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EMPIRICAL SADDLEPOINT CONVERGENCE

Andrey Feuerverger

Presented by D.A.S. Frasen, F.R.S.C.

ABSTRACT. The uniform consistency, moment structure, and weak convergence to
normality of the empirical moment generating function and empirical cumulant gen-
erating function and also of the arbitrary derivatives of these processes is established
and used to investigate the properties of the saddlepoint approximation in the case

that the required cumulant generating function is obtained empirically.

1. INTRODUCTION. If X;,X,, *--,X; are iid with density f(x), moment generat-
ing function M(t) = [e'™ f(x)dx assumed finite in an interval I about the origin,

and cumulant generating function K(t) = log M(t), then the saddlepoint approxima-

—_— n
tion (see Daniels, 1954, 1980; Reid, 1988) for the density of X = lz X; is given by

Hasy
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n
= S —— -t 1
fn(?‘) [27|’K”(t)] exp [n{K(t) — ¢ x}] 1)
where t=t(x) is the unique real root of K'(t) =x. Our object is to study the conse-
quence of replacing K(t) in (1) by its sample version Kn(t) = log M,(t) where

n

M,(t) = lEe"x‘ . The importance of this modification stems from the fact that the
im1

analytic form of M(t) often is not tractable; a similar situation arises also when f(x)

itself is not available, but where a sample may be obtained. Another important appli-

cation is given in Davison and Hinkley (1988) where saddlepoint approximations are
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applied in the context of the bootstrap and other resampling schemes.

2. MAIN RESULTS. In order to study the consequences of replacing K(t) in (1) by

K, (t) it is necessary to understand the sampling properties of the transforms M, (t)

and K, (t). Letting D! denote differentiation applied ¢ times we have:

13 £
)= g o Lo 3
(A) asgltlgb D M, (t) D'M(t)| — 0 as, ¢ 01,2, ;
¢ _nt = T
B) asgtégb D Kn(t) DK(t)] — 0 as., ¢ 6:1:.:2; ;
(©) ED'M,(t) =D'M(t), €=0,1,2,---;
(D) 1 cov(D*My(s), D’My (t)) = D®*AM(s-+t) — D*M(s) - DPM(t)

fors, t,s+t € I, and integers >0, B> 0; and
) I Ya(t) = Va Ma(t) ~ M) and Z,(t) = Vi (Ku())=K(t)) then D’ Y, (1)

and D¢ Zy(t) converge weakly, in the space of continuous functions on [a,b] under

the supremum norm, for £=0,1,2, - - - to zero mean Gaussian processes having

covariance structures respectively given by (D) and by

a == M(s+t)
asymp cov (D* Z,(t), D’ Z,(t)) = Dg Df [ MM(t) 1]

where >0, >0 are integers and subscripts on D denote variables of partial

differentiation.

In (A) and (B) we require a, b € I, and for £> 0 we require a, b to be interior.
In (E) we require [2,b] C 1/2, and for > 0 we require a,b to be interior. The proof
of (A) and (B) involves the strong law of large numbers and convexity, while a proof
for (E) may be based on Theorem 12.3 of Billingsley (1968) and Taylor expansion argu-
ments. Related results in a different context are given in Ghosh (1987). The proofs of

(A) - (E) will be given elsewhere.
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Now let t:n(x) denote the empirical saddlepoint approzimation given by expression
(1) except with K, replacing K and t replacing t throughout, where t = E(x) is defined
by K;,(f,) = x; let g,(x) denote the saddlepoint approximation for the normalized vari-

able \/n_()—( — 1) where 4 = EX; and let gn(x) denote the correspondingly normalized

empirical saddlepoint approximation, but centered now at X instead of . Then we

have

gn (%) i 1 o
P 1+ OP(V;]") (2)

where the error term is best possible in powers of n, and uniform over finite intervals.
To see this note that

gn(x) =072 f(Up+07%x))  and  ga(x) = n7V2E, (H(X 4 nV/2x))

so that

Eax) _ [ K"(t)
gn(x) K" (t)

1/2

j/ exp [n{(Kn(i) —K(t) =Xt + pt) — (i — t)- v @
where now K'(t) = u + n™/2x and Kn(t) = X + n™'/2x. The fractional term on the
right in (3) is 1+ Op(n™'/2), and since K(t) = put + %0%2 + O(n=%2) and K, (t)
=Xt + %522 4+ Op(n™%2) where 02, S? are the variances of the actual and empirical

distributions, the exponent in (3) equals

n %(szi“’—aﬂﬁ) - (E—t)%}r + op(\}n_). (1)

But  since g+ nV2x=K(t)=p+ 2t + O(m™!). and X +n2x= K, (t)
=X+ 8% 4+ Op(n7!) then t =O(n~/2) and t = Op(n~/2) and therefore we find, in

turn, 8% —o®t = Op(n™!), i —t =o~2[(S% — 0%t) + (6® — S?)i] =Op(n~!) and
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S22 — o%t? = Op(n~%/%). Consequently the exponent term (4) is Op(n~'/?). The nor-
malization is required for (2) to hold, while studentizing does not improve the order of
convergence. For the nonnormalized case we state the result

fm,n(X) o n
e =1 Op(r) (%)

where ;'mln(x) dnotes the saddlepoint approximation fy(x) of (1) but based now on the

samplé cumulant function Ky (t) from a sample of size m. The error term is uniform
over any interval of x-values corresponding to an interval of t-values interior to the
domain on which M(t) is finite. The case n =1 in (5) in conjunction with higher terms
in the saddlepoint approximation leads to some interesting new possibilities for non-
parametric density estimation. A fuller analysis (Feuerverger, 1988) will be given else-

where.

Essentially similar analyses may be carried out for empirical versions of the tail
area saddlepoint approximation (Lugannani and Rice, 1980; Daniels, 1987), for Edge-
worth expansions (Feller, 1971, Theorem 2, page 535; Barndorfi-Nielsen and Cox,

1979), and also for quantities such as the Chernoff index inf e ®***)M(z) for large
zZ

deviation probabilities (Serfling, 1980, chapter 10).
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