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On Some Fourier Methods for Inference
ANDREY FEUERVERGER and PHILIP McDUNNOUGH*

Common statistical procedures such as maximum like-
lihood and M-estimation admit generalized representa-
tions in the Fourier domain. The Fourier domain provides
fertile ground for approaching a number of difficult prob-
lems in inference. In particular, the empirical character-
istic function and its extension for stationary time series
are shown to be fundamental tools which support nu-
merically simple inference procedures having arbitrarily
high asymptotic efficiency and certain robustness fea-
tures as well. A numerical illustration involving the sym-
metric stable laws is given.

KEY WORDS: Fourier transforms; Maximum likeli-
hood; Empirical characteristic functions; Asymptotic ef-
ficiency; Fisher information; Robustness.

1. INTRODUCTION

A number of difficult problems in statistical inference
may be amenable to solution by transform methods. In
this article we explore the applicability of some new pro-
cedures based on Fourier methods and empirical char-
acteristic functions. These procedures are shown to pro-
vide a natural basis for asymptotically efficient inference,
and certain natural tradeoffs between the efficiency of
the procedures and their robustness are indicated. The
range of potential applications emerges as being fairly
broad. A numerical example is given for the symmetric
stable laws.

The basic ideas may be introduced in the context of
efficient inference. Thus suppose X, X,, . . . , X,, to be
iid variates with density in {f¢(x)} and 0 assumed (for
simplicity here) to be a real univariate parameter. Now
maximum likelihood leads to a likelihood equation which
we may write as

f d log fo(x)

6 dF,.(x) =0,

(1.1)
where F, (x) is the empirical cumulative distribution func-
tion (cdf), or in the suggestive alternate form

d log fo(x)

50 dlF(x) — Fe(x)] =0,

(1.2)
where Fy is the cdf of fy, and the term introduced is just
a ‘“‘zero.”’

This last equation may be transformed. Using a general
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form of the Parseval Theorem (see Sec. 6) we obtain the
following result, namely a Fourier domain version of the
likelihood equation:

| wotwteatty ~ cotviar = 0. (1.3)

Here co(f) = [ ™ dFy(x) is the characteristic function
and

n
Zerx

Jj=1

S |-

et) = [ e dF, @) =

is the empirical characteristic function (ecf). The weight
function

RN log fe(x)

—itx d
2m 00 o

we(t) = (1.4)
is given as the inverse Fourier transform of the score. In
general, of course, the score function is not integrable -
and the proper interpretation of these equations is in
terms of generalized functions (see Sec..6).

Now one approach to equation (1.3) involves recog-
nizing [ we(t)ce(t) = 0 as just the zero term, and working
with the likelihood equation:

f we(t)c,(t) dt = 0 .

This approach, however, can have merit only if the form
of we(?) is tractable, while that of fg(x) is not.

An alternative approach to (1.3) is to regard the weight
function as known and then to solve the moment-type
equation

(1.5)

f w®)lcn(t) — co(®)] dt =0 . (1.6)

We shall see (Sec. 2) that for appropriate w(z) this pro-
vides an asymptotically efficient procedure. Heuristically
this can be understood by comparing the behavior of the
two components of (1.3) for 0 in the neighborhood of the
true value 6. Thus

% we(t)cn(2) dt o
0% log fo(x) i
J f 02 eOc,.(t)e dx dt
0% log fe(x)
f B eodF"(x)

and this converges at the usual rate to —(6,) where 1(6)
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is the Fisher information. But for the other component
we have
d
== [ waew dr = 100) .
00>

01 =0>=0¢

Therefore if w(f) in (1.6) is taken as ws(z) where 9 is any
consistent estimator of 6y, then the compensation re-
sulting from the asymptotic equality of the derivatives of
the two components of (1.3) suggests that (1.6) will be
asymptotically equivalent to maximum likelihood. (It is
of interest that a parallel argument may be applied to
(1.2).) We remark that if (1.6) were applied iteratively
and 0, in we, and 0, in ¢y, converged to the same value,
then that value will, of course, satisfy the likelihood
equation.

To illustrate some basic manipulations consider an ar-
bitrary scale-location family

f) = 1g[" — “]
g ag

where g(x) is a symmetric density. The corresponding

score functions are
X = X =B
g g
and .

dlog f(x) 1
o a
d log f(x) I x—p fx—p X —p
e - 5T o7 8 g :
g ag g g ag

In describing the transforms of these functions we con-
veniently may drop constant factors and delta functions
without affecting the procedure (1.6). (Delta functions at

zero can be dropped because ¢(0) = ¢,(0) = 1.) Thus,
at p = 0, ¢ = 1 for example, we may take

g'x _;
wu(t) = | =——e¢ ™dx
" gx)
and
Wolt) = fwe—"x dx .
g(x)
Note that (except for an inconsequential constant factor)
dwy (1)
+(f) = .
We (1) i

For symmetric g, w,, is symmetric and thus acts only on
Rec(1), while w, is antisymmetric and acts only on Imc(t).

Now for the Gaussian case with g(x) = N(0, 1), w,,, w,
are proportional to the first and second derivatives of
delta functions. For the Cauchy case with g(x) =
[w(1 + x?)]~", we have

g __x
gl 1+ x*°

xg'(x) 1
gx) 1+ x%°

giving
wu(t) = sgn(t)e ", we() = e 1",

(Here again, we are ignoring constant factors and delta
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functions at zero.) Of course, the approach implicit here
leads necessarily to maximum likelihood; other methods
will be given below which do not require evaluation of
the weight functions but yet have arbitrarily high asymp-
totic efficiency.

In Section 2 we present our main results concerning
ecf procedures and in Section 3 discuss a robustness prop-
erty of the ecf. In Section 4 we discuss the problem of
inference for the stable laws and give a numerical ex-
ample of our methods for the symmetric case. In Section
5 we present an extension for stationary time series, the
polycharacteristic function (pcf), and outline an appli-
cation to a specific Markov process. A number of math-
ematical technicalities which arise are omitted from the
main text. These are collected in Section 6. Some con-
cluding remarks are given in Section 7.

2. CONCERNING ECF PROCEDURES

A review of the properties of the ecf is given in Feuer-
verger and McDunnough (1981), hereafter referred to as
FM. Here we shall note only that

Y(©) = Vn lcat) — c()]

is asymptotically normal at finite numbers of points, has
zero mean, and covariance structure determined (both
for finite n and the asymptotic case as well) by

cov[ Y(s), Y(1)] = EY(s)Y(1)

=cs -1 —cls(-1. @.1

In particular we obtain
cov[Re Y(s), Re Y(#)]
= }[Rec(s — 1) + Re ¢(s + )] — Re c(s) Re ¢(9)
cov[Re Y(s), Im Y(9)] 2.2)
=3Imc(s — t) + Imc(s + )] — Re c(s) Im c(2)
cov[Im Y(s), Im Y(#)] X
=3Rec(s — 1) —Rec(s + O] — Im c(s) Im c(?) .

We summarize our main results in the following theo-
rem. The technical conditions we require are quite mild
and for convenience are collected in Section 6.

Theorem 2.1. Suppose X;, X>, . . . , X, are iid with cf
co(x) where 6 = (6,, . . ., 0,) has unknown true value 6,
€ 0. Let0 <t < - <tbe afixed grid; define z'y =
[Re c(t)), . . ., Re c(ty), Im c(¢;), . . ., Im c(2;)] and let
z,, be its empirical counterpart. Let n ™' be the covar-
iance matrix of z,: the entries of ¥ are given by (2.2).
Then the estimation procedures I through 1V given here
yield consistent estimators having the same asymptotic
normal distribution. Further, the asymptotic variances of
these procedures can be made arbitrarily close to the
Cramér-Rao (CR) bound by selecting the grid {t;} to be
sufficiently fine and extended.
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1 (the k-L procedure). Estimate 6 by maximizing the
asymptotic normal form of the likelihood for z,,.
II (moment estimator). Choose 6 to solve the equation

D'z, = D'z,

where D is a consistent estimator of

9Ze dZe
I e e
0 % [691’ 691]
evaluated at 6,.

III (min Q procedure). Choose 6 to minimize the
quadratic form

(z, — 2o) Oz, — o)

where Q is a consistent estimator of any matrix Q, with
the property that Qy ¥ Dy = DoF for some nonsingular
matrix F.

IV (harmonic regression). Choose 0 by fitting zo to
2, using nonlinear least squares and any consistent esti-
mate of the asymptotically optimal weights.

We remark that the asymptotic log-likelihood referred
to in I may be taken either as

—3logdet¥ — g(zn —20)' 37 (20 — 20) (2.3)

or as just the second term of this expression and that
procedure II is motivated by differentiating this term.
The procedures 1 and II given here are straightforward
extensions of the results of FM to the multiparameter
case and the results III and IV follow along similar lines.
The condition in III is just that for the efficiency of a
weight in least squares; the case Q = DyD’, leads to
procedure II while Q = ¥~' gives procedure 1V. Of
course 1V is just the regression formulation and can be
obtained from (2.3) by replacing ¥ by any consistent
estimate.

A direct and more revealing proof of Theorem 2.1 is
possible than that appearing in FM and we briefly indicate
this here. Thus suppose D'(z, — z3) = 0 where D is 2k
X 1 (the multiparameter case would be treated similarly)
or equivalently

[ teatty = eotn away = o 2.4)

where W(t) = W(—1) is a step function. Then a standard
differential argument (c.f. Section 6) yields that a con-
sistent root 6 of (2.4) is asymptotically normal with
asymptotic variance

n var(é)

2
J J c(s — 1) dW(s) dW() — [ f 0 dW(t)]
N ac(t) 2
j j c(s — 1) dW(s) dW(r)

GC_(I) 2 . (2.5)
[ 30 dW(t)]

381

Now (2.5) is just the quotient of a Hermitian form and
an associated squared linear form and is minimized when
the jumps of W(-) are proportional to the entries of

[e(s — 0]~ (5’5(’-)> .

=0 (2.6)

Here we interpret [c(s — )] as being a matrix—which
may be taken to have dimension 2k + 1) X 2k + 1)
with s, t ranging over —t;, ..., —#,0,¢t, ..., ;and
[0c()/90] as being a column vector. Taking ¢; = jr, the
inclusion of ¢ = 0 (possible because dc(0)/06 = 0) makes
[c(s — ©)] a Toeplitz matrix. Now substituting (2.6) in
(2.5) we obtain

(@) e ()]

We may now carry out a circulant approximation of the
Toeplitz form. (This is standard in certain time series
applications, dating from Whittle 1951.) Thus consider
the spectral representation

[ets — 017" = 2N7'EE

where the {\;}, {§;} are eigenvalues, eigenvectors of [c(s
— 1)]. In the limit (as k — ) these may be approximated
by the eigenvalues, eigenvectors for the corresponding
circulant (see Brillinger 1975, Sec. 3.7; Grenander and
Szego 1958, Ch. 11). The eigenquantities for the circulant
are given, for example, in Brillinger, Theorem 3.7.3, and
substituting, we find that (2.7) can be made arbitrarily
close to the CR bound.

The procedures of Theorem 2.1 are based on the ecf
at only a finite number of points and thus are of discrete
type. Analogous procedures of a continuous type require
a more general context for proper treatment. In partic-
ular, concerning the interpretation of (1.4) when the score
is not integrable, we remark that the Fourier integral will
continue to exist when interpreted as a generalized func-
tion (see Sec. 6). In FM the problem of integrability of
the score was treated by means of tapering. However,
equations such as (1.3) and (1.4) have meaning more gen-
erally, provided these are viewed in the context of gen-
eralized function theory.

The procedures of Theorem 2.1 all have continuous
analogs. We shall indicate these only heuristically. The
moment procedure has the analog

[ Wt teay = conar = 0

with asymptotic covariance matrix

-1
n var(é) = {fw(t) 9_;_(()2 dt}

- f f ws)w' (DK (s, 1) ds dt

-1
-{Jw(t)?%t)dt}

where w and 9¢/90 here are [ X 1 and 1 X [, and

K(s, 1) = c(s — t) — c(s)c(—1) .

2.7

(2.8)
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If w(f) = wg,(¢) in (2.8) we obtain the CR bound. This is
also the case asymptotically if we use a consistent esti-
mator of the efficient weight (i.e., ws where 0 is consistent
for 68,). Note also that (2.8) can be made arbitrarily close
to the CR bound by a suitable selection (or estimate) of
a continuous integrable w(z), for example, through ta-
pering as in FM.

The continuous analog for the min-Q procedure in-
volves the Hermitian form

J[1exs) = cvN e - 2y A0 dsar - 2.9)

which must be minimized. In both the discrete and con-
tinuous cases, squaring and summing the moment equa-
tions leads to a rank / quadratic procedure which attains
a zero minimum. Hence the kernel

l
Als, 1) = 2 wo, (s) Wo, ()

Jj=1

(2.10)

leads to a CR-bound procedure. More generally, one may
write down the asymptotic covariance for the procedure
(2.9) and note that the CR bound is preserved if we take,
formally,

!
A(s, 1) = E We, (5) We, (1)

Jj=1

2.11)
+ 2 w;(s) w;(0)

j=1+1
where the w;, j = | + 1 are orthogonal to the wy ", j
= [. Except for the difficulty that these are generalized
functions, the theorems of Mercer and Schmidt (Riesz
and Sz.Nagy, Sec. 97 and 98) suggest that such A(s, #)
provide most if not all solutions for asymptotically op-
timal quadratic weights.

Finally, we remark that procedures I and IV have con-
tinuous analogs. Because of results associated with the
property of continuous dependence on the kernel (e.g.,
Courant and Hilbert 1953, p. 151), these may be equiv-
alent to certain limits of discrete procedures. These con-
tinuous analogs have a real statistical interest, but we do
not pursue this here.

3. A ROBUSTNESS PROPERTY OF THE ECF

A number of authors (Thornton and Paulson 1977;
Heathcote 1977; FM 1981) have noted certain robustness
properties for various procedures associated with the ecf.
This robustness is related to the equivalence of a certain
class of ecf based procedures with the M-estimators due
to Huber. See for example Huber (1977).

Consider a general class of M-estimators defined by
the implicit equation 2¢(X;, 6) = 0, or equivalently

[wex 0 dF.0 = 0. a0

This equation has a representation in the Fourier domain:
again by Parseval’s theorem we may write

fwe(t)c,,(t) dt =0 3.2)

Journal of the American Statistical Association, June 1981
where
1 .
we(t) = — f\l}(x, 0)e " dx . (3.3)
2m

For these procedures to be consistent we need at least
the following restriction on wg(¢) (i.e., on Y(x, 0)):

Ey(X,0) = fwe(t)ce(t) dt =0 (3.4)
and then (3.1) is equivalent to
[ wotentsy = cotnar =0 (3.5)

It follows (Huber 1977, p. 14) that procedure (3.5) has
influence curve proportional to

Pix, 0) = fw'g(t)ei”‘ dt .

For procedure (1.6), with w(¢) considered fixed, the
influence curve may be calculated directly. Suppose that
the function 6(¢) is a differentiable root of the implicit
equation

[ i1 — 9 Fo) + eH(y) ~ Fuo] =0 3.7

where w is the Fourier transform of w and H, gives unit
mass at x. Then the influence curve (Huber 1977, p. 10)
is just

(3.6)

IC(x, F) = lim b(e) — 6(0) _ do(e)
0 € de

and differentiating (3.7), we find
wx) — | w(y) dF(y)
IC =

T d
= [0 a0

, (3.8)

0=0¢9

which, as a function of x, is just a linear function of the
Fourier transform of w(z).

These findings help to explain the robustness properties
that have been noted. Thus, for example, for integrable
w(t), we obtain a bounded influence curve. On the other
hand, w(f) can have quite complex behavior and still pre-
serve robustness. The case related to the M-estimator for
location given by Huber (1964), which solves the Gaus-
sian robustness problem, affords an interesting example.
Here y(x, 8) = $(x — 0) where, except for scaling,

P(x) = {

X x| =1
sgn(x) |x|>1

while the inverse Fourier transform, obtained after some
calculation, is
sin ¢

walt) = imt?

We may-note that efficiency and robustness are subject
to trade. In FM the problem of integrability of the score
was resolved by working with the truncated forms:

d log fe(x)

W) = f* } P hm(x)e =™ dx

(3.9)
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where

v _J1 x|=m
h'"(x)_{O [x|>m

(and the representation here serves to indicate the pos-
sibility of more general tapering). In the present context,
however, two essential aspects may be clarified. First is
that the influence curve for a tapered form is (a linear
function of)

d log fe(x) h

P m(x) ,

which presumably is bounded. Second, not integrability,
but rather boundedness, is seen to be essential for ro-
bustness, which suggests replacing the ‘‘vertical taper-
ing”” of (3.9) by some type of ‘‘horizontal tapering,”
which leads to

wn@) = [ [—aloig°(x’] e~ dx
- M

(interpreted as a generalized function) where the symbol

il = 1% , |x|=M
M M sgn(x), |x|>M"

Trade-off between robustness and efficiency is accom-
plished in the selection of M. For Gaussian location, this
approach leads of course to a type of optimal tradeoff.
And in accordance with the general character of the re-
sults of Huber (1977), one may expect that useful tradeoff
will generally occur.

Finally, we remark that the procedures based-on finite
grids {t;} are easily seen to have bounded influence. The
reason for this is clear intuitively, for the behavior about
t = 0 will not be accessible to discrete procedures, and
outlying values appear as trigonometrically reduced.
Note, however, that the bound on the influence can be
very high should the grid pass very near the origin.

4. A NUMERICAL EXAMPLE: INFERENCE FOR THE
STABLE LAWS

The methods of Section 2 lead to new inference pro-
cedures for the stable laws which have arbitrarily high
asymptotic efficiency but are considerably simpler to.ex-
ecute than maximum likelihood. Essentially we propose
to fit ce(f) to ¢, (t) by nonlinear weighted least squares.
Here, as before, ¢, (¢) is the ecf, and cy(¢) is the cf with
parametrization 6 = (w, o, ):

co(t) = e . o~ loll™

4.1)

We have indicated here only the symmetric case, but the
method is in fact quite general. -

The least squares procedure is based on a grid 0 < ¢,
< +-+ < t; and involves minimizing a quadratic form in
the 2k variates Re[c,(t;) — co(t)], Im[c,(¢;)) — co(t))], j
=1,2,..., k. The covariance structure of these terms
is given in (2.2) and may be estimated. To preserve the
asymptotic properties a single iteration starting from any
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consistent estimates will suffice. The updating equation
is found from a first order calculation:

Onew = Ooia + (G'X7'G) ' G'Y "o,  (4.2)

Here the 2k column vector ¢ has entries consisting of
the real and imaginary parts of (c,, — cp) at the ¢;, and G
is a 2k X 3 matrix

o- [, %)
on 9o da

evaluated at @.q. The covariance matrix ¥ of & is ob-
tained from (2.2). It is of some practical value to note
that if we work with centered variates such as X; =
(X, — ()/6 where i and & are estimated, then ¥ will
become block diagonal and the structure of G will match
conveniently to allow (4.2) to separate into two parts:
one involving only «, ¢ and the real part of the ecf based
on the {X;}; the other involving only p. and the imaginary
part. In particular, the 2k X 2k inversion may then be
replaced by two k£ X k inversions. This will not happen
for nonsymmetric families.

The symmetric stable family was used for numerical
confirmation of the practicability of the methods pro-
posed. Table 1 provides the asymptotic values of n - var
for the parameters p, a, o evaluated at ¢ = 1 and a =
1.0, 1.1(.2)1.9. These values are provided for procedures
based on k£ = 2, 3, 4, 6, 10, 20, 40, = equally spaced
points 7, 27, . . ., k7 on the ecf (a real and complex value
being taken at each point). Below each value of the
asymptotic variance we give the value of 7, the optimal
pair being reported in each case. The cases k = « were
determined from Tables 1 and 2 of DuMouchel (1975).

The values given in Table 1 were obtained from the
asymptotic covariance matrix (G’ ¥, ~! G)~! of the esti-
mators using the block structure so that two & X k in-
versions were required. We found the subroutine MINV
of SSP (1962) adequate for this purpose. (The case k =
40, o = 1.9, however, did not pass our numerical checks
and is not reported.)

The results in Table 1 are encotiraging, especially when
judged against the rigidity of uniform spacing. According
to the results of DuMouchel (1975) stable samples have
substantial information for the parameter « in the extreme
order statistics. This suggests that for smaller a uniform
spacing will not be nearly optimal for a. Spacings with
higher concentrations at the origin seem of interest, but
the ensuing lines of enquiry are extensive and we do not
pursue these here. Table 1 does not show how the effi-
ciencies vary with 7. These more detailed results may be
obtained from the authors. We mention here however

‘that in all cases the efficiencies varied slowly enough so

that the selection of a compromise T (allowing high effi-
ciency for all three parameters) presents no difficulties.

A program to carry out k-point inference was devel-
oped based on a straightforward weighted nonlinear
regression approach, which involved fitting via (4.2) (a
Taylor expansion of) ¢ to its estimate at 2k (real plus
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Table 1. Asymptotic Variances N-VAR and Optimal
Uniform Spacing Intervals for Estimating Symmetric
Stable Parameters Using k ecf Points

k 2 3 4 6 10 20 40 [

a=10 p 248 229 220 211 206 202 2.01 2.00
60 50 42 34 24 .15 .09

a 643 382 296 228 182 152 137 1.21
- .40 34 29 23 .17 A1 .06

o 254 235 227 219 215 212 210 210
74 62 53 42 30 .18 .10

a=1.1 w252 237 230 224 219 217 216 2.16
54 44 37 29 219 13 .08

a 612 380 3.03 241 200 1.73 1.60 1.49
41 34 29 283 .17 .10 .06

o 212 200 195 190 188 185 1.84 1.85
75 62 53 .40 27 .15 .08

a =13 n 250 242 238 235 233 232 232 232
45 36 30 23 .16 .10 .05

a 540 367 3.08 262 232 214 2.06 2.02
43 34 29 22 15 .09 .05

o 157 154 151 149 147 146 146 1.46
.76 58 45 31 20 .11 .06

a =15 p 241 237 236 234 234 234 234 234
38 30 25 .19 .12 .06 .03

a 450 335 296 267 250 241 238 237
43 34 28 21 14 .08 .04

o 1256 122 120 119 118 117 117 117
90 44 35 24 16 .09 .04

a=17 n 228 227 226 226 226 226 225 2.26
32 25 20 .14 12 .07 .04

o 328 268 249 236 230 227 226 225

43 32 26 .19 12 .07 .04
o 98 95 94 94 93 .93 .93 .93
48 35 28 .19 12 .08 .04

a=19 po 212 212 212 212 212 211 2.1
24 31 25 17 15 .06

a 153 137 133 131 128 1.27 1.28
39 28 22 .15 15 .10

c 72 71 71 70 .70 .70 .70

38 27 33 .28 .17 .10

imaginary) points starting from consistent estimates. The
value for T may be chosen from the initial estimates to
minimize the asymptotic variances. A key feature of the
program is its essential simplicity; we omit further de-
scriptions here. Tests that we carried out using Cauchy
data generated from Gaussian ratios showed the proce-
dure to be well behaved. Computations were done on the
University of Toronto IBM 360/165. The two (FOR-
- TRAN) programs described herein may be obtained from
the authors.

5. AN EXTENSION FOR STATIONARY PROCESSES

Let {X;} be a strictly stationary ergodic time series, and
Y® = (X;, X;—1, ..., Xj—i)'. We define the poly-cf
(pcf) functions

c®(t) = Eexpit'Y,® 5.1
and the corresponding empirical (epcf) quantities
c (k)(t 1 i it Y,("’. (5.2)

n;

Journal of the American Statistical Association, June 1981

Note that although Ec,®(t) = c¢®(t), ¢,®(t) may not be
the best estimator for c®(t), just as X is not usually the
best estimator for the process mean. Like X, however,
the epcf will have important asymptotic optimalities as
an estimator of the pcf.

We shall consider only the case of Markov processes
having a single parameter 6; the generality of the method,
however, will be evident. Thus set Y; = YP = (X,
X;_1)', c(t) = cP(t), and

1 n
ca(t) = ¢, () = . > exp(it'Y)).
j=1

Then Ec,(t) =

lim n - cov[cn(s), ca(t)]

c(t) and

=c(s —t) — c(s) ct) (5.3)

+ 2 > cov[e®™Y, eit'Vi+r],
r=1

A mixing condition we now assume is the convergence
of the infinite sum. For example, by the maximal property
of the Gaussian correlation (e.g., Rényi 1959 and his ref-
erence to Gebelein) or otherwise, we may show this holds .
for stationary Gaussian processes with absolutely sum-
mable correlations (and more generally for stationary pro-
cesses whose maximal correlations are absolutely sum-
mable). Now consider the moment equation

[ woten® ~ cotw at = 0

involving the weight function w(¢,, ,). A formal differ-
ential argument yields

(5.4)

ff w(s)w(t) X (s, t) ds dt

2
[fw(t) Q% dt]

where 6 denotes a consistent root of (5.4) and (s, t) is
given by (5.3). Taking

n var(§) = (5.5)

w(t) = we,(t) ¢
2
— [L:I fe—it'y/‘mg_‘f&xi.lﬁ__]) de—l d.,\f,',
2 90 60 (56)
we can show that
fwe()(s) 2(51 t) ds
_E {————a tog X, | X) e—'”z} 5.7)

+22E

r=1

gl()—g_.w_) —it'Yo 4,
38 '

Substituting this now in (5.5), we may show that the nu-
merator reduces to

2
Es, |:3 log f(X; | Xj—l]

990 ©-8)

while the denominator reduces to the square of this term.
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Hence, under the Markov assumption, (5.5) becomes the
asymptotic Fisher information per observation. As be-
fore, the generalized function we,(t) may be consistently
estimated and can be approximated by bounded integra-
ble functions (by tapering of the score, say) to give ro-
bust procedures. The arbitrarily high efficiency of a k-L
type procedure may now also be established as before.

The convergence of the infinite sum in (5.3) ensures
the convergence in probability of c,(t) to ce(t) but (owing
to the dependence) does not imply the asymptotic nor-
mality of c,(t). To prove this one may proceed by using
the cumulant mixing conditions of Brillinger (1975, p. 26).
To see this, consider the asymptotic distribution, for
example, of X", cos tX;. Let p/(X;) be the degree [
polynomial in the Taylor series of cos tX;; set a =
E(cos tX)), a; = E[p/(X;)] and

1 n
e, = v El [(cos tX; — a) — (piX)) — a)].
jz
If the mixing conditions hold, then
7; E PiAX) — a) — N, o)

where

oy lim var \/L; {,é [pAX;) — az]}.

n— o

Let

= lim var—\}—z {é (cos tX; — a)}.

n—o j=1

Then if (a) lim;. 0 = ¢? > 0 and (b) lim, . lim,_, .
var(e,)) = 0 the asymptotic normality of 37—, cos rX;
will follow from the lemma of Bernstein (c.f. Hannan
1970, p. 242). We note that the conditions (a) and (b) are
satisfied by stationary ergodic Gaussian processes.

We now outline very briefly one application of the epcf
to the stationary Markov emigration-immigration process
(e.g., McDunnough 1979a). Briefly, this process {X,, ¢
=0, =1, ... }takes on only positive integer values and
has been used to model systems of infinitely many ran-
domly moving particles. The process is determined by its
bivariate probability generating function

E[2:%'22%*] = exp{vl(zi — 1)
+ (2= 1)+ plzi — Dz — DI}

where v = E(X,) = var(X,) and p = corr(X;, X,). The
bivariate cf is obtained by setting z, = e, z, = ¢, and
because of the discreteness we may take —w < 1, t,
= m. Now for v we have the estimator X, but the nature
of the probability function complicates estimation of the
parameter p, which is related to Avogadro’s number. This
process, however, satisfies all of the assumptions made
here. Hence a k-L approach based on the epcf leads in
a straightforward way to procedures having arbitrarily
high asymptotic efficiency.
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6. TECHNICAL NOTES

Let 6 € O be an/ X 1 parameter and T,, be a k x 1
statistic where k = [. The estimation procedures we have
proposed follow one of two general types:

I Solve the random implicit equation
F®,T, =0, F:R'*k— R!
II Minimize the criterion function
G@®,T,), G:R™**—>R.

We shall assume that G is continuous and that F is con-
tinuously differentiable. The fact that k is fixed and not
dependent on n simplifies the asymptotic properties for
our procedures, and in fact the following three-part result
is adequate for our needs.

Theorem 6.1. Let 6, denote the actual 6, and let © be
an open rectangle. Then

(@) If T, = \(0o), F(8y, A(68y)) = 0, and oF (8o,
)\(60))/86 is invertible, then there exists a statistic 0
=25 9, that is an asymptotic random root for procedure
I

(b) IfT,is asymptotlcally N(N(8o), ¥/n), F is as in
(a), and 6 —2 6, is a root of I, then asymptotically 6 has
a normal distribution with mean 8, and covariance matrix

3F (8o, A(eo))]"‘g [aF(eo, 7\(90))] -
90 n 00 '

(©) If T, == A\(6o), if G(8, A(8y)) = 0 when 6 = 8,
but not otherwise, andif 6 is a solutioAn for Il in the closure
of O, here assumed bounded, then § == §,.

Part (a) of the theorem is proved as in Section 2 of
McDunnough (1979b), whereas (b) follows on expanding
F about [69, AM(6y)] and using a differential argument (c.f.
Rao 1973, p. 385). The proof for (c) is given in FM. We
remark that for (b) the differentiability of F is required
Only at (90, )\(90))

We next give the regularity conditions, which we re-
quire for Theorem 2.1. Following through in multipara-
meter form the arguments given in FM, we see that the
following mild conditions are sufficient.

I O is an open rectangle.

II The covariance ¥ of z, is invertible at § = 6,.

III  (9z/00)' £~ (92/90) is invertible at 6 = ,.

IV ce(?) is continuously differentiable (in ) at 6 =

90.

We remark that conditions II and III hold very generally
because of linear independence properties of the func-
tions e™*,

The efficiency statement in the theorem requires in
addition the following conditions.

V(0 In fo(x)/08,) (3 Infe(x)/30;) fo(x) is integrable in

xfori,j=1,2,...,1
VI 9 In fo(x)/30; is integrable over bounded intervals
in x.
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VII (0 In fo(x)/39;)? is integrable over bounded in-

tervals in x.

co(?) and dce(2)/00; are integrable in ¢ at 6 = 6.

(For lattice distributions we require only that the

derivative be integrable over a single period.)

IX [ ce(t)e ~** dt can be differentiated (with respect
to 0) through the integral sign.

VI

Finally, we remark that the Parseval theorem is justi-
fied in the context of the generalized functions appearing
in (1.3)-and (3.2). For example, the existence of the
weights we (f) as generalized functions follows under the
very mild requirement that the score functions are
bounded by polynomials. It can then be readily estab-
lished that the expressions (1.3) and (3.2) may be given
consistent sequential interpretations under which the in-
dicated Parseval equalities are immediately justified. The
sequential approach to generalized functions is given in
Antosik, Mikusinksi, and Sikorski (1973). For an alter-
native treatment, see Lighthill (1970).

7. SOME CONCLUDING REMARKS

In this section we summarize a number of issues that
remain to be resolved: the range of these mirrors, to some
extent, the range of potential applications of the methods
proposed here, and certain generalizations of these meth-
ods. Some of these will be explored in a subsequent work.

For stable laws a number of questions remain open.
What is the optimal spacing of points in the frequency
domain? In conjunction with this, what properties do the
procedures have for finite sample sizes? On another front,
what is the form of the weight functions (1.4) correspond-
ing to the parameters of the stable laws? (An analytical
solution of this problem would indeed represent a fun-
damental contribution.) How much can be done by way
of tractable approximation schemes to either the weight
or the score functions?

The Fourier domain supports a natural characterization
of independence. It is evident that in some appropriate
sense, our efficiency results will carry over to such testing
contexts. One feels heuristically that in physically real-
istic models, a few points on the multivariate ecf will
generally be more informative than a few points on the
multivariate cdf for testing independence. This matter
requires investigation. Similar questions arise in the con-
text of testing for goodness of fit.

The ecf may lend itself to adaptive inference more con-
veniently than density based approaches. For example,
suppose an unknown cf is given by c(t) = ™ ¢ (o?),
where p, o are location and scale parameters and ¢ is
unknown but ‘‘standardized’’ according to the meanings
attributed to p, o. Then we may estimate ¢ by the ecf
¢ of the ‘‘standardized’’ sample (X; — [L)/G¢ where {i, &
are any consistent estimates and then apply the k-L pro-
cedure to estimate w and o using b and the covariance
structure as estimated from ¢. It seems reasonable to
expect that this approach will lead to estimates having
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the same asymptotic properties as those of the k-L pro-
cedure with ¢ known.

The pcf of Section 5 may emerge to be a useful new
approach for dealing with certain problems in stationary
time series analysis. For example, the wide class of linear
processes involves convolutions whose densities are (ex-
cept in Gaussian cases) rarely tractable; the pcf is, how-
ever, a quite natural tool here. Second, any likelihood
approach that involves the approximation of a time series
as an autoregressive process of order p can be trans-
formed via a Parseval-type argument to an approach

" based on the p-variate epcf. A k-L procedure will then

approximate arbitrarily well (asymptotically) the effi-
ciency attainable with such a likelihood approach. Fi-
nally, the pcf lends itself in a natural way to approaching
problems in nonlinear time series modeling. Such prob-
lems may quite generally be formulated by using the idea
of time-invariant transformation of a process to inde-
pendence, which we may characterize, in turn, by means
of the pcf functions.

It is interesting to note that it is possible to define a
stationary version of the ecf (the secf, say) by averaging
not exp(itX;), but rather exp(itX; + ®;), where the ®; are
independent random variables with uniform distribution
on [ —m, 7] and independent of the X’s. This is essentially
the quantogram of Kendall (1974, 1977) and Kent (1975).
One may easily see that the ecf and secf are equivalent
in a certain analytic sense, and it is tempting to conjecture
that the secf supports tractable asymptotically efficient
inference procedures. We point out, however, that it is
readily established that the Fisher information at k points
of the secf increases with &, but essentially does not de-
pend on .

We end with a conjecture. It is natural to wonder what
it is about Fourier transformation that leads to the arbi-
trarily high asymptotic efficiency of the discrete proce-
dures and to what extent this useful result can be gen-
eralized. Monte Carlo studies by Quandt and Ramsay
(1978) and Leslie and Khalique (1980) indicate that useful
efficiencies are possible for procedures based on the em-
pirical Laplace transform in certain cases. Numerical
evaluations by Brockwell and Brown (1980) show high
efficiencies for a procedure that estimates the so-called
positive stable laws based on fitting certain negative mo-
ments EX ~' empirically. In a context unrelated to this,
Brockwell and Brown also give a completeness result
involving the positive laws and the functions x ~*. Our
conjecture is that the efficiency results of the k-L type
we have obtained will hold for a process n~' D7 g(t, X;)
essentially if and only if the class of functions {g(¢, x)},er
is such that, for arbitrary 0 and for an arbitrary countable
subset {z;} dense in T, the score functions may be ap-
proximated arbitrarily well in a certain sense by finite
linear combinations in the class of random variables {g(¢;,
X)}. We shall consider this matter in our subsequent
work.

[Received August 1979. Revised August 1980.]
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