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On the empirical saddlepoint approximation

By ANDREY FEUERVERGER
Department of Statistics, University of Toronto, Toronto, Canada M5S 1A1

SUMMARY

The properties of the saddlepoint approximation are investigated when the required
cumulant generating function is obtained empirically. Properties of the empirical moment
generating function and empirical cumulant generating function and derivatives of these
processes which are needed for this study are derived first, in particular their uniform
consistency, moment structure, and weak convergence to normality are established. A
numerical investigation exploring use of the empirical saddlepoint approximation as a
tool in density estimation is discussed briefly.

Some key words: Convergence; Density estimation; Empirical transform; Saddlepoint approximation;
Stable law.

1. INTRODUCTION

Let X, ..., X, be identically and independently distributed random variables having
probability density function f(x) and moment generating function

M(t)= Jw e™f(x) dx

defined, i.e. finite, in an interval I about the origin, and write
K(t)=log M(t)

for the corresponding cumulant generating function. Then the saddlepoint approximation
for the density of X =(X,+...+X,)/n is

1

fn(x)={ }iexp[n{K(o—tx}], (1-1)

"
27K"(t)

where t=t(x) is the unique real root of the equation K'(t)=x. A saddlepoint
approximation for the tail area pr (X > x) may be expressed, when x + u = E(X), as

1-F,(x)~1-®(y)+¢(y)(1/z—1/y), (1-2)
where
y=2n{tx— K(0)}, z=t{nK"(1)}},

and where ® and ¢ are the distribution function and density of the standard normal
distribution. The approximations (1-1) and (1-2) are due to Daniels (1954) and Lugannani
& Rice (1980) respectively. Daniels (1980, 1987) provides helpful brief expositions and
Reid (1988) gives a recent general review.
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Our object here is to study the consequences of replacing K(¢) in (1-1) and (1-2) by
its sample version

K, (1) =log M, (1), (1-3)

where
1 n
Mn(t)=; Y e (1-4)
i=1

The potential interest of such modifications derives from a number of distinct sources.
For example, in all but the most straightforward cases, the exact analytic form of the
transforms M(t) and K(t) will not be tractable. On the other hand, these transforms
may be estimated empirically as (1-4) and (1-3) when sampling from f(x) is possible,
and the behaviour of the resulting empirical saddlepoint approximation is then of interest.
A similar situation arises also in cases where f(x) itself is not available, but where a
sample may be obtained. Other potentially important applications are given by Davison
& Hinkley (1988) where saddlepoint approximations are applied in the context of the
bootstrap and other resampling schemes. Of course, these applications provide only a
part of the overall reason for studying such empirical approximations, since an overriding
feature of this problem is that the empirical saddlepoint in fact constitutes an especially
interesting application within the purview of statistical transform methods.

In § 2 we detail an investigation of those properties of the relevant empirical transforms
that have statistical bearing, in particular their uniform consistency, moment structure
and asymptotic normality. Related results in a different context are given by S. Ghosh
in a Toronto doctorial dissertation. Our main results are given in § 3, where we study
the properties of the empirical saddlepoint approximation. Finally, we comment briefly
on a numerical investigation into the possible use of the empirical saddlepoint approxima-
tion as a tool in density estimation.

2. PROPERTIES OF THE EMPIRICAL TRANSFORMS

To study the consequences of replacing K(t) by K,(¢) in expressions such as (1-1) it
is necessary to understand the properties of the transforms M, (t) and K, (t). By the law
of large numbers we have that M, (t) > M(t) almost surely at any fixed ¢. It follows that
also K, (t)~> K(t) almost surely by continuity of the logarithm. This convergence is in
fact uniform and extends also to the derivatives of these processes. The notation D”
represents differentiation applied y times.

THEOREM 2-1. Let —co<a<b <o both lie in the interval I on which M(t) is finite.
Then almost surely

sup |M,(1)=M(1)|>0, (21)

inglKn(t)—K(t)I»O- (2-2)

If further a, b are both interior points of I then the derivative processes satisfy almost surely
iligb]DyMn(t)—DyM(t)\»O, (2-3)
s<1f£)b|D7K,,(t)—D7K(t)|—>O, (2-4)

Sfor all v.
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Proof. First note that M, (¢) and M(t) are convex, being the average and integral of
the functions e™ which are convex. By the strong law of large numbers, M, (1) > M(¢)
almost surely for any ¢ and hence for all ¢ in any countable collection {t;}. Then (2-1)
follows because, for convex functions, convergence on a dense subset implies uniform
convergence on compact subsets (Roberts & Varberg, 1973, § 13). The result (2-2) follows
from (2-1).

To prove (2-3) note that D”M(t) =J x” e dF(x) and that X” e'X has finite expectation
whenever ¢ is in the interior of I, and also that x”e™ is convex for y even. For y odd,
the convexity fails but the argument may be applied separately to the components from
(=00, 0) and (0, ) in the definitions of M, (¢) and M(¢). Finally, (2-4) follows because
DYK (t) has the form P(t)/{M(t)}*’, where P is a polynomial function in the variables
DM(t), for g=0,1,..., . O

The result (2-1) for M,(t) is given by Csorgo (1980) but with an incomplete proof.
Note that M, (¢) and its derivatives are unbiased estimators for M (¢) and its correspond-
ing derivatives, that is

E{D’M,()}=D"M(t) (y=0,1,...).

Concerning the covariance structure of these quantities we have the following simple
result.

LEMMA 2-2. If s, t, s+t e I, then for any integers a =0, B =0 we have
n cov{D*M,(s), D°M,(t)} = D***M(s+1t)—{D*M(s){D’M(t)} (2-5)
independently of n.

On the half interval I/2 the variance of M, (t) exists and the multivariate central limit
theorem in effect implies that, for ¢,,..., t, e I/2,{M,(t,), ..., M,(#)} is asymptotically
normal with mean {M(t,),..., M(t,)} and covariance matrix having (i, j)th entry
M(t;+1t;)—M(t;)M(t;). Csorgd (1980) proved weak convergence for the normalized
M, (t) process. In fact more generally, that result may be extended to cover also the
associated derivative processes.

THEOREM 2-3. The sequence of processes
Y, (6) = n}{M, (1)~ M(1)}

in the space of continuous functions under the supremum norm, converges weakly to a
Gaussian process having zero mean and covariance structure identical to Y,(t), on any
finite, closed interval [a, b]< I/2. Further, if [a, b] lies in the interior of 1/2, then for
vy=1,2,... the derivative process DY, (t) converges weakly to a zero mean Gaussian
process having the covariance structure given by (2-5) with a =8 =1.

Proof. By (2-5) we have at once that
E{D"Y,(s)—DY,(t)}*={D**M(2s)+ D>*M (2t) —2D**M (s + 1)}
—{D"M(s)— D"M(1)}*. (2-6)

Then, using an elementary Taylor expansion argument based on the twice differentiability
of D*’M(.) and D”M(.), we find that (2-6) is bounded by C(s—1t)* so that (Billingsley,
1968, Th. 12-3) tightness, and hence the claimed weak convergences, follow. O
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The moment structure of K, (¢) is more involved than that of M, (t). Existence questions

can be studied by means of the inequality

tX < K,(t)< max (tX,),
1=<i=sn

whose left part involves Jensen’s inequality. Because the sample mean X and the extremal
order statistics possess the same number of moments as an individual X, it follows that
K, (t) does also, and hence in particular that all moments of K, (t) will exist for teI
when M (.) is finite in an interval about the origin. In any case, we will require only the
asymptotic mean and variance of K, (¢) as given in Theorem 2-4 below.

Using standard arguments, it follows from the asymptotic normality of M, (t) and
differentiability of the logarithm that K, (¢) is also asymptotically normal. In fact the
weak convergence can be shown to also be induced using only elementary Taylor-
expansion based arguments. The analogous results apply also to the derivative processes
of any order and a notationally simple representation for their general covariance structure
can be obtained.

THEOREM 2-4. The processes
Z,(1)=n}{K,(1)- K (1)}

converge weakly on any finite interval [a, b]< I1/2 to a zero mean Gaussian process having
the covariance function

M(s+1)

R VRITO N

The corresponding result holds also for each of the derivative processes
D*Z,(1)=n{D’K,() -D’K(1)} (y=1,2,...)

but with [ a, b] further restricted to lie in the interior of I/2. These processes converge weakly
to zero mean Gaussian processes with covariance structures identical to the asymptotic
covariance functions for D*Z,(s) with DPZ,(t) obtained from the representation

acov{D“Z,(s), D’Z,(t)} = D*D?R(s, 1), (2:7)

which holds for any nonnegative integers a, B. Here the subscripts on D indicate the variable
of partial differentiation.

The algebraic details regarding (2-7) are tedious; the proof of the theorem is otherwise
fairly straightforward.

In view of Theorems 2-3 and 2-4 we may refer to I/2 as the zone of normal convergence
for the various empirical processes which we have defined. On the part of I outside I/2
the situation is substantially more complicated. For some essential background on this,
see, for example, § 5, Ch. 17 of Feller (1971), especially Theorems 1, 2 and 3. In particular,
pointwise asymptotic normality and the usual n* convergence rate associated with the
Central Limit Theorem no longer apply. For such values of ¢, a suitably renormalized
version of M, (t) will possess a nondegenerate limiting distribution if and only if e
satisfies the necessary and sufficient conditions for belonging to some domain of attraction,
and that limiting distribution will be a stable law having index a = c¢/t, where c is that
boundary point of I having the same sign as . But whether or not a limiting distribution
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actually exists, we will have n®{M, (t)— M(t)}~- 0 almost surely for every 6 <§,, and
diverging for every &> 8,, where §,=a ' —1. From this it follows that almost surely

o Ma(0)
M (1)

for all 6 <§,. Using similar arguments, together with the method used in the proof of
Theorem 2-1, we are led to the following result.

K,(t)—K(t)= =log{l1+o(n°)}=0(n"?

THEOREM 2-5. For t in I but outside I/2, and nonnegative integers vy, we have
D"{M,()-M(t)}=o(n""), D{K,()=K(t)}=0(n"?)

almost surely for every § < 8,= a ' — 1. The error term may be taken as being uniform over
any subinterval of I that includes points outside I/2, provided that 8, is its minimum value
on that interval.

In interpreting the statement of this result, the value of 8, should be taken to be 5 on
I/2. Note also that the intervals of uniform convergence in the present case may include
the endpoints of I even in the cases y > 0.

3. THE EMPIRICAL SADDLEPOINT APPROXIMATION
Let f,(x) denote the empirical saddlepoint approximation namely fu(x), identical to
fu(x) of (1-1) except with K, replacing K and replacing ¢ where f is defined through
K!(f)=x. Then it is quite readily established that f (x) is unsatisfactory as an estimator
for f,(x). To see this heuristically, consider the ratio

jf:gc; = {IIEZ((?)}E exp [n{K,(f)— K ()} —n{K (1) —tK'(¢)}]. (3-1)

By (2- 4) the fractional term on the right in (3-1) tends to unity; in fact it does so at rate
O,(n~ }) in the zone t€ I/2 of normal convergence of the empirical quantities. Thus the
requirement that f,,(x) /fa(x) =1 is equivalent to the requirement that the exponent term
in (3-1) tend to zero. However the quantities in the curly brackets of the exponent of
(3-1) are a sample and a population quantity and their difference can be expected to be

O,(n %) in the zone of normal convergence. Hence overall (3-1) will be O (nZ) in 1/2;
at 1=0, it may be shown using a more detailed argument to be O,(1). Consequently
f,,(x) is unsatisfactory as an estimator for f,(x).

On the other hand if instead of K, above we use K,, based on a sample size m
substantially larger than n, then the f,, so obtained may be a good estimator for f,(x).
However, before we can state our next result, we must attend to a technical difficulty
associated with the fact that (3-1) is defined only in the intersection of the regions where
each offn(x) and f,(x) is defined. Now f,,(x) is defined on the region of x-values where
K, (t) = x has a solution, and this may easily be shown to consist of the interval (X, X ™)
from the smallest to largest order statistics. For f,(x) however the situation is more
involved since f,(x) is defined for all x for which K'(¢t) = x has a solution and thus for
all xe K'(I), and this region need not correspond, as one would wish for the purposes
of the arguments below, to the support range, i.e. to the convex support, of f(x). In order
to avoid this situation we shall make use of the following.

Assumption 1. As t tends to the upper and lower boundary points of I, K'(t) tends
respectively to the upper and lower points in the support range of f(x).
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This assumption is discussed in detail by Daniels (1954, §6); in the context of
exponential families, the assumption is known as steepness. See, for example,
Barndorfi-Nielsen (1978, Th. 9.2). Of course in cases where Assumption 1 does not hold,
the stated results would remain true provided that x is additionally restricted to lie within
the range of values assumed by K'(¢).

THEOREM 3-1. Suppose the conditions of Assumption 1 are met, and let fm,,,(x) denote
the saddlepoint approximation f,(x) of (1-1) but based now on the sample cumulant function
K.,.(t) from a sample of size m. Then

Jonn(X)

Ja(x)
where the error term is uniform over any interval of x-values corresponding to an interval
of t-values interior to the domain I /2 of normal convergence. On subintervals of I containing
points outside 1/2, the convergence result (3-2) still holds uniformly but the error term must
be taken as 0,(m™°n) for 8 < §,, where 8, is the smallest value of o' —1 occurring on that
part of the interval outside 1/2. Here, as before, a = c/t, where c is the boundary point of
I having the same sign as t.

:1+Op(m*%n), (3-2)

The analytical details of the proof are omitted; they can be obtained from the author.

One useful way to think of the results so far is to note that basically K, (¢) is a good
estimator of K(t) by virtue of Theorem 2-1, while nZK (1), as an estimator for n?K (1),
is ‘on the boundary’ because the difference nZ{K (t)— K(t)}is O,(1) under the conditions
of Theorem 2-4. The fact that nK,(t) is a poor estimator for nK(t) is then just a
consequence of this last assertion for we will then have n{K,(t)— K (1)} = O,,(nfl).

It is possible to compare mean-corrected versions of the true and empirical saddlepoint
approximations by replacing K(¢) and K, (t) by K(¢)—ut and K, (t)— Xt respectively,
before applying the foregoing analyses. We omit the details but note that the resulting
ratio f,,(x)/f (x) of centred terms will then be O (n ) at t=0, and not O ,(1) as before.
For other values of ¢ in I/2 the ratio is O (nZ) as before, but if 1= O(n 2), which
essentially corresponds to normalization of the densities being compared, then the
uncentered ratio becomes O,(1) while the centred ratio becomes Op(n_fl).

The normalized case is important in connexion with certain asymptotic bootstrap
results (Bickel & Freedman, 1981, Th. 2-1); the following result is thus of interest.

THEOREM 3-2. Let g, (x) denote the saddlepoint approximation for the normalized variable
ni(X — ), where = E(X) and let §,(x) denote the correspondingly normalized empirical
saddlepoint approximation, but centred now at X instead of u. Then

&n(x)
8n(x)

Proof. To obtain (3-3) note that

g (x)=n 3 {t(u+nx)}, 8.(x)=n 3 {7(X +nIx)}

=1+0,(n7?). (3:3)

so that

é\n(x)_ K"(t) : o _oa _ A i .
g,,(x)_{K’,’,(f)} exp[n{K,,(t) K(t)—Xt+put}—n(t t)n%}’ (3-4)

where now K'(t) = ;/,-f-n_%x and K/ (f)= X +n"x. The fractional term on the right in
(3-4) is now 1+ O, (n_%) and since
K(t)=pt+30?+0(n7?), K, ({)=Xi+3S**+0,(n"?),
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where o, S” are the variances of the actual and empirical distributions, the exponent in
(3-4) equals

n{}(S* 12— 0*) —n 3 (f - )x}+ 0,(n?). (3:5)
But since
ptnix=K'()=p+c’t+0(n™"), X+nix=K,(f)=X+8*+0,(n"
then t=0(n"?) and f= O,,(n‘%) and therefore we find, in turn,
S’i—0’t=0,(n""), f—-t=0"H(S*f-0’t)+(a>—8»)i}=0,(n"")
S -’ ={S(f-1)+(S— o)t} (St+ot) = 0,(n"?).

b

Consequently the exponent term (3-5) is Op(n_%). O

Assumption 1 is not required for Theorem 3-2 as may be seen from simple arguments
involving the fact that ¢ = O(n™?) uniformly on finite x-intervals.

Essentially similar analyses may be carried out for empirical versions of the tail area
approximation (1-2), for Edgeworth expansions, and quantities such as the Chernoff
index inf, e *“**'M(z) for large deviation probabilities (Serfling, 1980, Ch. 10).

Finally, because the saddlepoint approximation f, (x) tends often to be extremely close
to the distribution of X even for very small values of n, it seems natural to consider
using empirical versions of the n =1 saddlepoint approximation f”,,,,l(x), as a non-
parametric density estimator for f(x). Since

Fons () = F(X) = { fous (x) = LX)} H{ fo(x) — £ ()} (3-6)

the error of this density estimate consists of two additive components, the first representing
essentially sampling variability, and the second mainly bias, it being the error of the
n =1 saddlepoint approximation, ..e. the error involved in approximating the density
f(x) by inversion of K(t) using Laplace’s method of approximation for evaluating the
inversion integral. )

A numerical study of the two components of error in (3-6) showed that f,,, was quite
generally a reliable estimator of f,(x) while, as could be expected, f,(x) was often, but
not always, very close to f(x). Presumably this bias might be reduced through prior
adjustment of the sample or by the inclusion of higher terms in the saddlepoint approxima-
tion but this matter requires further investigation. Further details may be found in a
technical report available on request from the author.
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