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SUMMARY

We compare saddlepoint approximations to the exact distributions of a studentized mean and
to its bootstrap approximation. We show that, on bounded sets, these empirical saddlepoint
approximations achieve second order relative errors uniformly. We also consider the relative errors
for larger deviations. It follows that the studentized-t bootstrap p-value and the coverage of the
bootstrap confidence interval have second order relative errors.

Some key words: Bootstrap-t p-value and coverage; Empirical saddlepoint approximations.

1. INTRODUCTION

Let X, ..., X, be identically and independently distributed random variables having probability
density f(x) and distribution function F(x). Let x,,..., x, be the observed values of X,..., X,
let F,(x) be the empirical distribution function and let X¥, ..., X# be identically and independently
distributed random variables with distribution function F,(x).

Define the distribution functions

Q(ay) = pr {n*(X — p)/S > a,| F},
Q*(ay) = pr {n*(X* — X)/S* > a, | F, },

where
X=n'Y X, X*=n"')Y X}, $=n"')Y Xi—X)?: S$?=n"1) (Xr-—X*?
i=1 i=1 i=1 i=1
and p = E(X,). Since we are dealing with studentized variates we may, without loss of generality,
assume that E(X;)=0 and E(X?) = 1. Assume that in some open rectangle in (¢, u) containing the
origin
K(t, u) =log E{e*1*uXi-1}

exists. Then, in the Appendix, we prove the following.
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THEOREM 1. Under the above conditions, for a, = o(n*?),

3
0(a,) = 0*(a) {1 +0, (%)}

In § 2, we use this result to show that a bootstrap approximation to the p-value of a test based
on the studentized mean has relative error of O,(#>/n), where t is the observed value of the studen-
tized mean under the null hypothesis, and that under contiguous alternatives this is 0,(n""). Also,
we show that the relative error of the coverage of the bootstrap-t (1 — 2a)-confidence interval is
0(z3/n), where z, is the 1 —« quantile of the standardized normal distribution. These methods
extend, under the stronger conditions assumed here, the results of Hall (1988), where it is shown
that the absolute error of coverage is O(n~!). As Hall (1990) pointed out, simulation studies show
that the bootstrap usually performs better than such Edgeworth expansion arguments suggest and
he gave, for standardized means, a comparison of the relative error of the bootstrap and the
Edgeworth approximation formula.

The proof of Theorem 1, given in the Appendix, consists of first obtaining saddlepoint approxi-
mations for Q(a;) and Q*(a,) of the form proposed by Barndorff-Nielsen (1986, 1991) and shown,
by Jensen (1992), to be equivalent to the form given by Lugannani & Rice (1980) and extended
to studentized means by Daniels & Young (1991). These approximations are known to have relative
error of O(n~!), uniformly for a, in the range (0, O(n*)). The theorem follows by comparing these
saddlepoint approximations using Taylor expansions, noting that the coefficients are simple func-
tions of low order cumulants and so differ by 0,(n™*).

We can obtain similar but simpler results for standardized means. Further, we can obtain results
comparing the saddlepoint approximations to the densities of the standardized and studentized
means and their empirical counterparts, the extensions of the empirical saddlepoint of Feuerverger
(1989) to the cases of standardized and studentized means. Saddlepoint approximation methods
have been considered as an alternative to computationally demanding bootstrap and resampling
procedures; see for example Davison & Hinkley (1988), Wang (1989, 1990) and Robinson (1982).
For work of related interest, see also DiCiccio, Martin & Young (1992).

2. SOME BOOTSTRAP APPLICATIONS
2-1. Application to the bootstrap p-value

Suppose we want to test Hy: p = u, against Hy: u> py, where p is the mean of F. If we choose
T =n*(X — u,)/S as our test statistic, then the observed significance level is p = pr (T > t|u,),
where t = n*(% — yo)/s. Define T* = n*(X* — X)/S*, where X¥,..., X} is a random sample with
replacement from F,. Then the bootstrap approximation to the significance level p is given
by p* = pr (T* > t| uo). From Theorem 1, we see that

p=p* {1+op (g)}

If 4 — po = O(1/n*) we will have t = 0,(1), so that p=p*{1 + 0,(n™)}.

2-2. Application to the bootstrap coverage error
Hall (1988) showed that the studentized-t bootstrap method produces one-sided confidence limits

which are second order accurate, and hence results in bootstrap coverage having error of O(n™1).
We will show that this is actually a relative error. To do this, we first need an expression for the
bootstrap coverage. Thus define x} as the solution of

X*—x
Pt e <) =

where pr* indicates the conditional probability given & = {X;,..., X,}. Note that x} is to be
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regarded here as a random variable. Then the bootstrap coverage is given by

¥ (o) = E, x pr X
= Exr P gp-

U
T S xalxy )

We may now establish the following.

THEOREM 2. Under the conditions of Theorem 1, the bootstrap coverage probability satisfies
Z,
*(o) = o {1 +0 <—>},
n

Proof. From Theorem 1, for x} = 0,(n'?), we have

print(® —pyS<xtlet) _ o (5
prim(X*—xys*<xtlxz} ' *\n /)

o)=efia ()

Now letting 4 =(z,— 6, z, + J) for a fixed J, we can show, using a Cornish-Fisher expansion for
x¥ (Hall, 1988) and a Chebyshev bound, that

prix¥ed)=1—0@mn"1).

x;")

where ®(z,)=1—o.

that is

X—
pr(Sn_g <X

Consequently

(o) = Ex pr X___'u<x*
o Sp~% 7

X—u X—u _ _
=pr -3 <x¥|xFeA)pr(x}ed)+pr Sn-3 <x¥|x¥eAd|)pr(x}eA
Z3
o) | °
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APPENDIX
Proof of Theorem 1
Daniels & Young (1991) obtain the tail area approximation to Q(a,):

Oulay) = f (ﬁ) ey (w) dw,

w1
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where we have written y(w) for their y(a, by) of equation (4-12) by taking a as a function of w
defined by inverting their equation (4-9), and w, is defined by replacing a by a, in thier equation
(49). This is accurate to relative error of O(n~?) for a; = O(n*), or O(n~>?), for a, bounded.
Integrating this using Temme’s method (Temme, 1982) gives the approximation

O(w,n?) { 1 w(wl)}

1
n* wy wy

Qn(‘h) =1—0(w, n%) -

which is equivalent, to relative error of O(n™ 1), to
0.(a1) = 1 — D(in?)

as shown by Jensen (1992), where W = w, — log ¥/(w;)/(nw,). This last result can also be obtained
directly as follows:

A G 1
Qnlay) = <2 exp (— 3 nw2> Y(w) dw

n\ [ 1 log y(w)|* log® Y/(w)
=<%> ] exp[—in L Ai— :lexp o dw
)é [~ exp(—%nuz)%du{1+0(n_l)}
=(1—d{mn?)} {1 +0mn"1)}

Jw

since

du 1+ logy(w)  ¥'(w)
dw nw? V' (wnw’

In order to obtain the same approximation for Q*(a,), we need to show that the tail probability
obtained by integration of the formal density estimate is accurate to the stated order when the
conditions for the existence of a density do not hold. Here, because of the continuity of the
underlying distribution, an indirect Edgeworth approximation, with relative error O(n~>?) may be
shown to hold. This is proved by B.-Y. Jing and J. Robinson, in an unpublished report, for
studentized means, using similar conditions to those used for means by Robinson et al. (1990).
Then we note that the integral of the formal density is equal to the indirect Edgeworth expansion
to O(n~3/?), since this holds in cases where the density exists, and so in other cases, as this equality
is not dependent on the continuity assumptions, but purely on the form of the expansions. So the
saddlepoint approximation for Q*(a,) is

0¥(a)) = {1 —D(W*n*)} {1+ 0,(n" )},

where w* = w¥ —log y*(w¥)/(nw¥). The only difference here is that wf and y*(w¥) are defined in
the same way as w, and y(w,) except that the empirical cumulant generating function is used.
Expanding w, = w(a,) using a Taylor series, we can show that

2 3 4 5
o= e A e a0 ()
and that

a, at a { H
W{W(al)}=1+B1E+32;+B3W+B4_2+0 )
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So for u between W and W*,

1—<I>(Av‘vni) _1+0, ( —fv*)'fqb(im%)
1 — ®(w*n*) 1 — d(Ww*n*)

— 140, {( — W*)on}
=1+ 0,(a3/n).

More details on the proofs of the expansions above can be obtained from the authors.
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