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ABSTRACT

This paper consists of two distinct components. First, we show
that the MLE may be considered to be an asymptotic consequence of
the Gauss-Markov theorem. Second, we examine whether asymptotic
optimization based on Bahadur slopes leads to the ‘correct’ result in the

Neyman-Pearson context.

1. INTRODUCTION

This paper consists of two separate components: to present a new
derivation for the maximum likelihood estimator, and.to present a new
derivation of the Neyman-Pearson likelihood ratio test. The aims and

methods of the two components however are essentially distinct.

For maximum likelihood estimation, our motivation is partly
pedagogic. Considering the importance of this method, it is rather
surprising how few widely known expositions exist which provide a
priori reasons for studying the MLE and for anticipating its theoretically
important properties. Indeed most texts introduce maximum likelihood
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estimation in more or less ad hoc fashion as being a ‘reasonable’ pro-
cedure and then proceed to discuss its optimality properties. The
reader may gauge for himself this assertion by reviewing his own
experience, or by examining the discussions in some major texts. Thus
students often acquire an impression that the ‘real reasons’ for the
MLE’s asymptotic optimalities must somehow be obvious provided one
can ‘look at things’ in just the right way. Ultimately, through famaliarity,
the student ‘accepts’ the result as natural, but usually cannot, if
pressed, identify the source of optimality. In section 2 we give a
development in which the MLE emerges in a non-ad-hoc manner out
of a natural optimization problem, and specifically as an asymptotic
consequence of the Gauss Markov theorem.

In the case of hypothesis testing, for a simple null hypothesis and a
simple alternative, the Neyman-Pearson lemma tells the whole story.
Nevertheless many important problems can only be approached through
asymptotic methods involving criteria such as the Bahadur slope,
Chernoff index or Hodges-Lehmann ARE. (A discussion of these may
be found, for example, in Serfling (1980) chapter 10. We do not men-
tion here the Pitman and Rubin-Sethuraman criteria, as we are
interested only in fixed alternatives.) A natural question then arises:
do these asymptotic optimality criteria lead to the ‘correct’ result in the
simple Neyman-Pearson context? In addition to the fact that its answer
is of intrinsic interest, and also says something about the criterion, this
question is important also to justify employing the criteria in the non-
standard problems to which they are applied. As well, the optimization
method for resolving this question is of independent interest within the
statistical context considered. In section 3 we resolve these questions
rather completely for the Bahadur slopes, both approximate and exact;
these criteria are by far the most important for applications. Finally, we
state an open problem in the application of the method to the problem

of testing for dependence.

Of course the properties of the MLE and LRT (likelihood ratio
test) have been extensively studied and two particular references that
bear on this work are Bahadur (1965) and Godambe (1960). However
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the aims and methods of this work differ considerably from those of
the references cited.

2. DERIVATION OF THE MLE

We shall show that the maximum likelihood method is an asymp-

totic consequence of the Gauss-Markov theorem and can be motivated

in this way as the solution of a natural optimization problem.

Firstly, in the Gauss-Markov context we are concerned with the
model

nxl1 nxppxl nxl

X - 7B e (2:1)

and if e is multivariate normal with mean o and nonsingular covari-
ance X then the optimal estimator ﬁ of the true f, is the solution

of the linear equations

A

ZE Y28 = 0. (2.2)

Next, let X;,X,,...,X, be iid with density in {f;} and let F, denote
n

the corresponding cdf’s and Fy(x)= n"'}I(X; < x) denote the
i=1

empirical cdf. The unknown true value of 6 is denoted by 6,. For

simplicity here we shall take 6 to be a real univariate parameter, and
correspondingly we shall take the dimension of A in (2.1) to be p=1;

the arguments below generalize easily to the multiparameter case. We

note the following correspondences between the two contexts:

i) Be=d, B, >4,
i) Y — Fy(x)

(
(
(111) Zﬁ =t FG(X)’ Z:Bo hga FBQ(X)
(

iv) e Y= A8 0, - F,
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n (ii) the function F (x) is being thought of as an infinite dimen-
sional vector while for (iii) Fy(x) is regarded as linear in a small
neighbourhood of 6,. By the correspondence (iv) is meant that
F,— Fy, is asymptotically zero mean and Gaussian. Now ¥ also has
a natural analogue, but the situation for X! is more involved.

Nevertheless, corresponding to (2.2) we may write down the analogous
‘linear’ estimating equation
| [Fn(x) - Fa(x)]dH(x) ==0 { (2.3)

except that H(x) is not given and will have to be determined.
To this end rewrite (2.3) using integration by parts in the form

J H(x) d(Fy(x) - Fy(x =20 (2.4)

and then Taylor-expand Fy about 6, to obtain

fo (x
J H(x)d(Fy(x) - Fo,(x)) - (6-6,) [ H(x) 6; ) dx
- 8% (x (2:5)
= —;—(0—90)2‘[}1()()%(1)( =0

for some ¢, between ¢ and 6,. Then, to second order, the approxi-
mate solution to (2.4) is

A JH(x)d([Fy(x) - Fp,(x))

s (e 3 (2.6)

foo(x)
[ H(x) iy
and this has variance
> VAR, (H(x))
n-VAR, (4) = : . (2.7)
81'9 (X)

[ H(x) 809 dx
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The choice for H(x) in (2.3) is taken as that which minimizes (2.7).
But since this expression is clearly invariant under the changes
H(x) — a+bH(x) we may take H(x) as that function which minim-
izes VAR, (H(X)) subject to EyH(x) =0 and

afeo(x)
fH(x) 20 dx = 1. Now since, in section 3, we will solve an

analogous problem, we shall omit details here, but the reader may ver-
ify that the solution for H(x), to within additive and multiplicative
constant terms, is given by

dlog fy (x)

H(x) = Ho(x) = —s

(2.8)

and that when substituted in (2.7) this gives n:VAR, (4) = I-1(6,)
where I(#) is Fisher’s information.

Finally we need to take stock of the fact that (2.8) depends on the
unknown 6,. The obvious approach is to use Hy where 6, is some
consistent estimate, and then obtain, via (2.3), the estimate 0,. We
can then iterate this procedure using Hy, to obtain 63 and so on.

Now suppose (as indeed happens under general conditions) that the
solutions converge: 0; = 0y The limiting 6p; then clearly must

satisfy
fHGM(X)d[Fn(X) o= FGM(X)] = 02 (2'9)
dlogfy, (x)
%0(— d(Fy(x) - Fp(x)) = 0. (2.10)

It may readily be seen, however, that (2.10) is none other than the
likelihood equation itself.

3. DERIVATION OF THE LRT

In this section we suppose that we have an iid sample
X1, Xy, ., X, and seek to test a simple null hypothesis et
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versus a simple alternative H; : f;(x) (where f, and f, are densities)

on the basis of a test statistic having the form

T, = U@ = ~BUX) - (3.1)

We shall first show that the criterion of the exact Bahadur slope may be
used to derive the likelihood ratio statistic.

Taking large values of T, as evidence against H, we introduce
the constraints

Bty = ] Ulnlilxide =0 3:2)
BT, = [ UlxMfxidg=1. (3.3)

Then by a theorem of Bahadur (see Serfling (1980), p. 337) the exact
slope of T, is

lim [_ 2 1ogPy, l% SU(X) > 1” (3.4)

n—oo

and by Chernoff’s large-deviations theorem (ibid pp. 326-328) this

= -2loginf [ eZ[U(")'l]fo(x) dx (3.5)

so that we need to minimize

inf [ e2(U)-1¢ (x) dx (3.6)

subject to (3.2) and (3.3). The presence of the inf in (3.6) makes this
Z -

a seemingly formidable problem. However the difficulty may be cir-
cumvented by a simple device. In place of (3.6) we may extremize
instead

[ 20~ (x) dx (3.7)
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while introducing the additional constraint

[ e2U-1(U(x) - 1)f,(x)dx = 0 (3.8)

obtained from taking the derivative in z. Thus let z, U(x) be the
required solution and introduce variants 6z and 6U(x). By (3.2) and

(3.3) we must have

Il
o

J 6U(x) - f,(x) dx (3.9)

J 6U(x) - f(x) dx

Il
f=o)

(3.10)

while (3.8) leads (ignoring second order terms) to

e [5z(U— 1)% 4+ 8U[a(U-1) + 1]]fodx = 0. (3.11)

This last equation may be regarded as giving 6z in terms of 6U; it
plays no further role below.

Finally, introducing the variants in (3.7), ignoring second order
terms, and noting (3.7) must already be at a maximum, we have by
standard arguments that the first order term must be zero:

§z+ [ eXU-D(U- 1)f,dx +z- [ eXU-D-6Uf,dx = 0 (3.12)

or, using (3.8)
[ edU-DsUt dx = 0. (3.13)

Now (3.9), (3.10) and (3.13) mean ez[U(x)'l)fo(x) is orthogonal to
every function orthogonal to f, (x) and f;(x) suggesting that

e2U-1r (x) = af (x) + Bfy(x) . (3.14)
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On substituting (3.14) in (3.8), and then using (3.2) and (3.3), we find
a=0 so that (3.14) becomes

U(x) = 1+z logp i_lig (3-15)
and’substitl;ting in (3.2), (3.3) we find
fi(x
[ (£1(x) = £5(x) ) log foEX; dx (3.16)
and
= exp f f,(x) log fy E};; dx} : (3.17)

Note that z= J(0,1) and B = exp (-K(0,1)) where K(0,1) is the
Kullback-Leibler information number and J(0,1) is the Kullback-

Leibler divergence (see for example Kullback (1959)) and that the
maximum attained in (3.5) is

slope = 2K(0,1) . (3.18)

The inconsequential constraints (3.2) and (3.3) can be dropped to allow
the solution (3.15) to be reexpressed, on linear transformation, in the
form

f1(x)

U(x) = log m

(3.19)
which in (3.1) gives the Neyman-Pearson test.

Consider secondly the criterion of the so-called approximate Baha~
dur slope. This is defined as

n—o0

c = lini [— %log(OﬁS)} == 13.20)
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where OLS is the observed level of significance of (3.1) computed
from the asymptotic normal distribution N[EOU(X), —IITVARO(U(X))

of T, under H,. Denoting this distribution by Pf we have

e — hm [— g—logPﬁo[Tn > Tn(obs)]] (3.21)

n—o00 n

S L SN e O T‘(Obs)_E°U) (3.22)
- n o | AARN U)o JVARL(U) /A :
3 va(T,(obs) - E,U)
= lim |- =log|l1- & (3:23)
n VAR, (U)
(E,U(X) - EU(X))’
(3.24)

VAR, (U(X))

In these calculations Tp(obs) denotes an observed value of T, taken

from the distribution of H;. The step from (3.23) to (3.24) uses that
T, = E,U(X) + op(1) under H;, and the well known result for the
normal cdf ®(x) that

log (1- ®(x)) = - X?2-[1+o(1)} as X — 00. (3.25)

We thus seek U(x) to maximize (3.24). This problem is invariant
under the changes U — a+bU. Therefore we may require

E,U(X) = 0, VAR,(U(X)) = 1 and seek to maximize E,U(X). We

again omit details of the solution; the result (except for constants) is
given by
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U(x) = (3.26)

which, unlike (3.19) is not efficient. We may note however that for
- f1(x)
H; near H, in the sense that

fo(x)
f,(x) fy(x) . 2 -
og = ——— - 1 approximately, so that the test which maxim-
folx)  f(x)

is near unity, we will have

izes the approximate Bahadur slope will be nearly optimal. The max-
imum attained by (3.24) is seen to be [ (fZ(x)/fo(x))dx - 1.
We close with van'open problem that underscores the nontrivial

nature of the asymptotic theory for testing. Consider the problem of
testing for dependence in the joint distribution of (X,Y) where

(X;,Y;), i=1,2,...,n is an iid sample, based on a generalized covariance-

type statistic of form

S

n ff V(X,y)d[FI}ICY(x,y) = Fr}x((x)Fr;{(Y)]

1

(3.27)
— 2V - Lz 22V(XRY)
et

1

and consider a simple H,:fX(x)f¥(y) and simple nonfactoring
H, : fX¥(x,y). What is the function V(x,y) which maximizes the
exact Bahadur slope? This natural problem, whose solution seems not
to appear in the literature, is related in part to an important, unsolved
problem concerning the large deviation probabilities for Hoeffding U-

statistics and related forms. For (3.27) it is tempting to speculate that
XY
Vilx 3 = log;—fJML is in some sense ‘close’ to the optimum.
()Y ()
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