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SUMMARY
The asymptotic normality and arbitrarily high efficiency of some new statistical

procedures based on the empirical characteristic function is established under general
conditions.
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1. INTRODUCTION

ManNy distributions of statistical interest arise as sums of independent random variables. A
celebrated example (aside from the classical Gaussian distribution) is given by the stable laws.
Another, which arises in statistical physics (cf. McDunnough, 1979a), is the convolution of a
binomial with a Poisson. Characteristic of such distributions is the generally unmanageable
form of the probability density function (p.d.f.). Indeed, for the stable laws, no closed form for the
densities is available except in a few special cases. This lack of a tractable form for the p.d.f
makes estimation via maximum likelihood of the parameters of these distributions extremely
difficult. Consequently there is a need for alternative methods which effectively deal with
inference problems involving such distributions.

Let X,, X,, ... be a sample from a distribution with c.d.f. Fy(x) and characteristic function
colt) = je"" dF 4(x) where 0 is an unknown parameter. Note that the characteristic function of a
sum of independent variables will, in general, be relatively simple. Now denote by F,(x) the
empirical distribution function. Then the empirical characteristic function (e.c.f) is defined as

c,(t) = J‘e""‘ dF,(x)=n"! é exp (itX).

Numerous authors have proposed the use of e.c.f. procedures in various statistical contexts.
Most of these applications have been to problems that could not be treated conveniently by
alternative methods. However e.c.f.-based tests for symmetry and goodness of fit have also
appeared. See Heathcote (1972, 1977), Press (1972) and Paulson, Halcomb and Leitch (1975), for
example. The e.c.f. is of interest also in connection with probability density estimation. See, for
example, Parzen (1962). More recently, Feuerverger and Mureika (1977) have initiated the
systematic study of e.c.f. properties with a view towards statistical applications.

A careful study of results such as appear in DuMouchel (1975) and Feigin and Heathcote
(1976) in addition to the papers cited above reveals that e.c.f. procedures can have substantial
efficiency. A further motivating example is afforded by the problem of estimating the scale fina
centred Cauchy distribution having cf. c(t) = el Let us consider an approach via maximum
likelihood based on the asymptotic normal distribution (see Section 2) of the e.c.f. ¢,(f) at k
equispaced points t = 7j,j = 1,2, ..., k. Thus suppose & and ¢, = E(&,) are column vectors whose
entries are Rec,(1j) and c(zj) respectively. Then the asymptotic Fisher information per unit
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observation is given by
_ 0 R n — 1A
I=n""'var {@ [— 3@ —c) X (& _ck)]}
= El,c zk_ ! g k>
where & = (0/00) ¢, has entries —t’ and ¥, has (i, j)th entry gI'~/| — pi*J, where f = e =% Now,
for ¥, we may obtain an explicit inverse by noting that it is a sum of two matrices: the first being

the Toeplitz form associated with an autoregressive time series of order one whose inverse is
known; and the second being a matrix of unit rank. Hence using the identity

(A+BB/)—1 :A—l_(l+B1A—1B)—1A~1BB/A—1,

where A is a matrix and B a vector, we obtain

1+ —B
B 1+p
E -1 _ 2 . .
kT I=p7 L1440 B
—B 1
It therefore follows, after some algebra, that
2 N2
I—>(121_ﬁﬁ) as k - o

- 1/20? ast—0

thus indicating the asymptotic efficiency of the procedure.

As a matter of convenience, our discussion throughout is confined to the case where 0 is a
single real parameter whose true value 6, lies in some open interval. We also assume that the
c.d.f’s F(x) are absolutely continuous with densities fy(x).

Some properties of the e.c.f. are briefly reviewed in Section 2. The new procedures are given
in Sections 3 and 4 and their efficiencies examined in Section 5. Some concluding remarks
appear in Section 6.

2. SOME PROPERTIES OF THE E.C.F.

If ¢,(t)is the e.c.f. corresponding to a characteristic function c(t) then we have, for fixed T< oo,

the convergence
sup, |e(t)—c(t)| >0

almost surely as n — co. This result appears in Feuerverger and Murecika (1977) (hereafter FM)
where it is shown that the uniform convergence cannot in general take place on the whole line. It
is also shown that the convergence does hold on the whole line in the purely discrete case and in
certain cases where the c,(t) are suitably tapered, or equivalently, corresponds to special density
estimators. It is true also that this convergence result holds in general for certain sequences
T= T, - o0. See FM and Csorgo (1979). Such results naturally lead one to expect that the e.c.f.
has valuable statistical applications.

Suppose that X corresponds to c(t) and consider ¢'** as a complex random process in t. Then
E(e"X) = c(t) and E(e"¥ ¢**) = c(s +t) fully determine the first and second moment structure of
this process. Now if ¢,(t) = n™' Zexp (itX ;) (summing over j from 1 to n) is the associated e.c.f.

itX
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process then c,(t) is seen to be an average of n independent processes of the first type. It follows
that Y,(t) = n*(c,(f) — c(t)) has mean zero and the covariance structure:

cov(Re Y,(s), Re Y,(t)) = 3[Re c(s+ )+ Re c(s — )] —Re c(s) Re (1),
cov(Re Y,(s), Im Y,(¢)) = $[Im c(s+ )+ Im c(s — )] — Re cs) Im (1), 2.1
cov(Im Y,(s), Im Y,(t)) = 4[ —Re c(s+1)+Re c(s — )] — Im c(s) Im (2).

Because c,(t) is an average of bounded processes it follows also, by means of the multidimen-
sional central limit theorem, that Y(t,), Y,(t;),..., Y,(t,) converge in distribution to
Y(¢,), Y(ty),..., Y(t,) where Y() = Y(—1t) is a complex Gaussian process with covariance
structure identical to Y, EY(t) = 0, and EY(s) Y(t) = c(s+1)—c(s)c(t). FM prove the weak
convergence of Y,(t) to Y(¢) in any finite interval provided that E | X |'*%< co. However, the
moment restriction is not easily removed and the entire question is one of considerable depth.
Some clarification of this is given by Csorgo (1979).
For our purposes, we shall need only the following:

Lemma 2.1. Let W(t) be a function of bounded variation with dW(t) = dW(—t). Then
U,= Jn(e,t) —c(t) dW(z) 22

has mean zero and variance HK(s, t)dW(s)dW(t) where K(s,t) = c(s+t)—c(s)c(t), and is
asymptotically normal with the same mean and variance.

This result follows on applying the Central Limit Theorem to the variables | exp (itX ;) dW(z),
j=12,..,n

3. THE k— L PROCEDURE
The term “k— L procedure” will refer to maximum likelihood estimation based on the
asymptotic distribution at k points of the e.c.f., where k and the points ¢, ,, ..., t, are fixed and do
not vary with the sample size n.
Thus suppose ¢,(t,), ¢,(t,), ---» cu(t) to be the values of the e.c.f. at the sampled points. From
(2.1) we obtain (to within a constant) the approximate log-likelihood

—klog(det¥)—n(z,—2)L™'(z,—2),

where z' = (Rec(t,),...,Rec(t), Imc(t,),...,Imc(t)), z, is its empirical counterpart, and
¥ = var(z,). This suggests estimation by minimizing the criterion function

1(0) = (z,—z) ¥~ '(z,—2).

Note, incidentally, that [(6) involves only the characteristic function c,(t) and not, directly, the
p.d.f
We thus consider the approximate likelihood equations

F(6,z,) =0, (3.1)

where F(0,z,) = 01,(0)/06. This is a random implicit equation which depends only on a fixed finite
number of statistics. The asymptotic behaviour of such estimation equations is considered in
McDunnough (1979b). Briefly, in order that there exist a statistic  which is an asymptotic
random root of (3.1), and consistent for 6,, we require that z, converge almost surely to some
A(6,) satisfying (3.1) and that F(-,-) be continuously differentiable with

OF (0, M(0)
o 70
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These requirements, of course, are met here. In particular

0F(0,z) _ N
20 2 #0

In fact, a stronger result may be obtained. Assume 0 defined in [a, b] but known to liein (a, b)
Suppose 0 to be 1dent1ﬁable from2A(6) = zin [a b]in the sense that different &’s yield different 2’s,
and suppose ¥~ ' exists for all . Let 0 minimize [(0) over [a, b]. Then necessarily § — 0, almost
surely. For if §— 0’ # 6, almost surely then l,,(@)#» 0 which clearly is impossible. If § does not
converge to any value, the argument applies to any convergent subsequence.

So now, let § be any consistent root of (3.1). A standard differential argument shows that Ois
asymptotically normal with mean 6 and asymptotic variance

07 _, 02\ !
<69 ¥ 69) ’ (32)
all quantities being evaluated at the true 6,. (Specific reference to this is omitted for convenience
of printing.)

For fixed k we have the design question for choice of the ¢;. It is convenient to use equal
spacing: t; = =jt,j= 1,2,...,k and to set the sampling rate t to minimize (3.2), or at least its
estlmated version. For the Cauchy scale family of Section 1 for example, the maximal
asymptotic efficiency thus obtained is 61 per cent for k = 1,81 per cent for k = 2 and just over 90
for k = 3. In fact, in Section 5 we show that by using a sufficiently extensive grid {t;},(3.2) can be
made arbitrarily close to the Cramér-Rao bound, so that the k— L procedure can attain
arbitrarily high asymptotic efficiency.

We point out that the k— L procedure lends itself conveniently to adaptive inference in the
special location-scale case with unknown distributional form. Thus suppose that an unknown
cf is given by

c(t) = e” ™ §(at),

where u,o are location, scale parameters, and ¢ is unknown. Note that the meanings
attributable to p,o are determined by the manner of “standardization” used for ¢. For a
discussion of this point, see Fraser (1976). The adaptive procedure may now be described as
follows: first ¢ is estimated by ¢, the e.c.f. of the standardized sample (X;—2)/6,j = 1,2,...,n
Here /i, 6 are consistent estimates in correspondence with the intended manner of standardiz-
ation. We then apply the k — L procedure at points t,,¢,,..., f, to estimate u and ¢ using $. The
needed covariance structures may be estimated from ¢. ThlS procedure clearly should lead,
under general conditions, to estimates having the same asymptotic properties as those derived
from the k— Lprocedure with distributional form known. However a rigorous proof of this
assertion is not in our present scope.

Finally, we note that the idea of basing inference on several e.c.f. points occurs, for example,
in Press (1972, 1975) and Heathcote and Feigin (1976). See also Quandt and Ramsay (1978). The
idea of using maximum likelihood based on asymptotic forms in this context does however
appear to be new.

4. A MOMENT ESTIMATOR

An alternative to the k— L procedure may be obtained by generalizing the moment
estimators of Press (1972, 1975). Thus consider the estimation equation

d(z,—z) =0, @.1)

where z,, z are as in Section 3, and d is a 2k x 1 vector of known constants. If A 1is a consistent root
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of (4.1) then to first order (with terms-evaluated at 0,)

0 =0,—d(z,—z) / <d'%>

and we have, by Lemma 2.1, that 8 is asymptotically normal with asymptotic mean 0,

and asymptotic variance
, , 0z
o2 =d Z:d/( 60) 4.2)

with ¥ as before. This quantity is minimized by choosing (evaluated at 0 = 0)
d=d, = X' (3z/00)

and in this case (4.2) reduces to (3.2). Thus the k— L procedure, and (4.1) with d = d, give
asymptotically equivalent procedures. Of course d, is not known in practice (a “deficiency”, we
note, that is not shared by the k — L procedure) but following a standard argument, use of any
consistent estimate of d, will yield a procedure having the same asymptotic properties as the
k — L procedure. Note that d, involves only the characteristic function (and its derivative)
evaluated at a finite number of points. Therefore these procedures, like those of the previous
section could be easily used in estimation problems involving, for example, the stable laws.

5. EFFICIENCY OF THE PROCEDURES

For our present purpose, it will be convenient to think of the estimation equation (4.1) in a
form such as

w'(c,—c) =0,

where ¢ = (c(ty), . c(tk) Ttk)) and ¢, is its empirical version. Here w' has the form
(wl, s Wieo W1y eves W)y and agam some 9—subscr1pts are suppressed. It is also convenient to
thmk in terms of a uniform spacing for the {t;}.
We then note that (4.1) may be considered as the form of a discrete approximation to the
continuous-type estimation equation

r Ww(t) (c,(£)— c(8)) dt = O, 5.1)

where w(t) = w(—t) is an integrable function. We then have that a consistent root 0 is
asymptotically normal with asymptotic variance

nvar (0) = ”w(s) w(t) K(s, £)ds dt / < fw(s) e as) 4 ) (52)

K(s,t) = c(s+1t)—c(s) c(t). (5.3)

Note that a corresponding approximation of (5.2) will have the form (4.2). To minimize var @)
we use a variational method.
Now, since (5.2) is invariant under rescaling of w, our minimum will in fact be that of

where

f J w(s) w(t) K(s, t)ds dt (5.4)

subject to

f ()28 ac(‘) dt=1. (5.5)
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Suppose w(t) is already our solution but now is replaced by w(t)+ dw(t) in (5.4) to give
fj[w(s) w(t) + 2w(s) ow(t) + dw(s) ow(t)] K(s, t) ds dt. (5.6)

Due to (5.5) our variant must satisfy

f e )60“) dt = (5.7)

Following the usual variational argument, the last term of (5.6) being of second order may be
neglected. Then because the first term is assumed to be at a minimum the middle term must be
always zero. Thus for all dw(t) satisfying (5.7),

J 5w(t)< fw(s) K(s, 1) ds) dt =

This means that the function [w(s) K(s, t) ds is orthogonal to every function which is orthogonal
to Oc(t)/00. This suggests that

fw(s) K(s,t)ds = 4 %C(O—t) (5.8)

To solve this integral equation, we first abandon the constraint (5.5) in favour of 1 = 1 and
apply the inverse Fourier transformation to (5.8) recalling that K(s, t) is given by (5.3). For the
right-hand side of (5.8) this gives

f ) s gy — L)

assuming interchangeability of the derivative and integral. The left-hand side, on the other hand,

becomes
% f f w(s)c(s+t)e” "™ dsdt —< fw(s) c(s) ds) f(x)

and the first term reduces to

% J‘JVW(S) C(S + t) e (st x eisx ds dt
= J‘W(s)f(x) eisx ds

=f(x) jw(s) e ds.
The equation resulting is therefore

If we ignore the constant term on the right, which leads only to a Dirac function at the origin, we
obtain, after an additional inverse Fourier transformation, the following result:

w(t) = wy(t) = % Jw 8_19%‘_)

e ™ dx. (5.9

0o

— ©

We remark first that because (c,(t) —cy(t)) is uninformative at the origin and continuous
around the origin it is clearly reasonable to expect that removal of a Dirac function at the origin



26 FEUERVERGER AND MCDUNNOUGH — Asymptotic Efficiency [No. 1,

should obtain without cost. Of more immediate concern is the fact that the score function

0logfy(x)/00 | 4, need not be integrable.
First, let us show formally that (5.9) leads to an asymptotically efficient solution. Now,

w(s) K(s, t)ds

_ L —i(s+t)x itx a logf(x)
=5 Jje e c(s+t)dxds

= % er Tisx @%@ co(s) c(t)dx ds

. 0logf(x) dlogf(x)
—_ itx _
= fe 0 f(x)dx —c(¢) 20 f(x)dx.
Then, provided that the derivative may be moved outside the integral in each case, the second
term is zero and the first is dc(t)/06. It follows that (5.9) is a solution of (5.8) with 4 = 1.
Substituting first (5.8) into (5.2) and then using (5.9) gives

(nvar(@)~! = fw(t)%dz
a itx
=20 wa(t)f(x)e dx dt
= % 0log/(x) 10(%" (x) , f(x)dx
- E(—a = ) = 1(6,)

where I(0,) in fact is the Fisher information.
To resolve the question of integrability of the score, we work with

_ 1 |* dlogfyx) —itx
W(t) = > f_ BT hy(x)e™ " dx
where

)1, for |x|<m,
hw(x) = {0, otherwise.

(This representation for the truncated integral serves to stress the possibility of more general
“tapering” functions h,,(x).) Note that w,(t) is continuous and integrable.
We substitute w,,(t) directly into (5.2). First as to the denominator, we note

jw wm(t)%dt

1 [ ™ Ologf(x) i Oc(t)
=3 J_w J_m 20 e dx dt

00

™ 0dlogf(x) 4f(x)

-m
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Similarly, -
o f W, () c(t) dt = J 9 logf (x)f( Ydx — 0

— 0

so that the numerator effectively is
f f W (S) wy(t) c(s+t) ds dt
27[ J J‘ J‘ (t)alng(x) —i(s+t)x xtx c(s+t)dxdsdt

=F r W, (£) al"gf")f( et dx dt

- f (‘”"gf "”)f( )dx - 1(0).

It follows that (5.2) can be made arbitrarily close to I ~ !(6,) by a proper selection of w(t). Now
any w(t) can be approximated by a step function which implies that (4.2) and hence (3.2) can be
made arbitrarily close to I~'(6,). This establishes the arbitrarily high efficiency of the k— L
procedure (as well as the moment method).

6. CONCLUSION

This article has proposed two highly efficient estimation procedures based on the empirical
characteristic function. The primary motivation for these approaches has been to handle
problems where maximum likelihood estimation is difficult. The methods have some generality.
And they lend themselves to adaptive inference perhaps more conveniently than density based
approaches.

Finally, we note that the procedures here considered should generally be robust in that
outlying values will be trigonometrically reduced. On this point, see also Heathcote (1977).

Added in proof: For further work the readers is referred to a paper submitted by the authors
to J. Amer. Statist. Ass.
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