinitesimally tend to fx (—slope(d:,ds))dz if the
infinitesimally narrow strip (detector tube) defined by d = (d;, d2) covers (g, b}, and zero
otherwise, where dr corresponds to the range of the ‘angle of view’ into the tube. (In
practice, this ‘angle of view’ is usually approximated by computing it geometrically from
the center of the pixel—see, e.g. Vardi ef al. (1985).)

For consistency of the estimators we want to agsume that f4 p is piecewise constant
on the pixels formed by a suitable grid. We shall denote by 7 the index which ranges
over these pixels, and—slightly abusing our notation—by fa g{j) the constant value of
fa,p on the j-th pixel.

With this notation, and with a derivation similar to that in Vardi et ol ((1985},
Section 1}, the RCR data obtained via the detector ring, {n*(d)} say, may be viewed as
being independent Poisson random variables having means

(3.1) EN*(d) = fa,5(i)Px(j,d)
J

where

1

(3-2) Px jad TR T
G.d) Area(Pixel(7)} Jia p)cpixel(s)

/fx(—m)I[é’(a,b;:c) € d|dzdadb
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and £(a, b; z) is a line through (a, b} with slope —z. Note that Px (j, d) is the probability
of detection at d of a random coefficients pair (A, B) originating within pixel j. With
this interpretation, the RCR problem takes on the structure of an incomplete Poisson
data problem, where f4 g(:) is the unknown intensity, and Px(j’,d) describes the ran-
dom mapping from the (unobserved) complete RCR data (i.e. the (A4, B) pairs) to the
{observed) incomplete data (i.e. {n * (d}}), as it specifies the chance of an (A, B) pair
originating in the vicinity of pixel / to land at the arclength-pair (i.e. detector-pair) la-
beled “d”. The EM algorithm as discussed, for instance in Vardi et al. (1985), or Lange
and Carson (1984}, is now applicable to this maximum likelihood problem and leads to
the following basic EM iterative algorithm for RCR:

TN DT n*(d}Px (5,d)
3. — = .
(3.3) fa,B(7) fAB(J)zd: > FanG ) PxGd)

This algorithm is iterated until numerical convergence is attained.

We note that the discretization of B into pixels and of the ‘detector ring’ into tubes
can be viewed as a form of sieving for a nonparametric estimator (Chang and Hsiung
(1994)). In many RCR applications one may want to assume a smooth density for (A4, B).
In such cases, some recent reconstruction techniques which are strongly geared toward
smoothed reconstruction could be very useful. See Green (1990a, 1990%), Silverman et
al. {1990), Eggermont and LaRiccia {1995) and Insem and Svaiter (1994} for some recent
modifications of the EM procedure to achieve smooth estimates. We also note that in
typical RCR applications where fx will be unknown, it must be replaced by an estimate
which can be derived from the z;’s sample. Thus the data will enter the estimation
procedure in two different ways here: once in determining the n*(d), and once in the
calculation of the Px(j,d) based on the estimated fx.

3.2 Implementation of RCR methodology to PET

Consider now the RCR context, and in particular the meaning of equations (1.3)
and (1.4). These equa.tions tell us that if we have an observation X; = =z, say, and
the corresponding Y, then exp(itY;) —which we will regard here as bemg a functxon of
t—is an unbiased estzmator of ¢ag(t,tx). In other words, exp(itY;) may be regarded as
an unbiased estimator—based on a single degree of freedom—for the function ¢4 5(t,u)
along the line in the (t, u)-Fourier-space that is traced out by (¢,tz). This line through
the origin, shown in Fig. 5a, has slope z and angle arctan(z) relative to the t-axis.
The situation in practice is as depicted in Fig. 5b, where we have one-degree-of-freedom
estimators for ¢pap(t,u) along as many lines in (t, u)-space as there are data points. In
order to estimate ¢4p at a particular value of (¢,u), we somehow need to average the
estimates from suitably selected points on nearby lines. It is clear from this discussion
that methods related to nonparametric regression (in the Fourier space) will play a useful
role in the estimation procedure for the nonparametric RCR problem, and furthermore
that the distribution of the X,;’s must have support on the whole real line in order that
it be possible to consistently estimate ¢4 p(t,u) for any (¢ u), regardless of the ‘angle’
at which it is located.

We can now describe our algorithm for nonparametric random coefficient regression.
In the RCR model Y = A+ BX, define © =arctan X and R=Y//(1 + X?) =Y cos©.
Then with this transformation of variables

_ A+BX

34 =T

= (A, B) - (cos ©,sin 8),
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Fig. 5. View of the (,w)-Fourier space for the characteristic function ¢ 45 (¢, ).

so that
(3.5) dre(r|8) = dap(rcosd, rsind),

for —oo < 7 < @ and —7/2 < 6 < 7/2. Here ¢pjo is the characteristic function of
R conditional on ©® = #, and ¢, g(-,) is the joint characteristic function of A and
B. Observe from (3.4) that the conditional density of R given @ is precisely the Radon
transform of the density, f4 g, of the coefficients A and B, and also that (3.5) is precisely
the projection-slice theorem. (This theorem states that the one-dimensiona! Fourier
transform (in the radial variable) of the Radon transform of a two-dimensional function
is identical to the two-dimensional Fourier transform of that function.) Note that these
assertions are in fact equivalent to (1.2) and (1.4).

Our procedure is based on first obtaining an estimate of ¢z|g, then of ¢4 p using
(3.5), and finally on numerical Fourier inversion to obtain an estimate of the density
fa,5. We have available the data (X;,Y;), or equivalently, the corresponding (R;,9;)
for j = 1,2,...,n. The conditional characteristic function ¢ge(r | ), which is just
E (exp{irR} | © = @), may be estimated from this data by essentially averaging those
values of exp{irR;} that correspond to values of ©; which are “close” (in the appropriate
sense) to &. In essence, this is a problem in nonparametric regression, and as such may
be approached in various ways. There is, however, the added [eature that the regressor
variable, ©, has (except for conjugation which occurs at the boundary) an essentially
circular structure.

Our approach is based on a straightforward adaptation to the circle of the locally
linear regression algorithm described, for example, in Fan (1992). Thus let K, (-} be a
kernel for local linear regression on the circle, where k = x(#) is an (angular) bandwidth
parameter. This function is taken to be #-periodic, even on {—n /2, 7 /2], have its mode
at @ = 0, and to become more concentrated around 0 as & — 0. Write 8, 98, for 8, — 02 if
this quantity lies in the interval (—w /2, 7 /2|, and for 8; — #; + 7 (respectively, 8, -8, —«)
if 6; — 82 < —7/2 (respectively, > 7/2). The quantities §; © 8, appearing below will
thus always fall in the interval (—7/2,7/2]. Then following Fan (1992}, we define first

(36) 5w(6) = S K6 - 0,)(0 20,
i=1

for k = 1,2, and then
(3.7) u;(6) = K.(0 — 0;){2(8) — (8 © ©;)s1(8)}.
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Finally, the proposed ‘locally linear regression’ estimator of ¢p|e is

(3.8) ¢’Rle r|8) = EuJ(B exp {irR;5;(8)} /Zuj(ﬂ)

i=1 J=1

where 5;(8) = £1 according as #58; equals # — O, or not, respectively. The presence of
the S;-factors, which are relevant primarily at the circle boundaries, may be understood
most easﬂy by appreciating how an observation (X;,Y;) corresponding to a large value
of X;, and hence to a value of ©; near to v/2, may be used to help estimate ¢rg at a
value of & close to —7 /2, by means of negating the value of r.

The estimator (3.8) is based on smoothing in the angular variable of the polar
coordinates in the Fourier domain. From this estimator and equation (3.5} we then
obtain our estimator of ¢4 g:

(3.9 &A,B(t,u) = &4'3('{' cosfl,rsinf) = &RIG(T | 6)

where {r,8) here and below are the polar coordinates corresponding to the cartesian
variates (t,u}, except that @ is restricted to lie in (—7/2,7/2|, so that r ranges over
(_'001 OO)

Next, a tapering function wp(r) is applied to the estimated ¢4,5. This taper must,
in effect, be 0 outside the bounded region in Fourier space where the estimator (3.9)
is computed, and must have a Fourier transform with reasonable properties for its role
as a smoothing (or convolution) kernel in density space. After tapering, basic two-
dimensional FFT-based numerical inversion methods are then used to compute an esti-
mate for fu p:

(3.10) Fanlab) = f B plt, wwg(r)e == dudy.

(2r)?

Numerical inversion involves, of course, both truncation and discretization. It is worth
noting here that truncation is accounted for, in the expression above, by the presence
of the taper function wjy, and this, of course, results in some convolution-smoothing in
the density domain. The discretization, on the other hand, ordinarily would result in
aliasing of the image; however in the PET context the image is supported over a bounded
area. It will therefore be easy to arrange things so that aliasing of PET images will not
oceur.

We now show how this algorithm can be adapted for reconstruction with PET data.
Thus suppose that j = 0,1,...,(D — 1) now ranges over the detectors on our detector
ring. We shall take D = 128 here, as this will correspond to the experiment whose
data we will analyze below. This gives rise to T = D(D — 1)/2 = 8128 detector tubes
which we index by m = 1,2,...,T. Each of the n,, coincidences detected in the m-th
tube will be considered to correspond to the line defined by the center of that tube.
It is necessary now only to correspond each of these PET-based (center) lines with an
RCR-based value for Y and X, or rather, for R and ©. Now the centres of the 128
detectors may be considered to be located at the angular positions 27;/128 radians on
the unit circle, for j = 0,...,127. The tube center line corresponding to the detector
pair j; and j, may thus be shown to correspond to that angle © which is the average of
the two angles 2mj; /128 and 2mj, /128, but adjusted, modulo 7, so as to lie within the
interval (—m/2,7/2]. (See Fig. 4.} The corresponding value of R may then be obtained
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by dotting a unit vector in the © direction with a unit vector in either the 27j; /128 or
the 273, /128 direction. For example:

(3.11) £ = cos(©) cos(2mj; /128) + sin(O) sin(2mjy /128).

The summations in the formulae for RCR given above can now be done over the T' = 8128
tubes {instead of over the n = 107 lines which will be used in the example provided
below) by introducing the tube counts data (i.e. the n,, factors) into the sums, in the
appropriate way. Specifically then, (3.6) will change to

T
(3.12) k(8) = D nmK(f — On)(0 8 0,)F,

m=1

while u,,(¢) remains basically as in (3.7). The estimator ¢§R|@ at (3.8) changes to

T T
(3.13) Srio(r | 0) = Y Tt (0) explirBmSm(8)} / Y nentim(6)

m=1

while qf)A'B and fA,B remain as in (3.9) and (3.10).

As a final observation here, it is constructive to note that both the RCR and the PET
problems are inherently ‘ill-posed’. Much of the recent statistical literature attempting
to regularize the maximum likelihood recomstruction in PET is focused on adding a
penalty function to the likelihood, or on adopting a Bayesian approach by defining a
Markov random field structure for the data. Some examples of this are given in Gehman
and McClure (1987), Green (19904, 1990b), Higdon et al. {1994), and Silverman et
al. (1990). The approach we describe here regularizes the problem by first smoothing
the raw data. In the PET context this corresponds to smoothing the random lines
data by means of weighted averaging (or by binning them into detectors) with weights
becoming smaller as the lines move away from the center of the detector, and then
applying a tapered Fourier inversion (in accordance with the projection slice theorem) to
the smoothed data. This is close in spirit, but different in details, to the convolution back-
projection method that is often employed in tomography (especially in X-ray CT, but
also in emission tomography). Relevant discussions can be found, for example, in Deans
(1983), O’Sullivan (1995), and Shepp and Kruskal (1978). The other direction, namely
applying penalized likelihood or Bayesian reconstructions developed for PET to RCR
problems, would entail assuming a Bayesian prior on the distribution of the coefficients,
or introducing a penalty component to the (nonparametric} RCR likelihood. Through
some clever methods of numerical analysis, for example as in Green (1990a, 1990b), one
can solve (approximately) a complex Bayesian estimation problem in RCR using PET
‘technology’, such as Green’s ‘one-step-late EM algorithm’.

4. Numerical implementation for PET

As one example of how RCR and PET methods may be adapted and transfered
from either problem to the other, in this section we provide the results of a numerical
implementation of the nonparametric RCR estimation algorithm as applied to PET data
in the manner outlined in Subsection 3.2. The specific example of PET data used here
is, for the sake of comparability, the same as in the simulation described by Vardi et al,
(1985) and in Kaufman (1993). This is based on the rate function (emission density)
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corresponding to the phantom used by Vardi et ol {1985) (and also Kaufman (1993))
and shown here in Fig. 6, and on a simulated count of n = 107 positron emissions from
this density. Through each of the simulated positron emissions, a line was drawn with
uniformly distributed angular orientation, and for each line, the pair of detectors (of
the 128 on the detector ring) through which it passes was determined. These data (L.e.
the 107 lines) were then grouped into the 8128 possible detector tubes. For purposes
of direct comparability, the actual data realization used here (i.e. the tube counts) is
identical to the one used in Vardi et al. (1985). It turns out that only 3277 of the 8128
tubes actually contain nonzero counts for this data set.

=0

Fig. 6. The phantom for the PET simulation experiment.

For each tube with a nonzero count, we computed R,, and ©,,, corresponding to
the tube center line, as indicated at, and just prior to, (3.11). Next we performed the
computations (3.12), (3.7), (3.13) and (3.10) respectively. This last computation was
performed by means of a two-dimensional FFT algorithm applied on a grid of dimension
512 x 512 (this being the largest FFT grid which our implementation of the algorithm in
the S-Plus statistical package could comfortably handle) extending over a range of £800
in each of the (cartesian) Fourier coordinates t and u. On inversion, this yields a grid of
512 x 512 pixels, each having dimension 7 /800 x 7 /800 or .00393 x .00393 squared units.
These choices provide satisfactory pixel dimensions for a data set of this size, and also
(since .00393 x 512 = 2.01 exceeds each dimension of the image) allow the entire image
to be produced, without aliasing effects.

We used the radially symmetric function tapering function

v =enfei ] et (7))

for |r| < 71, and zero otherwise, with the values »; = 180 and ¢ = 4 being used in our
reconstruction. For convenience, we used the same functional form for the kernel K,
of the locally linear regression on the circle; because the layout of tubes and detectors
appears essentially the same when viewed from any angle, we set the angular bandwidth
parameter £k = kg to be constant in #. The tube center-lines have a range of 128
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(uniformly spaced) angular orientations here, corresponding to a spacing of 7/128 =
0245 radians, so that the angular bandwidth must be larger than this; we used the
value & = 0.125 radians (same in all directions).

We followed the protocol of Vardi et al. (1985) by linearly mapping the reconstruc-
tion to a grey scale from 0 (white) to 127 (black}, then remapping the values 0-30 into 0,
and 70-127 into 127. The resulting reconstruction is shown here in Fig. 7. (This image
was produced with & Hewlett Packard HP4Si printer using 8-shades of grey.) This figure
may be compared to Fig. 3 of Vardi et al. (1985), and with Pictures 2-5 in Kaufman
(1993).

400

200

100

o S 100 150 200 280

Fig. 7. PET reconstruction by means of the RCR-based algorithm.

Strictly speaking, our display parameters have to some extent been tuned for this
particular set of data, however we note that the resulting image actually is quite stable
over reasonably broad ranges of the two bandwidths which are the main tuning param-
eters here. If these same parameter values were applied to a new simulation from this
image, we expect the overall result to be only slightly degraded. In practice, of course,
the values of these parameters would have to be tuned for the type of images and sample
sizes occurring in practice.

Finally, we remark that the computations here were carried out using the S-Plus
statistical package (version 3.3) (see Becker et al (1988)) on an SGI Challenge computer.
Our implementation, which involves a 512 x 512 computational loop in S Plus, and
therefore is not highly efficient, required approximately 5 minutes of CPU time to produce
the image in Fig. 7.
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