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Preface

There  are  many  books  on  regression  and  analysis  of  variance.  These  books  expect 
different levels of preparedness and place different emphases on the material. This book 
is not introductory. It presumes some knowledge of basic statistical theory and practice. 
Readers are expected to know the essentials of statistical inference such as estimation, 
hypothesis  testing  and  confidence  intervals.  A basic  knowledge  of  data  analysis  is 
presumed. Some linear algebra and calculus are also required.

The emphasis of this text is on the practice of regression and analysis of variance. The 
objective is to learn what methods are available and more importantly, when they should 
be applied.  Many examples are presented to clarify the use of  the techniques and to 
demonstrate  what  conclusions  can  be  made.  There  is  relatively  less  emphasis  on 
mathematical theory, partly because some prior knowledge is assumed and partly because 
the  issues  are  better  tackled  elsewhere.  Theory  is  important  because  it  guides  the 
approach we take.  I  take  a  wider  view of  statistical  theory.  It  is  not  just  the  formal 
theorems. Qualitative statistical concepts are just as important in statistics because these 
enable us to actually do it rather than just talk about it. These qualitative principles are 
harder to learn because they are difficult to state precisely but they guide the successful 
experienced statistician.

Data analysis cannot be learned without actually doing it. This means using a statistical 
computing package.  There is  a wide choice of such packages.  They are designed for 
different audiences and have different strengths and weaknesses. I have chosen to use R 
(Ref. Ihaka and Gentleman (1996) and R Development Core Team (2003)). Why have I 
used R? There are several reasons.

1. Versatility. R is also a programming language, so I am not limited by the procedures that 
are preprogrammed by a package. It is relatively easy to program new methods in R.

2. Interactivity. Data analysis is inherently interactive. Some older statistical packages 
were  designed  when  computing  was  more  expensive  and  batch  processing  of 
computations  was  the  norm.  Despite  improvements  in  hardware,  the  old  batch 
processing paradigm lives on in their use. R does one thing at a time, allowing us to 
make changes on the basis of what we see during the analysis.

3. Freedom. R is based on S from which the commercial package S-plus is derived. R 
itself is open-source software and may be obtained free of charge to all. Linux, Macin-
tosh, Windows and other UNIX versions are maintained and can be obtained from the 
R-project at www.r-project.org. R is mostly compatible with S-plus, meaning that S-
plus could easily be used for most of the examples provided in this book.

4. Popularity. SAS is the most common statistics package in general use but R or S is 
most popular with researchers in statistics. A look at common statistical journals con-
firms this popularity. R is also popular for quantitative applications in finance.

Getting Started with R
R requires some effort to learn. Such effort will be repaid with increased productivity. 
You can learn how to obtain R in Appendix A along with instructions on the installation 
of additional software and data used in this book.
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This book is not an introduction to R. Appendix B provides a brief introduction to the
language,  but  alone  is  insufficient.  I  have  intentionally  included  in  the  text  all  the
commands  used  to  produce  the  output  seen  in  this  book.  This  means  that  you  can
reproduce  these  analyses  and  experiment  with  changes  and  variations  before  fully
understanding R. You may choose to start working through this text before learning R
and pick it up as you go. Free introductory guides to R may be obtained from the R
project Web site at www.r-project.org. Introductory books have been written by Dalgaard
(2002)  and Maindonald and Braun (2003).  Venables  and Ripley (2002)  also have an
introduction  to  R  along  with  more  advanced  material.  Fox  (2002)  is  intended  as  a
companion to a standard regression text. You may also find Becker, Chambers, and Wilks
(1998) and Chambers and Hastie (1991) to be useful references to the S language. Ripley
and Venables (2000) wrote a more advanced text on programming in S or R.

The Web site for this book is  at  www.stat.lsa.umich.edu/˜faraway/LMR where data
described in this book appear. Updates and errata will appear there also.

Thanks to the builders of R without whom this book would not have been possible.

xii Preface
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CHAPTER 1 
Introduction

1.1 Before You Start

Statistics starts with a problem, proceeds with the collection of data, continues with the 
data analysis and finishes with conclusions. It  is a common mistake of inexperienced 
statisticians  to  plunge  into  a  complex  analysis  without  paying  attention  to  what  the 
objectives are or even whether the data are appropriate for the proposed analysis. Look 
before you leap!

The formulation of a problem is often more essential than its solution which 
may be merely a matter of mathematical or experimental skill. Albert Einstein

To formulate the problem correctly, you must:

1.  Understand the physical background. Statisticians often work in collaboration with 
others and need to understand something about the subject area. Regard this as an 
opportunity to learn something new rather than a chore.

2.  Understand the objective. Again, often you will be working with a collaborator who 
may not be clear about what the objectives are. Beware of “fishing expeditions”—if 
you look hard enough, you will almost always find something, but that something may 
just be a coincidence.

3.  Make sure you know what the client wants. You can often do quite different analyses 
on the same dataset. Sometimes statisticians perform an analysis far more complicated 
than the client really needed. You may find that simple descriptive statistics are all that 
are needed.

4.  Put the problem into statistical terms. This is a challenging step and where irreparable 
errors  are  sometimes  made.  Once  the  problem  is  translated  into  the  language  of 
statistics, the solution is often routine. Difficulties with this step explain why artificial 
intelligence  techniques  have  yet  to  make  much impact  in  application  to  statistics. 
Defining the problem is hard to program.

That a statistical method can read in and process the data is not enough. The results of an 
inapt analysis may be meaningless.

It is also important to understand how the data were collected.

were they obtained via a designed sample survey. How the data were collected has a 
crucial impact on what conclusions can be made.

•  Is there nonresponse? The data you do not see may be just as important as the data 
you do see.

•  Are there missing values? This is a common problem that is troublesome and time 

consuming to handle.
•   How are the data coded? In particular, how are the qualitative variables represented?
•  What are the units of measurement?

• 
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2 Linear Models with R

•   Beware of data entry errors and other corruption of the data. This problem is all too common — 

almost a certainty in any real dataset of at least moderate size. Perform some data sanity checks.

1.2 Initial Data Analysis

This is a critical step that should always be performed. It looks simple but it is vital. You 

should make numerical summaries such as means, standard deviations (SDs), maximum 

and  minimum, correlations  and  whatever else is  appropriate  to  the  specific  dataset. 

Equally important are graphical summaries. There is a wide variety of techniques to 

choose from. For one variable at a time, you can make boxplots, histograms, density plots 

and more. For two variables, scatterplots are standard while for even more variables, 

there are numerous good ideas for display including interactive and dynamic graphics. In 

the  plots,  look  for  outliers,  data-entry  errors,  skewed  or  unusual  distributions  

and structure. Check whether the data are distributed according to prior expectations.

Getting data into a form suitable for analysis by cleaning out mistakes and aberrations is 

often time consuming. It often takes more time than the data analysis itself. In this course, 

all the data will be ready to analyze, but you should realize that in practice this is rarely the case.

Let’s look at an example. The National Institute of Diabetes and Digestive and Kidney 

Diseases conducted a study on 768 adult female Pima Indians living near Phoenix. The 

following  variables  were  recorded:  number  of  times  pregnant,  plasma  glucose 

concentration  at  2  hours  in  an  oral  glucose  tolerance  test,  diastolic  blood  pressure 

(mmHg), triceps skin fold thickness (mm), 2-hour serum insulin (mu U/ml), body mass 

index (weight in kg/(height in m2)), diabetes pedigree function, age (years) and a test 

whether the patient showed signs of diabetes (coded zero if negative, one if positive). The 

data  may  be  obtained  from  UCI  Repository  of  machine  learning  databases  at 

www.ics.uci.edu/˜mlearn/MLRepository.html.

Of course, before doing anything else, one should find out the purpose of the study and 

more about how the data were collected. However, let’s skip ahead to a look at the data:

> library(faraway)

> data (pima) 

> pima

  pregnant  glucose  diastolic  triceps insulin  bmi diabetes age

1       6        148        72      35       0   33.6    0.627  50

2       1         85        66      29       0   26.6    0.351  31 

3       8        183        64       0       0   23.3    0.672  32

…much deleted… 

768     1         93        70      31       0   30.4    0.315  23

The library (faraway) command makes the data used in this book available. You need to 

install this package first as explained in Appendix A. We have explicitly written this 

command here, but in all subsequent chapters, we will assume that you have already 

issued this command if you plan to use data mentioned in the text. If you get an error 

message about data not being found, it may be that you have forgotten to type this.
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Introduction 3

The command data (pima) calls up this particular dataset. Simply typing the name of 
the data frame, pima, prints out the data. It is too long to show it all here. For a dataset of 
this size, one can just about visually skim over the data for anything out of place, but it is 
certainly easier to use summary methods.

We start with some numerical summaries:

The  summary  (  )  command  is  a  quick  way  to  get  the  usual  univariate  summary 
information. At this stage, we are looking for anything unusual or unexpected, perhaps 
indicating a data-entry error. For this purpose, a close look at the minimum and 
maximum values of each variable is worthwhile. Starting with pregnant, we see a maxi-
mum value of 17. This is large, but not impossible. However, we then see that the next 
five variables have minimum values of zero. No blood pressure is not good for the 
health—something must be wrong. Let’s look at the sorted values:
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4 Linear Models with R

> pima$diastolic [pima$diastolic = = 0] < - NA

> pima$glucose [pima$glucose == 0] < - NA 

> pima$triceps [pima$triceps == 0] < - NA 

> pima$insulin [pima$insulin == 0] < - NA 

> pima$bmi [pima$bmi == 0] < - NA

The variable test is not quantitative but categorical. Such variables are also called factors.
However, because of the numerical coding, this variable has been treated as if it were
quantitative.  It  is  best  to  designate  such  variables  as  factors  so  that  they  are  treated
appropriately.  Sometimes people forget  this  and compute stupid statistics  such as  the
“average zip code.”

> pima$test < - factor (pima$test)

> summary (pima$test)

  0     1

500   268

We now see that 500 cases were negative and 268 were positive. It is even better to use
descriptive labels:

We see that the first 35 values are zero. The description that comes with the data says
nothing about it but it seems likely that the zero has been used as a missing value code. For
one reason or another, the researchers did not obtain the blood pressures of 35 patients.
In a real investigation, one would likely be able to question the researchers about what
really happened. Nevertheless, this does illustrate the kind of misunderstanding that can
easily occur. A careless statistician might overlook these presumed missing values and
complete an analysis assuming that these were real observed zeros. If the error was later discovered,
they might then blame the researchers for using zero as a missing value code (not a good choice
since it is a valid value for some of the variables) and not mentioning it in their data description.
Unfortunately such oversights are not uncommon, particularly with datasets of any size
or complexity. The statistician bears some share of responsibility for spotting these mistakes.

We set all zero values of the five variables to NA which is the missing value code
used by R:
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Introduction 5

Now that we have cleared up the missing values and coded the data appropriately, we are 
ready to do some plots. Perhaps the most well-known univariate plot is the histogram:

Figure 1.1 The first panel shows a histogram of the diastolic blood pres-
sures, the second shows a kernel density estimate of the 
same, while the third shows an index plot of the sorted values.

> hist (pima$diastolic)

as seen in the first panel of Figure 1.1. We see a bell-shaped distribution for the diastolic 
blood  pressures  centered  around  70.  The  construction  of  a  histogram  requires  the 
specification of the number of bins and their spacing on the horizontal axis. Some choices 
can lead to histograms that obscure some features of the data. R specifies the number and 
spacing of bins given the size and distribution of the data, but this choice is not foolproof 
and misleading histograms are possible. For this reason, some prefer to use kernel density 
estimates,  which  are  essentially  a  smoothed  version  of  the  histogram (see  Simonoff 
(1996) for a discussion of the relative merits of histograms and kernel estimates):

> plot (density (pima$diastolic, na . rm=TRUE) )

The kernel estimate may be seen in the second panel of Figure 1.1. We see that this plot 
avoids the distracting blockiness of the histogram. Another alternative is to simply plot 
the sorted data against its index:
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6 Linear Models with R

> plot (sort (pima$diastolic), pch=".")

The advantage  of  this  is  that  we  can  see  all  the  cases  individually.  We can  see  the
distribution and possible outliers. We can also see the discreteness in the measurement of
blood pressure—values are rounded to the nearest even number and hence we see the
“steps” in the plot.

Now note a couple of bivariate plots, as seen in Figure 1.2:

> plot (diabetes ˜ diastolic,pima)

> plot (diabetes ˜ test, pima)

Figure 1.2 The first panel shows scatterplot of the diastolic blood pres-
sures against diabetes function and the second shows box-
plots of diastolic blood pressure broken down by test result.

First, we see the standard scatterplot showing two quantitative variables. Second, we see
a side-by-side boxplot suitable for showing a quantitative and a qualititative variable.
Also useful is a scatterplot matrix, not shown here, produced by:

> pairs (pima)

We will be seeing more advanced plots later, but the numerical and
graphical summaries presented here are sufficient for a first look at the data.
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Introduction 7

1.3 When to Use Regression Analysis

Regression analysis is used for explaining or modeling the relationship between a single 

variable Y, called the response, output or dependent variable; and one or more predictor, 

input, independent or explanatory variables, X
1
,…, X

p
. When p=1, it is called simple 

regression  but  when  p>1  it  is  called  multiple  regression  or  sometimes  multivariate 
regression.  When  there  is  more  than  one  Y,  then  it  is  called  multivariate  multiple 
regression which we  will not be covering explicity here, although you can just do 
separate regressions on each Y.

The response must be a continuous variable, but the explanatory variables can be 
continuous,  discrete  or  categorical,  although  we  leave  the  handling  of  categorical 
explanatory  variables  to  later  in  the  book.  Taking  the  example  presented  above,  a 
regression with diastolic and bmi as X’s and diabetes as Y would be a multiple regression 
involving only quantitative variables which we shall be tackling shortly. A regression with 
diastolic and test as X’s and bmi as Y would have one predictor that is quantitative and one 
that is qualitative, which we will consider later in Chapter 13 on analysis of covariance. 
A regression with test as X and diastolic as Y involves just qualitative predictors—a topic 
called analysis of variance (ANOVA), although this would just be a simple two sample situation. 
A regression of test as Y on diastolic and bmi as predictors would involve a qualitative 
response. A logistic regression could be used, but this will not be covered in this book.

Regression analyses have several possible objectives including:

1.  Prediction of future observations
2.  Assessment of the effect of, or relationship between, explanatory variables and the 

response
3.  A general description of data structure

Extensions exist to handle multivariate responses, binary responses (logistic regression 
analysis) and count responses (Poisson regression) among others.

1.4 History

Regression-type problems were first considered in the 18th century to aid navigation with 
the use of astronomy. Legendre developed the method of least squares in 1805. Gauss 
claimed to have developed the method a few years earlier and in 1809 showed that least 
squares  is  the  optimal  solution  when  the  errors  are  normally  distributed.  The 
methodology was used almost exclusively in the physical sciences until later in the 19th 
century. Francis Galton coined the term regression to mediocrity in 1875 in reference to 
the simple regression equation in the form:
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8 Linear Models with R

 where r  is  the correlation between x  and y.  Galton used this  equation to explain the
phenomenon that sons of tall fathers tend to be tall but not as tall as their fathers, while
sons of short fathers tend to be short but not as short as their fathers. This phenomenom is
called the regression effect. See Stigler (1986) for more of the history.

We can illustrate this effect with some data on scores from a course taught using this
book. In Figure 1.3, we see a plot of midterm against final scores. We scale each variable
to have mean zero and SD one so that we are not distracted by the relative difficulty of
each  exam and  the  total  number  of  points  possible.  Furthermore,  this  simplifies  the
regression equation to:

y = rx  

> data (stat500) 

> stat500 < - data.frame (scale (stat500)) 

> plot (final ˜ midterm, stat500) 

> abline (0, l)

Figure 1.3 The final and midterm scores in standard units. The least squares fit
is shown witha dotted line while y=x is shown with a solid line.
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Introduction 9

We have added the y=x (solid) line to the plot. Now a student scoring, say 1 SD above 
average on the midterm might reasonably expect to do equally well on the final. We 
compute the least squares regression fit and plot the regression line (more on the details 
later). We also compute the correlations:

> g < - lm (final ˜ midterm, stat500) 

> abline (coef (g), lty=5) 

> cor (stat500)

     midterm       final     hw     total 

midterm 1.00000 0.545228 0.272058 0.84446 

final   0.54523 1.000000 0.087338 0.77886 

hw      0.27206 0.087338 1.000000 0.56443 

total   0.84446 0.778863 0.564429 1.00000

The regression fit is the dotted line in Figure 1.3 and is always shallower than the y=x 
line. We see that a student scoring 1 SD above average on the midterm is predicted to 
score only 0.545 SDs above average on the final

Correspondingly, a student scoring below average on the midterm might expect to do 
relatively better in the final, although still below average.

If  exams managed  to  measure  the  ability  of  students  perfectly,  then  provided  that 
ability  remained unchanged from midterm to final,  we would expect  to  see an exact 
correlation. Of course, it is too much to expect such a perfect exam and some variation is 
inevitably present. Furthermore, individual effort is not constant. Getting a high score on 
the midterm can partly be attributed to skill,  but  also a certain amount of  luck.  One 
cannot rely on this luck to be maintained in the final. Hence we see the “regression to 
mediocrity.”

Of course this applies to any (x, y)  situation like this—an example is the so-called 
sophomore jinx in sports when a new star has a so-so second season after a great first 
year. Although in the father-son example, it does predict that successive descendants will 
come closer to the mean; it does not imply the same of the population in general since 
random fluctuations will maintain the variation. In many other applications of regression, 
the regression effect is not of interest, so it is unfortunate that we are now stuck with this 
rather misleading name.

Regression methodology developed rapidly with the advent of high-speed computing. 
Just fitting a regression model used to require extensive hand calculation. As computing 
hardware has improved, the scope for analysis has widened.

Exercises

1. The  dataset  teengamb  concerns  a  study  of  teenage  gambling  in  Britain.  Make  a 
numerical and graphical summary of the data, commenting on any features that you 
find interesting. Limit the output you present to a quantity that a busy reader would 
find sufficient to get a basic understanding of the data.

2. The dataset uswages is drawn as a sample from the Current Population Survey in 
1988.  Make  a  numerical  and  graphical  summary  of  the  data  as  in  the  previous
question.
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10 Linear Models with R

3. The dataset prostate is from a study on 97 men with prostate cancer who were due to receive
a radical prostatectomy. Make a numerical and graphical summary of the data as in the first
question.

4. The dataset sat comes from a study entitled “Getting What You Pay For: The Debate
Over  Equity  in  Public  School  Expenditures.”  Make  a  numerical  and  graphical
summary of the data as in the first question.

5.  The dataset divusa contains data on divorces in the United States from 1920 to 1996.
Make a numerical and graphical summary of the data as in the first question.
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CHAPTER 2 
Estimation

2.1 Linear Model

Suppose we want to model the response Y in terms of three predictors, X
1
, X

2
 and X

3
. One 

very general form for the model would be:

 

where f is some unknown function and " is the error in this representation. " is additive in 
this instance, but could enter in some more general form. Still, if we assume that f is a 
smooth, continuous function, that still leaves a very wide range of possibilities. Even with 
just three predictors, we typically will not have enough data to try to estimate f directly. 
So we usually have to assume that it has some more restricted form, perhaps linear as in:

 

where !
i
, i=0, 1, 2, 3 are unknown parameters. !

0
 is called the intercept term. Thus the 

problem  is  reduced  to  the  estimation  of  four  parameters  rather  than  the  infinite 
dimensional f. In a linear model the parameters enter linearly—the predictors themselves 
do not have to be linear. For example:

 

is a linear model, but:

 

is not. Some relationships can be transformed to linearity—for example,  can
be  linearized  by  taking  logs.  Linear  models  seem rather  restrictive,  but  because  the 
predictors can be transformed and combined in any way, they are actually very flexible. 
The term linear is often used in everyday speech as almost a synonym for simplicity. This 
gives the casual observer the impression that linear models can only handle small simple 
datasets. This is far from the truth—linear models can easily be expanded and modified 
to handle complex datasets. Linear is also used to refer to straight lines, but linear models 
can be curved. Truly nonlinear models are rarely absolutely necessary and most often 
arise from a theory about the relationships between the variables, rather than an empirical 
investigation.
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Estimation 13

2.2 Matrix Representation

If we have a response Y and three predictors, X
1
, X

2
 and X

3
, the data might be presented 

in tabular form like this:

 

where n is the number of observations, or cases, in the dataset. 
Given the actual data values, we may write the model as:

y
i
=!

0
+!

1
x

1i
+!

2
x

2i
+!

3
x

3i
+"

i
 i=1,…, n  

but the use of subscripts becomes inconvenient and conceptually obscure. We will find it 
simpler  both  notationally  and theoretically  to  use  a  matrix/vector  representation.  The 
regression equation is written as:

y=X!+"  

where y=(y
1
,…, y

n
)T, "=("

1
,…, "

n
)T, !=(!

0
,…,!

3
)T and:

 

The column of  ones  incorporates  the  intercept  term.  One simple  example is  the  null 
model where there is no predictor and just a mean y=!+":

 

We can assume that E"=0 since if this were not so, we could simply absorb the nonzero 
expectation for the error into the mean ! to get a zero expectation.

2.3 Estimating !

The regression model, y=X!+", partitions the response into a systematic component X!
and a random component " We would like to choose ! so that the systematic part explains
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14 Linear Models with R

as much of the response as possible.  Geometrically speaking,  the response lies in an

n-dimensional space, that is, while where p is the number of parameters.
If we include the intercept then p is the number of predictors plus one. We will use this 
definition of p from now on. It is easy to get confused as to whether p is the number of 
predictors or parameters, as different authors use different conventions, so be careful.

The problem is to find ! so that X! is as close to Y as possible. The best choice, the
estimate , is apparent in the geometrical representation seen in Figure 2.1.

Figure 2.1 Geometrical representation of the estimation !. The data
vector Y is projected orthogonally onto the model space
spanned by X. The fit is represented by projection 
with the difference between the fit and the data represented 
by the residual vector 

.

between the actual response and the predicted response is denoted by  and is
residuals.

The  conceptual  purpose  of  the  model  is  to  represent,  as  accurately  as  possible, 
something complex, y, which is n-dimensional, in terms of something much simpler, the 
model, which is p-dimensional. Thus if our model is successful, the structure in the data 
should be captured in those p dimensions, leaving just random variation in the residuals 
which lie in an (n#p)-dimensional space. We have:

Data=Systematic Structure+Random Variation
n dimensions=p dimensions+(n#p)dimensions  

2.4 Least Squares Estimation

The estimation of !  can also be considered from a nongeometrical point of view. We 
might define the best estimate of ! as the one which minimizes the sum of the squared
errors. The least squares estimate of !, called  minimizes:

by the model is or Hy where H is an orthogonal projection matrix. The difference

called the

 is, in this sense, the best estimate of ! within the model space. The response predicted 
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Estimation 15

 

Differentiating with respect to ! and setting to zero, we find that  satisfies:

 

These  are  called  the  normal  equations.  We  can  derive  the  same  result  using  the

geometrical approach. Now provided XTX is invertible:

 

H=X(XTX)!1XT is called the hat-matrix  and is the orthogonal projection of y  onto the
space spanned by X. H is useful for theoretical manipulations, but you usually do not
want to compute it explicitly, as it is an n!n matrix which could be uncomfortably large
for some datasets. The following useful quantities can now be represented using H. 

The  predicted  or  fitted  values  are  while  the  residuals  are

The residual sum of squares (RSS) is

Later, we will show that the least squares estimate is the best possible estimate of !

when the errors " are uncorrelated and have equal variance or more briefly put var "=#2I.

 is unbiased and has variance (XTX)–1#2 provided var " = #2I. Since is a 
variance is a matrix.

We also need to  estimate  #2.  We find that  
estimator:

 

as an unbiased estimate of #2. n#p is the degrees of freedom of the model. Sometimes 

you need the standard error for a particular component of  which can be picked out as

 vector, its

which suggests the
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16 Linear Models with R

In a few simple models, it is possible to derive explicit formulae for 

1. When y = !+", X=1 and !=! so XTX=1T1=n so:

 

2. Simple linear regression (one predictor):

 

We can now apply the formula but a simpler approach is to rewrite the equation as:

 

so now:

 

Next work through the rest of the calculation to reconstruct the familiar estimates, that is:

 

In higher dimensions, it  is usually not possible to find such explicit  formulae for the

parameter  estimates  unless  XTX  happens  to  be  a  simple  form.  So  typically  we  need
computers  to  fit  such  models.  Regression  has  a  long  history,  so  in  the  time  before
computers became readily available, fitting even quite simple models was a tedious time
consuming  task.  When  computing  was  expensive,  data  analysis  was  limited.  It  was
designed  to  keep  calculations  to  a  minimum  and  restrict  the  number  of  plots.  This
mindset  remained  in  statistical  practice  for  some  time  even  after  computing  became
widely and cheaply available. Now it is a simple matter to fit a multitude of models and
make more plots than one could reasonably study. The challenge for the analyst is to
choose among these intelligently to extract the crucial information in the data.

2.5 Examples of Calculating 
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Estimation 17

2.6 Gauss-Markov Theorem

 is  a  plausible  estimator,  but  there  are  alternatives.  Nonetheless,  there  are  three
goodreasons to use least squares:

1.  It  results  from  an  orthogonal  projection  onto  the  model  space.  It  makes  sense
geometrically.

2. If the errors are independent and identically normally distributed, it is the maximum
likelihood estimator. Loosely put, the maximum likelihood estimate is the value of !
that maximizes the probability of the data that was observed.

3. The Gauss-Markov theorem states that  is the best linear unbiased estimate (BLUE).

To understand the Gauss-Markov theorem we first need to understand the concept of an 

estimable function. A linear combination of the parameters is estimable if and

only if there exists a linear combination aTy such that:

 

Estimable functions include predictions of future observations, which explains why they
are well worth considering. If X is of full rank, then all linear combinations are estimable.

Suppose  E"=0  and  var  "=#2I.  Suppose  also  that  the  structural  part  of  the  model,
EY=X!  is  correct.  (Clearly  these  are  big  assumptions  and  so  we  will  address  the

implications of this later.)  be an estimable function; then the Gauss-Markov 

theorem states that in the class of all unbiased linear estimates of  has the
minimum variance and is unique.

We prove this theorem. Suppose aTy is some unbiased estimate of cT! so that:

 

which means that aTX=CT. This implies that c must be in the range space of XT which in

turn implies that c is also in the range space of XTX which means there exists a $, such

that c=XTX$ so:

 

Now we can show that the least squares estimator has the minimum variance—pick an

arbitrary estimate aTy and compute its variance:
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18 Linear Models with R

 

but

 

so

 

Now since variances cannot be negative, we see that:

 

In other words,  has minimum variance. It now remains to show that it is unique. 

There  will  be  equality  in  the  above  relationship  if  var  (aTy#$TXTy)=0  which  would

require that aT#$TXT=0 which means that So equality occurs only

if aTy=cT so the estimator is unique. This completes the proof.

The Gauss-Markov theorem shows that the least squares estimate  is a good choice, 
but it does require that the errors are uncorrelated and have unequal variance. Even if the 
errors behave, but are nonnormal, then nonlinear or biased estimates may work better. So 
this theorem does not tell one to use least squares all the time; it just strongly suggests it 
unless there is some strong reason to do otherwise. Situations where estimators other than 
ordinary least squares should be considered are:

1. When the errors are correlated or have unequal variance, generalized least squares 
should be used. See Section 6.1.

2. When the error distribution is long-tailed, then robust estimates might be used. Robust 
estimates are typically not linear in y. See Section 6.4.

3. When the predictors are highly correlated (collinear), then biased estimators such as 
ridge regression might be preferable. See Chapter 9.

2.7 Goodness of Fit

It is useful to have some measure of how well the model fits the data. One common
choice is R2, the so-called coefficient of determination or percentage of variance explained:
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Estimation 19

 

Its range is 0"R2
"1—values closer to 1 indicating better fits. For simple linear regression 

R2=r2 where r is the correlation between x and y. An equivalent definition

 

Figure 2.2 Variation in the response y when x is known is denoted by 
dotted arrows while variation in y when x is unknown is 
shown with the solid arrows.

The graphical intuition behind R2 is seen in Figure 2.2. Suppose you want to predict y. If 
you do not know x, then your best prediction is  but the variability in this prediction is 
high. If you do know x, then your prediction will be given by the regression fit. This 

prediction will be less variable provided there is some relationship between x and y. R2 is 
one minus the ratio of the sum of squares for these two predictions. Thus for perfect 

predictions the ratio will be zero and R2 will be one.

R2 as defined here does not make any sense if you do not have an intercept in your 

model. This is because the denominator in the definition of R2 has a null model with an 

intercept in mind when the sum of squares is calculated. Alternative definitions of R2 are 
possible when there is no intercept, but the same graphical intuition is not available and
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20 Linear Models with R

the  R2s  obtained  in  this  way  should  not  be  compared  to  those  for  models  with  an

intercept. Beware of high R2s reported from models without an intercept.

What is a good value of R2? It depends on the area of application. In the biological and
social sciences, variables tend to be more weakly correlated and there is a lot of noise.

We would expect lower values for R2 in these areas—a value of 0.6 might be considered
good.  In  physics  and  engineering,  where  most  data  come  from  closely  controlled

experiments, we expect to get much higher R2s and a value of 0.6 would be considered
low. Of course, I generalize excessively here so some experience with the particular area

is necessary for you to judge your R2s well.
An alternative measure of fit is  This quantity is directly related to the standard errors

of estimates of ! and predictions. The advantage is that  is measured in the units of

the response and so may be directly interpreted in the context of the particular dataset.

This may also be a disadvantage in that one must understand whether the practical

significance of this measure whereas R2, being unitless, is easy to understand.

2.8 Example

Now let’s look at an example concerning the number of species of tortoise on the various
Galápagos Islands. There are 30 cases (Islands) and seven variables in the dataset. We
start by reading the data into R and examining it (remember you first need to load the
book data with the library (faraway) command):

> data (gala) >

gala

        Species  Endemics    Area  Elevation Nearest   Scruz

Baltra       58       23    25.09      346      0.6     0.6

Bartolome    31       21     1.24      109      0.6    26.3

. . .

The  variables  are  Species—the  number  of  species  of  tortoise  found  on  the  island,

Endemics—the  number  of  endemic  species,  Area—the  area  of  the  island  (km2),

Elevation—the  highest  elevation  of  the  island  (m),  Nearest—the  distance  from  the

nearest island (km), Scruz—the distance from Santa Cruz Island (km), Adjacent—the

area of the adjacent island (km2).
The data were presented by Johnson and Raven (1973) and also appear in Weisberg (1985).

I have filled in some missing values for simplicity (see Chapter 12 for how this can be
done). Fitting a linear model in R is done using the lm ( ) command. Notice the syntax for
specifying the predictors in the model. This is part of the Wilkinson-Rogers notation. In
this case, since all the variables are in the gala data frame, we must use the data=argument:

> mdl < - lm (Species ˜ Area + Elevation + Nearest + Scruz

       + Adjacent, data=gala) >

summary (mdl)
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Estimation 21

Call: 

lm (formula = Species ˜ Area + Elevation + Nearest + Scruz

    + Adjacent, data = gala)

Residuals:

     Min      1Q   Median     3Q     Max

!111.68  !34.90   !7.86  33.46  182.58 

Coefficients:

           Estimate   Std. Error t value Pr(>|t|) 

(Intercept) 7.06822  19.15420    0.37   0.7154 

Area       !0.02394   0.02242   !1.07   0.2963

Elevation   0.31946   0.05366    5.95  3.8e–06

Nearest     0.00914   1.05414    0.01   0.9932 

Scruz      !0.24052   0.21540   !1.12   0.2752

Adjacent   !0.07480   0.01770   !4.23   0.0003

Residual standard error: 61 on 24 degrees of freedom 

Multiple R-Squared: 0.766, Adjusted R-squared: 0.717

F-statistic: 15.7 on 5 and 24 DF, p-value: 6.84e–07

We can identify several useful quantities in this output. Other statistical packages tend to 
produce output quite similar to this. One useful feature of R is that it is possible to directly calcu-
late quantities of interest. Of course, it is not necessary here because the lm ( ) function does the 
job, but it is very useful when the statistic you want is not part of the prepackaged functions.

First, we make the X-matrix:

> x < - model.matrix ( ˜ Area + Elevation + Nearest + Scruz

     + Adjacent, gala)

and here is the response y:

> y < - gala$Species

Now let’s construct . t ( ) does transpose and %*% does matrix multiplication. 

solve (A) computes A!1 while solve (A, b) solves Ax=b:

> xtxi < - solve (t (x) %*% x)

We can get  directly, using (XTX)!1XTy:

> xtxi %*% t (x) %*% y

                   [,1]      

1              7.068221

Area          !0.023938

Elevation      0.319465 

Nearest        0.009144 

Scruz         !0.240524 

Adjacent      !0.074805
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22 Linear Models with R

This is a very bad way to compute . It is inefficient and can be very inaccurate when the
predictors are strongly correlated. Such problems are exacerbated by large datasets. A
better, but not perfect, way is:

> solve (crossprod (x, x), crossprod (x, y))

               [,1]

1          7.068221

Area      !0.023938

Elevation  0.319465

Nearest    0.009144

Scruz     !0.240524

Adjacent  !0.074805

where crossprod (x, y) computes xT y. Here we get the same result as lm ( ) because the
data are well-behaved. In the long run, you are advised to use carefully programmed code
such as found in lm ( ). To see the full details, consult a text such as Thisted (1988).

We can extract the regression quantities we need from the model object. Commonly
used are residuals ( ), fitted ( ), deviance ( ) which gives the RSS, df . residual ( ) which

gives the degrees of freedom and coef ( ) which gives the . You can also extract other
needed quantities by examining the model object and its summary:

> names (mdl)

[1]  "coefficients" "residuals"     "effects"

[4]  "rank"         "fitted.values" "assign"

[7]  "qr"           "df.residual"   "xlevels"

[10] "call"         "terms"         "model"

> md1s < - summary (mdl) 

> names (mdls)

[1]  "call"         "terms"         "residuals"

[4]  "coefficients" "aliased"       "sigma"

[7]  "df"           "r.squared"     "adj.r.squared"

[10]  "fstatistic"   "cov.unscaled"

We can estimate # using the formula in the text above or extract it from the summary
object:

> sqrt (deviance (mdl) /df.residual (mdl))

[1] 60.975

> mdls$sigma

[1] 60.975

We can also extract (XTX)–1and use it to compute the standard errors for the coefficients.
(diag ( ) returns the diagonal of a matrix):

> xtxi < - mdls$cov.unscaled 

> sqrt (diag (xtxi)) *60.975 

(Intercept)      Area   Elevation    Nearest    Scruz

  19.154139  0.022422    0.053663   1.054133  0.215402
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Estimation 23

   Adjacent

   0.017700

or get them from the summary object:

> mdls$coef [,2] 

(Intercept)      Area  Elevation  Nearest     Scruz

  19.154198  0.022422  0.053663  1.054136  0.215402

   Adjacent

   0.017700

Finally, we may compute or extract R2:

> 1-deviance (mdl) /sum ((y-mean (y))^2)

[1] 0.76585 

> mdls$r.squared

[1] 0.76585

2.9 Identifiability

The least squares estimate is the solution to the normal equations:

 

where X is an n!p matrix. If XTX is singular and cannot be inverted, then there will be

infinitely many solutions to the normal equations and  is at least partially unidentifiable.
Unidentifiability will occur when X is not of full rank—when its columns are linearly 
dependent. With observational data, unidentifiability is usually caused by some oversight. 
Here are some examples:

1. A person’s weight is measured both in pounds and kilos and both variables are 
entered into the model.

2.  For each individual we record the number of years of preuniversity education, the 
number  of  years  of  university  education  and  also  the  total  number  of  years  of 
education and put all three variables into the model.

3.  We have more variables than cases, that is, p>n. When p=n, we may perhaps estimate 
all the parameters, but with no degrees of freedom left to estimate any standard errors 
or do any testing. Such a model is called saturated.  When p>n,  then the model is 
called  supersaturated.  Oddly  enough,  such  models  are  considered  in  large-scale 
screening experiments used in product design and manufacture, but there is no hope of 
uniquely estimating all the parameters in such a model.

Such problems can be avoided by paying attention. Identifiability is more of an issue in 
designed experiments. Consider a simple two-sample experiment, where the treatment 
observations are y

1
,…, y

n
 and the controls are y

n+1
,…, y

m+n
. Suppose we try to model the

response by an overall mean ! and group effects %
1
 and %

2
 :
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24 Linear Models with R

 

Now although X has three columns, it has only rank 2—(!, %
1
, %

2
) are not identifiable

and the normal equations have infinitely many solutions. We can solve this problem by
imposing some constraints, !=0 or %

1
+%

2
=0, for example.

Statistics packages handle nonidentifiability differently. In the regression case above,
some may return error messages and some may fit models because rounding error may
remove the exact identifiability. In other cases, constraints may be applied but these may
be different from what you expect. By default, R fits the largest identifiable model by
removing variables in the reverse order of appearance in the model formula.

Here is an example. Suppose we create a new variable for the Galápagos dataset—the
difference in area between the island and its nearest neighbor:

> gala$Adiff < - gala$Area -gala$Adjacent

and add that to the model:

> g < - lm (Species ˜ Area+Elevation+Nearest+Scruz+Adjacent 

+Adiff, gala) 

> summary (g)

Coefficients: (1 not defined because of singularities)

           Estimate   Std. Error t value Pr(>|t|)

(Intercept) 7.06822     19.15420    0.37   0.7154

Area       !0.02394      0.02242   !1.07   0.2963

Elevation   0.31946      0.05366    5.95  3.8e–06

Nearest     0.00914      1.05414    0.01   0.9932

Scruz      !0.24052      0.21540   !1.12   0.2752

Adjacent   !0.07480      0.01770   !4.23   0.0003

Adiff            NA           NA      NA       NA

Residual standard error: 61 on 24 degrees of freedom

Multiple R-Squared: 0.766, Adjusted R-squared: 0.717

F-statistic: 15.7 on 5 and 24 DF, p-value: 6.84e–07

We get a message about one undefined coefficient because the rank of the design matrix X is
six, which is less than its seven columns. In most cases, the cause of identifiability can  be 
revealed  with  some  thought  about  the  variables,  but,  failing  that,  an eigendecom-
position of XTX will reveal the linear combination(s) that gave rise to the unidentifiability.
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Estimation 25

Lack of identifiability is obviously a problem, but it is usually easy to identify and work 
around. More problematic are cases where we are close to unidentifiability. To demonstrate this, 
suppose we add a small random perturbation to the third decimal place of Adiff by adding 
a random variate from U [&0.005, 0.005] where U denotes the uniform distribution:

> Adiffe < - gala$Adiff+0.001*(runif(30)-0.5)

and now refit the model:

> g < - lm (Species ˜ Area+Elevation+Nearest+Scruz 

+Adjacent+Adiffe, gala)

> summary (g)

Coefficients:

             Estimate   Std. Error t value Pr(>|t|) 

(Intercept)  7.14e+00     1.956+01    0.37     0.72 

Area        !2.38e+04     4.70e+04   !0.51     0.62 

Elevation    3.12e–01     5.67e–02    5.50  1.46–05 

Nearest      1.38e–01     1.10e+00    0.13     0.90 

Scruz       !2.50e–01     2.206–01   !1.14     0.27 

Adjacent     2.386+04     4.70e+04    0.51     0.62 

Adiffe       2.386+04     4.70e+04    0.51     0.62 

Residual standard error: 61.9 on 23 degrees of freedom 

Multiple R-Squared: 0.768, Adjusted R-squared: 0.708 

F-statistic: 12.7 on 6 and 23 DF, p-value: 2.58e–06

Notice  that  now all  parameters  are  estimated,  but  the  standard  errors  are  very  large 
because we cannot estimate them in a stable way. We deliberately caused this problem so 
we know the cause but in general we need to be able to identify such situations. We do 
this in Section 5.3.

Exercises

1. The dataset teengamb concerns a study of teenage gambling in Britain. Fit a regression 
model with the expenditure on gambling as the response and the sex, status, income 
and verbal score as predictors. Present the output.

(a) What percentage of variation in the response is explained by these predictors?
(b) Which observation has the largest (positive) residual? Give the case number.
(c) Compute the mean and median of the residuals.
(d) Compute the correlation of the residuals with the fitted values.
(e) Compute the correlation of the residuals with the income.
(f) For all other predictors held constant, what would be the difference in predicted 

expenditure on gambling for a male compared to a female?

2. The dataset uswages is drawn as a sample from the Current Population Survey in 
1988. Fit  a model with weekly wages as the response and years of education and 
experience as  predictors.  Report  and give a  simple interpretation to the regression
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26 Linear Models with R

coefficient for years of education. Now fit the same model but with logged weekly
wages.  Give  an  interpretation  to  the  regression  coefficient  for  years  of  education.
Which interpretation is more natural?

3. In  this  question,  we investigate  the  relative  merits  of  methods  for  computing  the
coefficients. Generate some artificial data by:

> x < - 1:20 

> y < - x+rnorm(20)

Fit a polynomial in x for predicting y. Compute in two ways—by lm ( ) and by
using the direct calculation described in the chapter. At what degree of polynomial
does the direct calculation method fail? (Note the need for the I ( ) function in fitting
the polynomial, that is, lm(y˜x+I(x^2)) .

4. The dataset prostate comes from a study on 97 men with prostate cancer who were due
to receive a radical prostatectomy. Fit a model with lpsa as the response and l cavol as

the predictor. Record the residual standard error and the R2. Now add lweight, svi,
lpph, age, l cp, pgg45 and gleason to the model one at a time. For each model record

the residual standard error and the R2. Plot the trends in these two statistics.
5. Using the prostate data, plot lpsa against l cavol. Fit the regressions of lpsa on lcavol

and lcavol on lpsa. Display both regression lines on the plot. At what point do the two
lines intersect?
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CHAPTER 3 
Inference

Until now, we have not found it necessary to assume any distributional form for the errors 
". However, if we want to make any confidence intervals or perform any hypothesis tests, 
we  will  need  to  do  this.  The  common  assumption  is  that  the  errors  are  normally 
distributed. In practice, this is often, although not always, a reasonable assumption. We 
have already assumed that the errors are independent and identically distributed (i.i.d.) 
with mean 0 and variance #2, so we have " ~ N(0, #2I). Now since y=X!+", we have y ~ 
N(X!, #2I). which is a compact description of the regression model. From this we find, us-
ing the fact that linear combinations of normally distributed values are also normal, that: 

 

3.1 Hypothesis Tests to Compare Models

Given  several  predictors  for  a  response,  we  might  wonder  whether  all  are  needed. 
Consider a larger model, #, and a smaller model, ', which consists of a subset of the 
predictors that are in ( If there is not much difference in the fit, we would prefer the 
smaller model on the principle that simpler explanations are preferred. On the other hand, 
if the fit of the larger model is appreciably better, we will prefer it. We will take ' to 
represent the null hypothesis and ( to represent the alternative. A geometrical view of the 
problem may be seen in Figure 3.1.

RSS
"
&RSS

#
 is small, then the fit of the smaller model is almost as good as the larger 

model and so we would prefer the smaller model on the grounds of simplicity. On the 
other hand, if the difference is large, then the superior fit of the larger model would be 
preferred. This suggests that something like:

 

would  be  a  potentially  good  test  statistic  where  the  denominator  is  used  for  scaling 
purposes.

As it happens, the same test statistic arises from the likelihood-ratio testing approach. 
We give an outline of the development: If L (!, # y) is the likelihood function, then the 
likelihood-ratio statistic is:
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Inference 29

The test should reject if this ratio is too large. Working through the details, we find that for each 
model:

Figure 3.1 Geometrical view of the comparison between big model, !, and small 
model, ". The squared length of the residual vector for the big model 
is RSS

!
 while that for the small model  is RSS!. By  Pythagoras’ 

theorem, the squared length of the vector connecting the two fits is 
RSS

"
"RSS

!
. A small value for this indicates that the small model fits 

almost as well as the large model and thus might be preferred due to 
its simplicity.

which after some manipulation gives us a test that rejects if:

 

which  is  the  same  statistic  suggested  by  the  geometrical  view.  It  remains  for  us  to 
discover the null distribution of this statistic.

Now  suppose  that  the  dimension  (or  number  of  parameters)  of  (  is  p  and  the 
dimension of ' is q, then:

 

Details of the derivation of this statistic may be found in more theoretically oriented texts 
such as Sen and Srivastava (1990).

Thus we would reject the null hypothesis if The degrees of freedom of a 
model are (usually) the number of observations minus the number of parameters so this
test statistic can also be written:
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30 Linear Models with R

 

where df
#

=n#p  and df
"

=n#q.  The same test statistic applies not just to when '  is a

subset  of  #,  but  also to  a  subspace.  This  test  is  very widely used in  regression and 
analysis of variance. When it is applied in different situations, the form of test statistic
may be reexpressed in various different ways. The beauty of this approach is you only
need to know the general form. In any particular case, you just need to figure out which
models  represent  the  null  and  alternative  hypotheses,  fit  them and  compute  the  test
statistic. It is very versatile.

3.2 Testing Examples

Test of all the predictors
Are any of the predictors useful in predicting the response? Let the full model (() be
y=X!+" where X is a full-rank n!p matrix and the reduced model (') be y=!". We would
estimate ) by . We write the null hypothesis as:

H
0
: !

1
=…!

p!1
=0  

Now  , the residual  sum  of  squares  for  the  full

model, while , which is sometimes known as the sum of
squares corrected for the mean. So in this case:

 

We would now refer to F
p!1,n!p

 for a critical value or a p-value. Large values of F would

indicate rejection of the null. Traditionally, the information in the above test is presented 
in an analysis of variance table. Most computer packages produce a variant on this. See
Table 3.1 for the layout. It is not really necessary to specifically compute all the elements
of  the table.  As the originator  of  the table,  Fisher  said in  1931,  it  is  “nothing but  a
convenient way of arranging the arithmetic.” Since he had to do his calculations by hand,
the table served a necessary purpose, but it is not essential now.

Source Deg. of Freedom Sum of Squares Mean Square F

Regression P#1 SSreg SS
reg

/(p#1) F
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Inference 31

Total n#1 TSS   

Table 3.1 Analysis of variance table.

A failure  to  reject  the  null  hypothesis  is  not  the  end  of  the  game—you  must  still 
investigate the possibility of nonlinear transformations of the variables and of outliers 
which may obscure the relationship. Even then, you may just have insufficient data to 
demonstrate a real effect, which is why we must be careful to say “fail to reject” the null 
rather than “accept” the null. It would be a mistake to conclude that no real relationship 
exists. This issue arises when a pharmaceutical company wishes to show that a proposed 
generic replacement for a brand-named drug is equivalent. It would not be enough in this 
instance just to fail to reject the null. A higher standard would be required.

When the null is rejected, this does not imply that the alternative model is the best model. We 
do not know whether all the predictors are required to predict the response or just  some  
of  them.  Other  predictors  might  also  be  added  or  existing  predictors transformed or 
recombined. Either way, the overall F-test is just the beginning of an analysis and not the end.

Let’s illustrate this test and others using an old economic dataset on 50 different countries. 
These data are averages from 1960 to 1970 (to remove business cycle or other short-term 
fluctuations). dpi is per capita disposable income in U.S. dollars; ddpi is the percentage 
rate of change in per capita disposable income; sr is aggregate personal saving divided by 
disposable income. The percentage of population under 15 (pop15) and over 75 (pop75) is also 
recorded. The data come from Belsley, Kuh, and Welsch (1980). Take a look at the data:

> data(savings) 

> savings

               sr  pop15 pop75      dpi  ddpi 

Australia   11.43  29.35  2.87  2329.68  2.87 

Austria     12.07  23.32  4.41  1507.99  3.93 

…cases deleted…

Malaysia     4.71  47.20  0.66   242.69  5.08

First, consider a model with all the predictors:

> g < - 1m (sr ˜ pop15 + pop75 + dpi + ddpi, savings) 

> summary (g)

Coefficients:

             Estimate Std. Error t value Pr (>|t|) 

(Intercept) 28.566087  7.354516     3.88   0.00033 

pop15       !0.461193  0.144642    !3.19   0.00260 

pop75       !1.691498  1.083599    !1.56   0.12553 

dpi         !0.000337  0.000931    !0.36   0.71917 

ddpi         0.409695  0.196197     2.09   0.04247 

Residual standard error: 3.8 on 45 degrees of freedom 

Multiple R-Squared: 0.338, Adjusted R-squared: 0.28 

F-statistic: 5.76 on 4 and 45 DF, p-value: 0.00079

Residual n"p RSS RSS/(n"p)  
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32 Linear Models with R

We  can  see  directly  the  result  of  the  test  of  whether  any  of  the  predictors  have
significance in the model. In other words, whether !

1
=(!

2
=!

3
=!

4
=0. Since the p-value,

0.00079, is so small, this null hypothesis is rejected.
We can also do it directly using the F-testing formula:

> g < - 1m (sr ˜ pop15 + pop75 + dpi + ddpi, savings)

> (tss < - sum((savings$sr-mean (savings$sr))^2))

[1] 983.63 

> (rss < - deviance(g))

[1] 650.71 

> df.residual(g) 

[13 45 

> (fstat < - ((tss-rss)/4)/(rss/df.residual(g)))

[1] 5.7557 

> 1-pf (fstat, 4, df.residual (g))

[1] 0.00079038

Verify that the numbers match the regression summary above.

Testing just one predictor
Can one particular predictor be dropped from the model? The null hypothesis would be
H

0
: !

i
=0. Let RSS

#
 be the RSS for the model with all the predictors of interest which has

p parameters and let RSS
"

 be the RSS for the model with all the same predictors except

predictor i.
The F-statistic may be computed using the standard formula. An alternative approach

is to use a t-statistic for testing the hypothesis:

 

and check for significance using a t-distribution with n#p degrees of freedom.

However,   is  exactly  the F-statistic  here,  so the two approaches are  numerically
identical. The latter is less work and is presented in typical regression outputs.

For example, to test the null hypothesis that !
1
=0, (that pop15 is not significant in the

full model) we can simply observe that the p-value is 0.0026 from the table and conclude 
that the null should be rejected.

Let’s do the same test using the general F-testing approach: We will need the RSS and
df for the full model which are 650.71 and 45, respectively. We now fit the model that
represents the null:

> g2 < - 1m (sr ˜ pop75 + dpi + ddpi, savings)

and compute the RSS and the F-statistic:

> (rss2 < - deviance (g2))

[1] 797.72 

> (fstat < - (deviance (g2)-deviance (g))/
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Inference 33

(deviance (g)/df.residual(g)))

[1] 10.167

The p-value is then:

> l-pf (fstat, l, df.residual(g))

[1] 0.002603

We can relate this to the t-based test and p-value by:

> sqrt (fstat)

[1] 3.1885 

> (tstat < - summary(g)$coef[2, 3])

[1] !3.1885 

> 2 * (l-pt (sqrt (fstat), 45))

[1] 0.002603

A more convenient way to compare two nested models is:

> anova (g2, g)

Analysis of Variance Table 

Model 1: sr ˜ pop75 + dpi + ddpi 

Model 2: sr ˜ pop15 + pop75 + dpi + ddpi

  
Res.Df Res.Sum Sq Df Sum Sq F value  Pr(>F) 

1     46        798 

2     45        651  1    147    10.2  0.0026

Understand that this test of pop15 is relative to the other predictors in the model, namely, 
pop75, dpi and ddpi. If these other predictors were changed, the result of the test may be 
different. This means that it is not possible to look at the effect of pop15 in isolation. 
Simply stating the null  hypothesis  as  H

0
:  !

pop15
=0 is  insufficient—information about 

what other predictors are included in the null is necessary. The result of the test may be 
different if the predictors change.

Testing a pair of predictors
Suppose we wish to test the significance of variables X

j
 and X

k
. We might construct a 

table as seen above and find that both variables have p-values greater than 0.05 thus 
indicating that individually each one is not significant. Does this mean that both X

j
 and X

k

can be eliminated from the model? Not necessarily.
Except in special circumstances, dropping one variable from a regression model causes 

the estimates of the other parameters to change so that we might find that after dropping 
X

j
, a test of the significance of X

k
 shows that it should now be included in the model.

If you really want to check the joint significance of X
j
 and X

k
 you should fit a model 

with and then without them and use the general F-test discussed before. Remember that 
even the result of this test may depend on what other predictors are in the model.

We test the hypothesis that both pop75 and ddpi may be excluded from the model:
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34 Linear Models with R

> g3 < - 1m (sr ˜ popl5+dpi , savings) 

> anova (g3, g)

Analysis of Variance Table 

Model 1: sr pop15 + dpi 

Model 2: sr pop15 + pop75 + dpi + ddpi

Res.Df    RSS Df Sum of Sq       F  Pr(>F)

1    47 744.12 

2    45 650.71  2  9    3.41 3.2299 0.04889

We see that the pair of predictors is just barely significant at the 5% level.
Tests of more than two predictors may be performed in a similar way by comparing the

appropriate models.

Testing a subspace
Consider this example. Suppose that y is the first year grade point average for a student,
X

j
 is the score on the quantitative part of a standardized test and X

k
 is the score on the

verbal part. There might also be some other predictors. We might wonder whether we
need two separate scores—perhaps they can be replaced by the total, X

j
+X

k
. So if the

original model was:

y=!
0
+…+!

j
X

j
+!

k
X

k
+…+"  

then the reduced model is:

y=!
0
+…+!

l
(X

j
+X

k
)+…+"  

which requires that !
j
=!

k
 for this reduction to be possible. So the null hypothesis is:

H
0
: !

j
=!

k 
 

This defines a linear subspace to which the general F-testing procedure applies. In our
example, we might hypothesize that the effect of young and old people on the savings
rate was the same or in other words that:

H
0
: !

pop15
=!

pop75 
 

In this case the null model would take the form:

y=!
0
+!

dep
(pop15+pop75)+!

dpi
dpi+!

ddpi
ddpi+"  

We can then compare this to the full model as follows:

> g < - 1m (sr ˜ .,savings) 

> gr < - 1m (sr ˜ I (pop15+pop75)+dpi+ddpi/savings)
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Inference 35

> anova (gr, g)

Analysis of Variance Table 

Model 1: sr ˜ I (pop15 + pop75) + dpi + ddpi 

Model 2: sr  ˜ pop15  + pop75 + dpi + ddpi

  Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1     46        674 

2     45        651  1      23   1.58   0.21

The period in the first model formula is shorthand for all the other variables in the data 
frame. The function I ( ) ensures that the argument is evaluated rather than interpreted as 
part of the model formula. The p-value of 0.21 indicates that the null cannot be rejected 
here, meaning that there is not evidence that young and old people need to be treated 
separately in the context of this particular model.

Suppose we want to test whether one of the coefficients can be set to a particular value. 
For example:

H
0
: !

ddpi
=0.5  

Here the null model would take the form:

y=!
0
+!

pop15
pop15+!

pop75
pop75+!

dpi
dpi+0.5ddpi+"  

Notice that there is now a fixed coefficient on the ddpi term. Such a fixed term in the 
regression equation is called an offset. We fit this model and compare it to the full:

> gr < - 1m (sr ˜ pop15+pop75+dpi+offset(0.5*ddpi),savings) 

> anova (gr, g)

Analysis of Variance Table 

Model 1: sr pop15 + pop75 + dpi + offset(0.5 * ddpi)

Model 2: sr pop15 + pop75 + dpi + ddpi

  Res.Df RSS Df Sum of Sq    F Pr(>F) 

1     46 654 

2     45 651  1         3 0.21   0.65

We see that the p-value is large and the null hypothesis here is not rejected. A simpler 
way to test such point hypotheses is to use a t-statistic:

 

where c is the point hypothesis. So in our example the statistic and corresponding p-value 
is:

> (tstat < - (0.409695–0.5)/0.196197)

[1] !0.46028 

> 2*pt (tstat, 45)

[1] 0.64753
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36 Linear Models with R

We can see the p-value is the same as before and if we square the t-statistic

> tstatˆ 2

[1] 0.21186

we find we get the same F-value as above. This latter approach is preferred in practice
since  we  do  not  need  to  fit  two  models  but  it  is  important  to  understand  that  it  is
equivalent to the result obtained using the general F-testing approach.

Can  we  test  a  hypothesis  such  as  H
0
:  !

j
!

k
=1 using  our  general  theory?  No.  This

hypothesis  is  not  linear  in the parameters  so we cannot  use our  general  method.  We 
would need to fit a nonlinear model and that lies beyond the scope of this book.

3.3 Permutation Tests

We can put  a  different  interpretation on the hypothesis  tests  we are  making.  For  the
Galapágos dataset, we might suppose that if the number of species had no relation to the
five  geographic  variables,  then  the  observed  response  values  would  be  randomly
distributed between the islands without relation to the predictors. The F-statistic is a good
measure of the association between the predictors and the response with larger values
indicating stronger associations. We might then ask what the chance would be under this
assumption that  an F-statistic  would be observed as large,  or  larger than the one we
actually observed. We could compute this exactly by computing the F-statistic for all
possible (30!) permutations of the response variable and see what proportion exceed the
observed F-statistic. This is a permutation test. If the observed proportion is small, then
we must reject the contention that the response is unrelated to the predictors. Curiously,
this  proportion is  estimated by the p-value calculated in  the usual  way based on the
assumption of normal errors thus saving us from the massive task of actually computing
the regression on all those computations. See Freedman and Lane (1983) for a discussion
of these matters.

Let’s see how we can apply the permutation test to the savings data. I chose a model
with just pop75 and dpi so as to get a p-value for the F-statistic that is not too small (and
therefore less interesting):

> g < - 1m (sr ˜ pop75+dpi,savings)

> summary (g)

Coefficients:

            Estimate Std. Error t value  Pr (>|t|)

(Intercept) 7.056619   1.290435    5.47    1.7e–06

pop75       1.304965   0.777533    1.68    0.10 

dpi        !0.000341   0.001013   !0.34    0.74

Residual standard error: 4.33 on 47 degrees of freedom

Multiple R-Squared: 0.102, Adjusted R-squared: 0.0642

F-statistic: 2.68 on 2 and 47 DF, p-value: 0.079

We can extract the F-statistic as:

> gs < - summary (g)
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Inference 37

> gs$fstat

value  numdf   dendf

2.6796 2.0000 47.0000

The function sample ( ) generates random permutations. We compute the F-statistic for 4000 
randomly selected permutations and see what proportion exceeds the F-statistic for the original data:

> fstats < - numeric(4000) 

> for (i in 1:4000){ 

+ ge < - lm (sample(sr) ˜ pop75+dpi,data=savings)

+ fstats [i] < - summary(ge)$fstat[1]

+ }

> length(fstats[fstats > 2.6796])/4000

[1] 0.07425

This should take less than a minute on any relatively new computer. If you repeat this, 
you will get a slightly different result each time because of the random selection of the 
permutations. So our estimated p-value using the permutation test is 0.07425, which is 
close to the normal theory-based value of 0.0791.  We could reduce variability in the 
estimation of the p-value simply by computing more random permutations.  Since the 
permutation test does not depend on the assumption of normality, we might regard it as 
superior to the normal theory based value. It does take longer to compute, so we might 
use the normal inference secure, in the knowledge that the results can also be justified 
with an alternative argument.

Tests involving just one predictor also fall within the permutation test framework. We 
permute that  predictor  rather  than the response.  Let’s  test  the  pop75 predictor  in  the 
model. We can extract the t-statistic as:

>summary(g)$coef [2, 3]

[1] 1.6783

Now we perform 4000 permutations of pop75 and check what fraction of the t-statistics 
exceeds 1.6783 in absolute value:

>tstats < - numeric(4000) 

>for (i in 1:4000){ 

+ge < - 1m (sr ˜ sample(pop75)+dpi, savings) 

+tstats [i] < - summary(ge)$coef[2,3] 

+} 

>mean (abs (tstats) > 1.6783)

[1] 0.10475

The outcome is very similar to the observed normal-based p-value of 0.10.
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38 Linear Models with R

Confidence intervals (CIs) provide an alternative way of expressing the uncertainty in our
estimates. They are linked to the tests that we have already constructed. For the CIs and
regions that we will consider here, the following relationship holds. For a 100(1&%)%
confidence region, any point that lies within the region represents a null hypothesis that
would not be rejected at the 100%% level while every point outside represents a null
hypothesis that would be rejected. So, in one sense, the confidence region provides a lot
more information than a single hypothesis test in that it tells us the outcome of a whole
range of hypotheses about the parameter values. Of course, by selecting the particular
level of confidence for the region, we can only make tests at that level and we cannot
determine the p-value for any given test simply from the region. However, since it is
dangerous  to  read  too  much  into  the  relative  size  of  p-values  (as  far  as  how much
evidence they provide against the null), this loss is not particularly important.

The confidence region tells us about plausible values for the parameters in a way that
the hypothesis test cannot. This makes it more valuable. As with testing, we must decide
whether  to  form  confidence  regions  for  parameters  individually  or  simultaneously.
Simultaneous regions are preferable, but for more than two dimensions they are difficult
to display and so there is still some value in computing the one-dimensional CIs.

We can consider each parameter individually, which leads to CIs taking the general
form of:

Estimate±Critical Value!SE of Estimate  

or specifically in this case:

 

Alternatively, a 100(1–%)% confidence region for ! satisfies:

 

These  regions  are  ellipsoidally  shaped.  Because  these  ellipsoids  live  in  higher
dimensions, they cannot easily be visualized except for the two-dimensional case.

It  is better  to consider  the  joint  CIs  when  possible,  especially  when  the      are heavily
correlated.

Consider the full model for the savings data:

> g < - 1m (sr ˜ . , savings)

where the output  is  displayed on page 28.  We can construct  individual  95% CIs  for
!

pop75
:

> qt (0.975,45)

[1] 2.0141 

> c (!1.69!2.01*1.08,!1.69+2.01*1.08)

[1] !3.8608 0.4808

3.4 Confidence Intervals for !
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Inference 39

CIs have a duality with two-sided hypothesis tests as we mentioned above. Thus the 

interval contains zero, which indicates that the null hypothesis H
0
: !

pop75
=0 would not be 

rejected at the 5% level. We can see from the summary that the p-value is 12.5%—greater 
than 5%—confirming this point.

The CI for !
pop75

 is:

> c (0.41 !2.01 * 0.196, 0.41+2.01*0.196)

[1]  0.01604  0.80396

Because zero is in this interval, the null is rejected. Nevertheless, this CI is relatively 
wide in the sense that the upper limit is about 50 times larger than the lower limit. This 
means that we are not really that confident about what the exact effect of growth on 
savings really is, even though it is statistically significant. A convenient way to obtain all 
the univariate intervals is:

> confint (g)

                 2.5 %      97.5 % 

(Intercept) 13.7533307  43.3788424 

pop15       –0.7525175  –0.1698688 

pop75       –3.8739780   0.4909826 

dpi         –0.0022122   0.0015384

ddpi         0.0145336   0.8048562

Now we construct the joint 95% confidence region for !
pop15

 and !
pop75

. First, we load in

a package for drawing confidence ellipses (which is not part of base R and so may need 
to be downloaded):

> library(ellipse)

and now the plot:

   
> plot(ellipse(g,c(2,3)),type="l",xlim=c(-1,0))

We add the origin and the point of the estimates:

> points(0,0) 

> points (coef (g) [2], coef (g) [3], pch=18)

Since the origin lies outside the ellipse, we reject the hypothesis that !
pop15

=!
pop75

= 0.

We mark the one-way CI on the plot for reference:

> abline (v=confint (g) [2,], lty=2) 

> abline (h=confint (g) [3,], lty=2)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
] 

at
 1

6:
20

 2
3 

M
ay

 2
01

4 



40 Linear Models with R

lines were moved out so that they enclosed the ellipse exactly, the CIs would be jointly
correct.

In some circumstances, the origin could lie within both one-way CIs, but lie outside the
ellipse. In this case, both one-at-a-time tests would not reject the null whereas the joint
test would. The latter test would be preferred. It  is also possible for the origin to lie
outside the rectangle but inside the ellipse. In this case, the joint test would not reject the
null whereas both one-at-a-time tests would reject. Again we prefer the joint test result.

Examine the correlation of the two predictors:

> cor (savings$pop15, savings$pop75)

[1] !0.90848

However,  from the plot,  we see that  coefficients  have a  positive correlation.  We can
confirm this from:

Figure 3.2 Confidence ellipse and regions for !
pop75. and !

pop15

>summary (g, corr=TRUE) $corr

           (Intercept)    pop15     pop75     dpi       ddpi

(Intercept)   1.00000 !0.98416 !0.809111 !0.16588 !0.188265

pop15        !0.98416   1.00000  0.765356   0.17991  0.102466

pop75        !0.80911   0.76536  1.000000  !0.36705 !0.054722

See the plot in Figure 3.2. Notice that these lines are not tangential to the ellipse. If the
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Inference 41

dpi      !0.16588  0.17991 !0.367046  1.00000  0.255484

ddpi     !0.18827  0.10247 !0.054722  0.25548  1.000000

where we see that the correlation is 0.765. The correlation between predictors and the correla-
tion  between  the  coefficients  of  those  predictors  are  often  different  in  sign. Loose-
ly speaking, two positively correlated predictors will attempt to perform the same job of expla-
nation. The more work one does, the less the other needs to do and hence a negative correlation 
in the coefficients. For the negatively correlated predictors, as seen here, the effect is reversed.

3.5 Confidence Intervals for Predictions

Given a new set of predictors, x
0
, the predicted response is However, we need

to assess the uncertainty in this prediction. Decision makers need more than just a point 
estimate to make rational choices. If the prediction has a wide CI, we need to allow for 
outcomes far from the point estimate. For example, suppose we need to predict the high 
water mark of a river. We may need to construct barriers high enough to withstand floods 
much higher than the predicted maximum.

We  must  also  distinguish  between  predictions  of  the  future  mean  response  and 
predictions of future observations. To make the distinction clear, suppose we have built a 
regression model that predicts the selling price of homes in a given area that is based on 
predictors such as the number of bedrooms and closeness to a major highway.There are 
two kinds of predictions that can be made for a given x

0
:

1. Suppose a specific house comes on the market with characteristics x
0
. Its selling price

will be Since E"=0, the predicted price is but in assessing the variance of 
this prediction, we must include the variance of ".

2. Suppose we ask the question—“What would a house with characteristics x
0
 sell for on

average?” This selling price is and is again predicted by but now only the
variance in  needs to be taken into account.

Most times, we will want the first case, which is called “prediction of a future value,” while  the  
second  case,  called  “prediction  of  the  mean  response”  is  less  commonly required.

We  have  var  A future  observation  is  predicted  to  be

(where we do not know what the future " will be and we can reasonably assume
this to be independent of ). So a 100(1–%) % CI for a single future response is:
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42 Linear Models with R

 

If, on the other hand, you want a CI for the mean response for given x
0
, use:

 

We return to the Galápagos data for this example:

>  g  <  -  lm  (Species  ˜ Area+Elevation+Nearest+Scruz+Adjacent, gala)

Suppose  we  want  to  predict  the  number  of  species  (of  tortoise)  on  an  island  with
predictors 0.08, 93, 6.0, 12.0, 0.34 (same order as in the dataset). This might represent
another island that was not included in the original data or we might wish to explore the
effects of the predictors by experimenting with new predictor values. We can directly
compute the point prediction as:

> x0 < - c (1, 0.08, 93, 6.0, 12.0, 0.34)

> (y0 < - sum (x0*coef(g)))

[1] 33.92

This is the predicted number of species. If a whole number is preferred, we could round
up to 34.

Now  if  we  want  a  95%  CI  for  the  prediction,  we  must  decide  whether  we  are
predicting the number of species on one new island or the mean response for all islands
with same predictors x

0
. Suppose that an island was not surveyed for the original dataset.

The former interval would be the one we want. For this dataset, the latter interval would 
be more valuable for “what if” type of calculations. First, we need the t-critical value:

> qt (0.975,24)

[1] 2.0639

We calculate the (XTX)!1 matrix:

> x < - model.matrix (g) 

> xtxi < - solve (t (x) %*% x)

The width of the bands for mean response CI is( ):

> (bm < - sqrt (x0 %*% xtxi %*% x0) *2.064 * 60.98)

[,1]

[1,] 32.89
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Inference 43

> c (y0!bm, y0+bm)

[1] 1.0296 66.8097

Now we compute the prediction interval for the single future response:

> bm < - sqrt (l+x0 %*% xtxi %*% x0) *2.064 * 60.98 

> c(y0–bm, y0+bm)

[1] !96.17 164.01

Of course, the number of species cannot be negative. In such instances, impossible values 
in the CI can be avoided by transforming the response, say taking logs (explained in a 
later chapter),  or by using a probability model more appropriate to the response. The 
normal distribution is supported on the whole real line and so negative values are always 
possible.  A better choice for this example might be the Poisson distribution which is 
supported on the nonnegative integers.

There is a more direct method for computing the CI. The function predict ( ) requires 
that its second argument be a data frame with variables named in the same way as the 
original dataset:

> x0 < - data. frame (Area=0.08, Elevation=93, Nearest=6.0, 

Scruz=12, Adjacent=0.34)

> str (predict (g, x0, se=TRUE))

List of 4 

$ fit           : num 33.9 

$ se.fit        : num 15.9 

$ df            : int 24 

$ residual.scale: num 61 

> predict (g, x0, interval="confidence")

       fit     lwr    upr 

[1,] 33.92  1.0338 66.806 

> predict (g, x0, interval="prediction")

       fit     lwr    upr 

[1,] 33.92 !96.153 163.99

Extrapolation occurs  when we try  to  predict  the response for  values  of  the predictor 
which  lie  outside  the  range  of  the  original  data.  There  are  two  different  types  of 
extrapolation:

1. Quantitative extrapolation: We must check whether the new x
0
 is within the range of 

the original data. If not, the prediction may be unrealistic. CIs for predictions get wider 
as we move away from the data. We can compute these bands for the Galápagos model 
where we vary the Nearest variable while holding the other predictors fixed:

> grid < - seq (0, 100, 1) 

> p < - predict (g, data.frame (Area=0.08, Elevation=93Nearest= 

grid, Scruz=12, Adjacent=0.34), se=T, interval="confidence")

> matplot (grid, p$fit, lty=c (1,2,2), type=“l”,

and the interval is:
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44 Linear Models with R

xlab="Nearest",ylab="Species") >

rug (gala$Nearest)

We see that the confidence bands in Figure 3.3 become wider as we move away from the
range of the data. However, this widening does not reflect the possibility that the structure
of  the  model  may  change  as  we  move  into  new  territory.  The  uncertainty  in  the
parametric estimates is allowed for, but not uncertainty about the model. The relationship
may become nonlinear outside the range of the data—we have no way of knowing.

Figure 3.3 Predicted  Nearest  over  a  range  of  values  with  95%  pointwise
confidence bands for the mean response shown as dotted lines.
A “rug” shows the location of the observed values of Nearest.

2. Qualitative extrapolation: Is the new x
0
 drawn from the same population from which

the original sample was drawn? If the model was built in the past and is to be used for 
future predictions, we must make a difficult judgment as to whether conditions have
remained constant enough for this to work.

3.6 Designed Experiments

In a designed experiment, the user has some control over X. For example, suppose we
wish to compare several physical exercise regimes. The experimental units are the people
we use for the study. We can choose some of the predictors such as the amount of time
spent excercising or the type of equipment used. Some other predictors might not be
controlled, but can be measured, such as the physical characteristics of the people. Other
variables, such as the temperature in the room, might be held constant.

Our  control  over  the  conditions  of  the  experiment  allows  us  to  make  stronger
conclusions  from  the  analysis.  Two  important  design  features  are  orthogonality  and
randomization.
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Inference 45

Orthogonality is a useful property because it  allows us to more easily interpret the 

effect of one predictor without regard to another. Suppose we can partition X in two, X=

[X
1
 X

2
] such that So now:

y=X!+"=X
1
!+X

2
!

2
+"  

and

 

which means:

 

Notice that  will be the same regardless of whether X
2
 is in the model or not (and vice 

versa). So we can interpret the effect of X
1
without a concern forX

2
. Unfortunately, the

decoupling is not perfect for suppose we wish to test H
0
: !

1
=0. We have 

that will be different depending on whether X
2
 is included in the model or not, but the 

difference in F is not liable to be as large as in nonorthogonal cases.
Orthogonality is a desirable property, but will only occur when X  is chosen by the 

experimenter. It is a feature of a good design. In observational data, we do not have direct 
control over X and this is the source of many of the interpretational difficulties associated 
with nonexperimental data.

Here is an example of an experiment to determine the effects of column temperature, 
gas/liquid ratio and packing height in reducing the unpleasant odor of a chemical product 
that was sold for household use. Read the data in and display:

> data (odor) 

> odor

   odor  temp  gas  pack 

1    66    !1   !1     0 

2    39     1   !1     0 

3    43    !1    1     0 

4    49     1    1     0 

5    58    !1    0    !1 

6    17     1    0    !1 

7    !5    !1    0     1 

8   !40     1    0     1 

9    65     0   !1    !1 

10    7     0    1    !1
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46 Linear Models with R

11   43     0   !1     1

12  !22     0    1     1

13  !31     0    0     0

14  !35     0    0     0

15  !26     0    0     0

The three predictors have been transformed from their original scale of measurement, for
example, temp=(Fahrenheit-80)/40 so the original values of the predictor were 40, 80 and
120. The data is presented in John (1971) and give an example of a central composite
design. Here is the X-matrix:

> x < - as.matrix (cbind (1, odor[,!1]))

and XTX:

> t (x) %*% x

      1 temp gas pack

   1 15    0   0    0

temp  0    8   0    0

gas   0    0   8    0

pack  0    0   0    8

The matrix is diagonal. Even if temp was measured in the original Fahrenheit scale, the
matrix would still be diagonal, but the entry in the matrix corresponding to temp would
change. Now fit a model, while asking for the correlation of the coefficients:

> g < - lm (odor ˜ temp + gas + pack, odor)

> summary (g, cor=T)

Coefficients:

            Estimate Std. Error t value Pr(>|t|)

(Intercept)     15.2        9.3    1.63     0.13

temp           !12.1       12.7   !0.95     0.36 

gas            !17.0       12.7   !1.34     0.21

pack           !21.4       12.7   !1.68     0.12

Residual standard error: 36 on 11 degrees of freedom

Multiple R-Squared: 0.334, Adjusted R-squared: 0.152

F-statistic: 1.84 on 3 and 11 DF, p-value: 0.199

Correlation of Coefficients:

     (Intercept) temp  gas

temp 0.00 

gas  0.00        0.00 

pack 0.00        0.00  0.00

We see that, as expected, the pairwise correlation of all the coefficients is zero. Notice that
the SEs for the coefficients are equal due to the balanced design. Now drop one of the
variables:

> g < - lm (odor ˜ gas + pack, odor) >

summary (g)

Coefficients:
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Inference 47

            Estimate Std. Error t value  Pr(>|t|) 

(Intercept)    15.20       9.26    1.64      0.13 

gas           !17.00      12.68   !1.34      0.20 

pack          !21.37      12.68   !1.69      0.12

Residual standard error: 35.9 on 12 degrees of freedom 

Multiple R-Squared: 0.279, Adjusted R-squared: 0.159

F-statistic: 2.32 on 2 and 12 DF, p-value: 0.141

The coefficients  themselves do not  change,  but  the residual  SE does change slightly, 
which causes small changes in the SEs of the coefficients, t-statistics and p-values, but 
nowhere near enough to change our qualitative conclusions.

These were data from an experiment so it was possible to control the values of the 
predictors  to  ensure  orthogonality.  Now  consider  the  savings  data,  which  are 
observational:

> g < - 1m (sr ˜ pop15 + pop75 + dpi + ddpi, savings) 

> summary (g)

Coefficients:

             Estimate Std. Error t value  Pr(>|t|) 

(Intercept) 28.566087   7.354516    3.88  0.00033 

pop15       !0.461193   0.144642   !3.19  0.00260 

pop75       !1.691498   1.083599   !1.56  0.12553 

dpi         !0.000337   0.000931   !0.36  0.71917 

ddpi         0.409695   0.196197    2.09  0.04247 

Residual standard error: 3.8 on 45 degrees of freedom 

Multiple R-Squared: 0.338, Adjusted R-squared: 0.28 

F-statistic: 5.76 on 4 and 45 DF, p-value: 0.00079

Drop pop15 from the model:

> g < - update (g, . ˜ . -  pop15) 

> summary (g)

Coefficients:

           Estimate Std. Error t value Pr(>|t|) 

(Intercept) 5.487494   1.427662    3.84  0.00037 

pop75       0.952857   0.763746    1.25  0.21849 

dpi         0.000197   0.001003    0.20  0.84499 

ddpi        0.473795   0.213727    2.22  0.03162 

Residual standard error: 4.16 on 46 degrees of freedom 

Multiple R-Squared: 0.189, Adjusted R-squared: 0.136 

F-statistic: 3.57 on 3 and 46 DF, p-value: 0.0209

Pay particular attention to pop75. The effect has now become positive whereas before it 
was negative. Granted, in both cases it is not significant, but it is not uncommon in other 
datasets for such sign changes to occur and for them to be significant.

Another important feature of designed experiments is the ability to randomly assign the 
experimental units to our chosen values of the predictors. For example, in our exercise 
regime experiment, we might choose an X with some desirable orthogonality properties 
and then fit a y=X!+" model. However, the subjects we use for the experiment are likely
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48 Linear Models with R

to differ in ways that might affect the response, which could, for example, be resting heart
rate. Some of these characteristics may be known and measurable such as age or weight.
These  can  be  included  in  X.  Including  such  known  important  variables  is  typically
beneficial, as it increases the precision of our estimates of !.

However, there will be other variables, Z  that we cannot measure or may not even
suspect. The model we use is y=X!+" while the true model might be y=X!+ Z*++. + is
the measurement error in the response. We can assume that E"=0 without any loss of
generality, because if E"=c, we could simply redefine !

0
 as !

0
+c and the error would

again have expectation zero. This is another reason why it is generally unwise to remove 
the intercept term from the model since it acts as a sink for the mean effect of unincluded
variables. So we see that " incorporates both measurement error and the effect of other
variables. We will not observe Z so we cannot estimate *. If X were orthogonal to Z, that

is, XTZ=0, the estimate of ! would not depend on the presence of Z. Of course, we cannot
achieve this exactly, but because of the random assignment of the experimental units,
which each carry an unknown value of Z, to the predictors X, we will have cor (X, Z)=0.
This means that the estimate of ! will not be biased by Z.

Another compelling argument in favor of the randomization is that it justifies the use
of permutation tests. We really can argue that any assignment of X to the experimental
units was one of n! possible permutations.

For observational data, no randomization can be used in assigning X to the units and
orthogonality  will  not  just  happen.  An unmeasured  and possible  unsuspected  lurking
variable  Z  may be  the  real  cause  of  an  observed  relationship  between y  and X.  For
example, we will observe a positive correlation among the shoe sizes and reading abilities
of elementary school students, but this relationship is driven by a lurking variable—the
age of the child. In this example, the nature of Z is obvious, but in other cases, we may
not be able to identify an important Z. The possible existence of such a lurking variable
casts a shadow over any conclusions from observational data.

Simply using a designed experiment does not ensure success. We may choose a bad
model for the data or find that the variation in the unobserved Z overwhelms the effect of
the  predictors.  Furthermore,  results  from  unrealistic  controlled  experiments  in  the
laboratory may not extrapolate to the real world.

3.7 Observational Data

Sometimes it is not practical or ethical to collect data from a designed experiment. We
cannot control the assignment of X and so we can only obtain observational data. In some
situations, we can control which cases we observe from those potentially available. A
sample survey is used to collect the data. A good survey design can allow stronger and
wider conclusions, but the data will still be observational.

Interpreting  models  built  on  observational  data  is  problematic.  There  are  many
opportunities  for  error  and  any  conclusions  will  carry  substantial  unquantifiable
uncertainty.  Nevertheless,  there  are  many  important  questions  for  which  only
observational data will ever be available and so we must make the attempt in spite of the
difficulties. Suppose we fit a model to obtain the regression equation:
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Inference 49

 

What does  mean? In some cases, a ! might represent a real physical constant. For
example, we might attach weights x  to a spring and measure the extension y.   will
estimate a physical property of the spring. Such examples are rare and so usually the
statistical model is just a convenience for representing a complex reality and the real
meaning of a particular ! is not obvious.

Let’s start with the simplest interpretation: “A unit change in x
1
 will produce a change

of  in the response.” For example,  suppose y  is  annual  income and x
1
 is  years of

education.  We  might  hope  that   represents  the  predicted  change  in  income  if  a
particular individual had one more year of education.

The first objection is that there may be some lurking variable Z that is the real driving
force behind y that also happens to be associated with x

1
. Once Z is accounted for, there

may be no relationship between x
1
 and y. Unfortunately, we can usually never be certain

that such a Z does not exist.
Even so, what if all relevant variables have been measured? In other words, suppose

there are no unidentified lurking variables. Even then the naive interpretation does not
work. Consider:

 

but suppose we change x
2
→ x

1
+x

2
; then:

 

The coefficient  for x
1
 has changed.  Interpretation cannot be done separately for each

variable. This is a practical problem because it is not unusual for the predictor of interest,
x

1
 in this example, to be mixed up in some way with other variables like x

2
. This is the

problem of collinearity which is explored in Section 5.3.

Let’s try a new interpretation: “  is the effect of x
1
 when all the other (specified)

predictors are held constant.”

This is better, but it too has problems. Often in practice, individual variables cannot be
changed without changing others too. For example, in economics we cannot expect to
change  tax  rates  without  other  things  changing  too.  Furthermore,  this  interpretation
requires  the  specification  of  the  other  variables—changing  which  other  variables  are
included will change the interpretation. Unfortunately, there is no simple solution.

Just to amplify this, consider the effect of pop 75 on the savings rate in the savings
dataset. I will fit four different models, all including pop 75, but varying the inclusion of
other variables:
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50 Linear Models with R

> g < - 1m (sr ˜ pop15 + pop75 + dpi + ddpi, savings)

> summary (g)

Coefficients:

              Estimate Std . Error t value Pr((>|t|)

(Intercept)  28.566087    7.354516    3.88   0.00033

pop15        !0.461193    0.144642   !3.19   0.00260

pop75        !1.691498    1.083599   !1.56   0.12553

dpi          !0.000337    0.000931   !0.36   0.71917

ddpi          0.409695    0.196197    2.09   0.04247

Residual standard error: 3.8 on 45 degrees of freedom

Multiple R-Squared: 0.338, Adjusted R-squared: 0.28

F-statistic: 3.57 on 3 and 46 DF, p-value: 0.0209

It is perhaps surprising that pop75 is not significant in this model. However, pop75 is
negatively correlated with pop15 5 since countries with proportionately more younger
people are likely to have relatively fewer older ones and vice versa. These two variables
both measure the nature of the age distribution in a country. When two variables that
represent roughly the same thing are included in a regression equation, it is not unusual
for one (or even both) of them to appear insignificant even though prior knowledge about
the effects of these variables might lead one to expect them to be important:

> g2 < - 1m (sr ˜ pop75 + dpi + ddpi, savings)

> summary(g2)

Coefficients:

            Estimate Std. Error t value Pr (>|t|)

(Intercept) 5.487494   1.427662    3.84   0.00037

pop75       0.952857   0.763746    1.25   0.21849 

dpi         0.000197   0.001003    0.20   0.84499 

ddpi        0.473795   0.213727    2.22   0.03162

Residual standard error: 4.16 on 46 degrees of freedom

Multiple R-Squared: 0.189, Adjusted R-squared: 0.136

F-statistic: 3.57 on 3 and 46 DF, p-value: 0.0209

We note that the income variable dpi and pop75 are both not significant in this model and
yet one might expect both of them to have something to do with savings rates. Higher
values of these variables are both associated with wealthier countries.

Let’s see what happens when we drop dpi from the model:

> g3 < - 1m (sr ˜ pop75 + ddpi, savings)

> summary(g3)

Coefficients:

            Estimate Std. Error t value Pr(>|t|)

(Intercept)    5.470      1.410    3.88  0.00033

pop75          1.073      0.456    2.35  0.02299 

ddpi           0.464      0.205    2.26  0.02856

Residual standard error: 4.12 on 47 degrees of freedom

Multiple R-Squared: 0.188, Adjusted R-squared: 0.154

F-statistic: 5.45 on 2 and 47 DF, p-value: 0.00742
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Inference 51

ddpi:

> g4 < - 1m (sr ˜ pop75, savings)

> summary(g4)

Coefficients:

            Estimate Std. Error t value Pr (>|t|)

(Intercept)    7.152      1.248    5.73   6.4e–07

pop75          1.099      0.475    2.31     0.025

Residual standard error: 4.29 on 48 degrees of freedom

Multiple R-Squared: 0.1, Adjusted R-squared: 0.0814

F-statistic: 5.34 on 1 and 48 DF, p-value: 0.0251

The coefficient and p-value do not change much here due to the low correlation between 
pop75 and ddpi.  Compare the coefficients and p-values for pop75 throughout.  Notice 
how the sign and significance change in Table 3.2.

No. of Preds Sign Significant?   

4 # no

3 + no

2 + yes

1 + yes

Table 3.2 Sign and significance of .

We see that the significance and the direction of the effect of pop75 change according to 
what other variables are also included in the model. We see that no simple conclusion 
about the effect of pop75 is possible. We must find interpretations for a variety of models. 
We certainly will not be able to make any strong causal conclusions.

In  observational  studies,  there  are  steps  one  can take  to  make a  stronger  case  for 
causality:

1.  Try  to  include  all  relevant  variables.  If  you  have  omitted  an  obvious  important 
variable, critics of your study will find it easy to discount your results. A link between 
smoking and lung cancer was observed many years ago,  but  the evidence did not 
become overwhelming until many follow-up studies had discounted potential lurking 
variables.  For  example,  smokers  tend to  drink more alcohol  than nonsmokers.  By 
including alcohol consumption in the model, we are able to adjust for its effect and 
observe any remaining effect due to smoking. Even so the possibility of a unsuspected 
lurking variable will always exist and we can never be absolutely sure.

2. Use nonstatistical knowledge of the physical nature of the relationship. For example, 
we can examine the lungs of smokers.

3. Try a variety of models and see whether a similar effect is observed. In complex data 
analyses involving several variables, we will usually find several models that fit the 
data well.  Sometimes the variables included in these various models may be quite

Now pop75 is statistically significant with a positive coefficient. We try dropping

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
] 

at
 1

6:
20

 2
3 

M
ay

 2
01

4 



52 Linear Models with R

different,  but  if   is  similar,  this  will  increase  confidence  in  the  strength  of  the
conclusions.

4. Multiple studies under different conditions can help confirm a relationship.
5. In a few cases, one can infer causality from an observational study. Dahl and Moretti

(2003) report from U.S. census records that parents of a single girl are 5% more likely
to divorce than parents of a single boy. The gap widens for larger families of girls and
boys, respectively, and is even wider in several other countries. In many observational
studies  we  can  suggest  a  lurking  variable  that  drives  both  the  predictor  and  the
response, but here, excepting recent experimental reproductive methods, the sex of a
child  is  a  purely  random  matter.  This  observational  study  functions  like  an
experimental design. So in this example, we can say that the sex of the child affects
the chance of divorce. The exact mechanism or reason is unclear. Census data are so
large that statistical significance is assured.

It is difficult to assess the evidence in these situations and one can never be certain. The
statistician is comfortable with the uncertainty expressed by hypothesis tests and CIs, but
the  uncertainty  associated  with  conclusions  based  on  observational  data  cannot  be
quantified and is necessarily subjective.

An alternative approach to interpreting parameter estimates is to recognize that the
parameters and their estimates are fictional quantities in most regression situations. The
“true”  values  may  never  be  known  (if  they  even  exist  in  the  first  place).  Instead,
concentrate on predicting future values—these may actually be observed and success can
then be measured in terms of how good the predictions were.

Consider a prediction made using each of the previously mentioned four models:

> x0 < - data. frame(pop15=32, pop75=3, dpi=700, ddpi=3)

> predict (g, x0)

[1] 9.7267 

> predict (g2, x0)

[1] 9.9055 

> predict(g3, x0)

[1] 10.078 

> predict(g4, x0)

[1] 10.448

Prediction  is  more  stable  than  parameter  estimation.  This  enables  a  rather  cautious

interpretation  of  .  Suppose  the  predicted  value  is  %  for  given  x
1

 and  other  given

predictor  values.  Now suppose  we observe  x
1
+1 and  the  same other  given  predictor

values; then the predicted response is increased by  Notice that we have been careful
not to say that we have taken a specific individual and increased his or her x

1
 by 1; rather

we have observed a new individual with predictor x
1
+1. To put it another way, people

with college educations earn more on average than people without, but giving a college
education to someone without one will not necessarily increase his or her income by the
same amount.
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Inference 53

3.8 Practical Difficulties

We have described a linear model y=X!+". Provided certain assumptions are satisfied,
we can estimate ! test any linear hypothesis about !, construct confidence regions for !
and make predictions with CIs.  The theory is  clear  and,  with a  little  experience,  the
computation becomes straightforward. However, the most difficult part of regression data
analysis is ensuring that the theory is appropriate for the real application. Einstein put it
well:

So far as theories of mathematics are about reality; they are not certain; so far as
they are certain, they are not about reality.

Problems may arise in several areas:

Nonrandom Samples

How the data were collected directly affects what conclusions we can draw. The general
theory  of  hypothesis  testing posits  a  population  from which a  sample  is  drawn—the
sample is our data. We want to say something about the unknown population values !, 
using estimated values  that are obtained from the sample data. Furthermore, we require
that the data be generated using a simple random sample of the population. This sample is
finite in size, while the population is infinite in size or at least so large that the sample
size is a negligible proportion of the whole. For more complex sampling designs, other
procedures should be applied, but of greater concern is the case when the data are not a
random sample at all.

Sometimes, researchers may try to select a representative sample by hand. Quite apart
from the  obvious  difficulties  in  doing  this,  the  logic  behind  the  statistical  inference
depends on the sample being random. This is not to say that such studies are worthless,
but  that  it  would  be  unreasonable  to  apply  anything more  than descriptive  statistical
techniques. Confidence in the conclusions from such data is necessarily suspect.

A sample of convenience is where the data are not collected according to a sampling
design. In some cases, it may be reasonable to proceed as if the data were collected using
a random mechanism. For example, suppose we take the first 400 people from the phone
book whose names begin with the letter P. Provided there is no ethnic effect, it may be
reasonable to consider this a random sample from the population defined by the entries in
the phone book. Here we are assuming the selection mechanism is effectively random
with  respect  to  the  objectives  of  the  study.  The  data  are  as  good  as  random.  Other
situations  are  less  clear-cut  and judgment  will  be  required.  Such judgments  are  easy
targets for criticism. Suppose you are studying the behavior of alcoholics and advertise in
the media for study subjects.  It  seems very likely that  such a sample will  be biased,
perhaps in unpredictable ways. In cases such as this, a sample of convenience is clearly
biased in which case conclusions must  be limited to the sample itself.  This  situation
reduces to the case where the sample is the population.

Sometimes, the sample is the complete population. In this case, one might argue that
inference is not required since the population and sample values are one and the same.
For both regression datasets, gala and savings, that we have considered so far, the sample
is effectively the population or a large and biased proportion thereof. Permutation tests
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54 Linear Models with R

make it possible to give some meaning to the p-value when the sample is the population
or for samples of convenience although one has to be clear that one’s conclusion applies
only to the particular sample. Another approach that gives meaning to the p-value when
the sample is the population involves the imaginative concept of “alternative worlds”
where the sample/population at hand is supposed to have been randomly selected from
parallel universes. This argument is definitely more tenuous.

Choice and Range of Predictors
When important predictors are not observed, the predictions may be poor or we may
misinterpret the relationship between the predictors and the response.

The  range  and  conditions  under  which  the  data  are  collected  may  limit  effective
predictions. It is unsafe to extrapolate too much. Carcinogen trials may apply large doses
to mice. What do the results say about small  doses applied to humans? Much of the
evidence  for  harm  from  substances  such  as  asbestos  and  radon  comes  from  people
exposed to much larger amounts than that encountered in a normal life. It is clear that
workers in old asbestos manufacturing plants and uranium miners suffered from their
respective exposures to these substances, but what does that say about the danger to you
or me?

Model Misspecification

We make assumptions about the structural and random part of the model. For the error
structure, we may assume that " ~ N (0, #2I), but this may not be true. The structural part
of  linear  model  Ey=X!  may  also  be  incorrect.  The  model  we  use  may  come  from
different sources:

1.  Physical  theory  may  suggest  a  model.  For  example,  Hooke’s  law  says  that  the
extension of a spring is proportional to the weight attached. Models like these usually
arise in the physical sciences and engineering.

2. Experience with past data. Similar data used in the past were modeled in a particular
way. It  is  natural  to see whether the same model will  work with the current data.
Models like these usually arise in the social sciences.

3. No prior idea exists—the model comes from an exploration of the data.

Confidence  in  the  conclusions  from a  model  declines  as  we  progress  through  these.
Models that derive directly from physical theory are relatively uncommon so that usually
the linear model can only be regarded as an approximation to a complex reality.

The inference depends on the correctness of the model we use. We can partially check
the  assumptions  about  the  model,  but  there  will  always  be  some  element  of  doubt.
Sometimes  the  data  may suggest  more  than  one  possible  model,  which  may lead  to
contradictory results.

Most statistical theory rests on the assumption that the model is correct. In practice, the
best one can hope for is that the model is a fair representation of reality. A model can be
no more than a good portrait. As George Box said,

All models are wrong but some are useful.

Publication and Experimenter Bias 

Many scientific journals will not publish the results of a study whose conclusions do not
reject the null hypothesis. If different researchers keep studying the same relationship,
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Inference 55

sooner or later one of them will come up with a significant effect even if one really does 
not exist. It is not easy to find out about all the studies with negative results so it is easy 
to make the wrong conclusions. The news media often jump on the results of a single 
study, but one should be suspicious of these singleton results. Follow-up studies are often 
needed to confirm an effect.

Another source of bias is that researchers have a vested interest in obtaining a positive 
result. There is often more than one way to analyze the data and the researchers may be 
tempted  to  pick  the  one  that  gives  them  the  results  they  want.  This  is  not  overtly 
dishonest, but it does lead to a bias towards positive results.

Practical and Statistical Significance

Statistical significance is not equivalent to practical significance. The larger the sample, 
the smaller your p-values will be, so do not confuse p-values with an important predictor 
effect. With large datasets it will be very easy to get statistically significant results, but 
the actual effects may be unimportant. Would we really care that test scores were 0.1% 
higher in one state than another or that some medication reduced pain by 2%? CIs on the 
parameter estimates are a better way of assessing the size of an effect. They are useful 
even when the null hypothesis is not rejected, because they tell us how confident we are 
that the true effect or value is close to the null.

It  is  also important to remember that a model is  usually only an approximation of 
underlying reality which makes the exact meaning of the parameters debatable at the very 
least. The precision of the statement that !

1
=0 exactly is at odds with the acknowledged 

approximate nature of the model. Furthermore, it is highly unlikely that a predictor that 
one has taken the trouble to measure and analyze has exactly zero effect on the response. 
It may be small but it will not be zero.

This means that in many cases, we know the point null hypothesis is false without even 
looking at the data. Furthermore, we know that the more data we have, the greater the 
power of our tests. Even small differences from zero will be detected with a large sample. 
Now if we fail to reject the null hypothesis, we might simply conclude that we did not 
have enough data to get a significant result. According to this view, the hypothesis test 
just becomes a test of sample size. For this reason, we prefer CIs.

Exercises

1. For the prostate data, fit a model with lpsa as the response and the other variables as 
predictors.

(a) Compute 90 and 95% CIs for the parameter associated with age. Using just these 
intervals, what could we have deduced about the p-value for age in the regression 
summary?

(b) Compute and display a 95% joint confidence region for the parameters associated 
with age and Ibph. Plot the origin on this display. The location of the origin on the 
display  tells  us  the  outcome  of  a  certain  hypothesis  test.  State  that  test  and  its 
outcome.

(c)  Suppose a new patient with the following values arrives:

lcavol lweight      age    Ibph     svi      lcp

1.44692 3.62301 65.00000 0.30010 0.00000 !0.79851
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56 Linear Models with R

gleason    pgg45

7.00000 15.00000

Predict the lpsa for this patient along with an appropriate 95% CI.
(d) Repeat the last question for a patient with the same values except that he or she is

age 20. Explain why the CI is wider.
(e)  In  the  text,  we  made  a  permutation  test  corresponding  to  the  F-test  for  the

significance of all the predictors. Execute the permutation test corresponding to the
t-test for age in this model. (Hint: {summary (g) $coef [4,3] gets you the t-statistic
you need if the model is called g.)

2.  For  the  model  of  the  previous  question,  remove  all  the  predictors  that  are  not
significant at the 5% level.

(a) Recompute the predictions of the previous question. Are the CIs wider or narrower?
Which predictions would you prefer? Explain.

(b) Test this model against that of the previous question. Which model is preferred?

3.  Using the  teengamb data,  fit  a  model  with  gamble  as  the  response and the  other
variables as predictors.

(a) Which variables are statistically significant?
(b) What interpretation should be given to the coefficient for sex?
(c) Predict the amount that a male with average (given these data) status, income and

verbal score would gamble along with an appropriate 95% CI. Repeat the
prediction for a male with maximal values (for this data) of status, income and
verbal score. Which CI is wider and why is this result expected?

(d) Fit a model with just income as a predictor and use an F-test to compare it to the
full model.

4. Using the sat data:

(a) Fit a model with total sat score as the response and expend, ratio and salary as
predictors.  Test  the  hypothesis  that  !

Salary
=0.  Test  the  hypothesis  that

!
salary

=!
ratio

=!
expend

= 0. Do any of these predictors have an effect on the response?

(b)  Now add takers  to  the model.  Test  the hypothesis  that  !
salary

=0.  Compare this

model to the previous one using an F-test. Demonstrate that the F-test and t-test
here are equivalent.

5. Find a formula relating R2 and the F-test for the regression.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
] 

at
 1

6:
20

 2
3 

M
ay

 2
01

4 



D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
] 

at
 1

6:
20

 2
3 

M
ay

 2
01

4 



CHAPTER 4
Diagnostics

The estimation and inference from the regression model depends on several assumptions. 
These  assumptions  need  to  be  checked  using  regression  diagnostics.  We  divide  the 
potential problems into three categories:

Error We have assumed that "~N(0, #2I) or in words, that the errors are independent, 
have equal variance and are normally distributed.

Model We have assumed that the structural part of the model Ey=X! is correct.
Unusual observations Sometimes just a few observations do not fit the model. These 
few observations might change the choice and fit of the model.

Diagnostic  techniques  can  be  graphical,  which  are  more  flexible  but  harder  to 
definitively interpret, or numerical, which are narrower in scope, but require no intuition. 
The relative strengths of these two types of diagnostics will be explored below. The first 
model  we  try  may  prove  to  be  inadequate.  Regression  diagnostics  often  suggest 
improvements, which means model building is often an iterative and interactive process. 
It is quite common to repeat the diagnostics on a succession of models.

4.1 Checking Error Assumptions

We wish to check the independence, constant variance and normality of the errors, ". The 
errors  are  not  observable,  but  we  can  examine  the  residuals,  .  These  are  not 
interchangeable with the error, as they have somewhat different properties. Recall that

%=X(XTX)!1XT
y
=H

y 
 where  H  is  the  hat-matrix,  so  that  

.  Therefore,

  assuming that var "=#2I. We see that although 
the errors may have equal variance and be uncorrelated, the residuals do not. Fortunately, 
the impact of this is usually small and diagnostics are often applied to the residuals in 
order to check the assumptions on the error.

4.1.1 Constant Variance

It is not possible to check the assumption of constant variance just by examining the 
residuals alone—some will be large and some will be small, but this proves nothing. We 
need to check whether the variance in the residuals is related to some other quantity.

First, plot  against  %  If  all  is  well,  you  should  see  constant  variance  in  the  vertical
(   )
are heteroscedasticity (nonconstant variance) and nonlinearity (which indicates some 
change in the model is necessary). In Figure 4.1, these three cases are illustrated.

direction and the scatter should be symmetric vertically about zero. Things to look for
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Diagnostics 59

Figure 4.1 Residuals vs. fitted plots—the first suggests no change to the 
current model while the second shows nonconstant variance 
and the third indicates some nonlinearity, which should 
prompt some change in the structural form of the model.

You should also plot  against x
i
 (for predictors that are both in and out of the model).

Look for the same things except in the case of plots against predictors not in the model, 
look for any relationship that might indicate that this predictor should be included.

We illustrate this using the savings dataset:

> data(savings) 

> g < -1m (sr ˜ popl5+pop75+dpi+ddpi,savings)

First, the residuals vs. fitted plot and the absolute values of the residuals vs. fitted plot:

>  plot (fitted (g), residuals (g), xlab="Fitted", ylab="Residuals")

> abline (h=0) 

> plot (fitted (g), abs (residuals (g)),

  xlab="Fitted", ylab="|Residuals|")

The plots may be seen in Figure 4.2. The latter plot is designed to check for nonconstant 
variance only. It folds over the bottom half of the first plot to increase the resolution for 
detecting nonconstant variance. The first plot is still needed because nonlinearity must be 
checked. We see no evidence of nonconstant variance.

A quick way to check nonconstant variance is this regression:

> summary (lm (abs (residuals (g)) ˜ fitted (g))) 

Coefficients:

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)    4.840      1.186    4.08  0.00017 

fitted(g)     !0.203      0.119   !1.72  0.09250

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
] 

at
 1

6:
20

 2
3 

M
ay

 2
01

4 



60 Linear Models with R

Figure 4.2 Residual vs. fitted plots for the savings data.

Residual standard error: 2.16 on 48 degrees of freedom

Multiple R-Squared: 0.0578, Adjusted R-squared: 0.0382

F-statistic: 2.95 on 1 and 48 DF, p-value: 0.0925

This test is not quite right, as some weighting should be used and the degrees of freedom
should be adjusted,  but  there  does not  seem to be a  clear  problem with nonconstant
variance.

It  is  often hard to  judge residual  plots  without  prior  experience so it  is  helpful  to
generate some artificial plots where the true relationship is known. The following four for
( ) loops show:

1.  Constant variance
2.  Strong nonconstant variance
3.  Mild nonconstant variance
4.  Nonlinearity

> par(mfrow=c (3, 3)) 

> for (i in 1:9) plot (1:50, rnorm (50)) 

> for (i in 1:9) plot (1:50, (1:50)*rnorm(50)) 

> for (i in 1:9) plot (1:50, sqrt ((1:50))*rnorm(50)) 

> for (i in 1:9) plot(1:50, cos ((1:50)*pi/25)+rnorm(50))

> par(mfrow=c (1, 1))

Repeat to get an idea of the usual amount of variation. Artificial generation of plots is a
good way to “calibrate” diagnostic plots. It is often hard to judge whether an apparent
feature is  real  or  just  random variation.  Repeated generation of  plots  under a  model,
where there is no violation of the assumption that the diagnostic plot is designed to check,
is helpful in making this judgment.

Now look at some residuals against predictor plots:

> plot(savings$pop15, residuals(g),

xlab="Population under 15", ylab="Residuals")
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Diagnostics 61

> plot(savings$pop75, residuals(g), 

xlab="Population over 75", ylab="Residuals")

Figure 4.3 Residuals vs. predictor plots for the savings data.

The plots may be seen in Figure 4.3. Two groups can be seen in the first  plot.  Let’s 
compare and test the variances in these groups. Given two independent samples from 
normal distributions, we can test for equal variance using the test statistic of the ratio of 
the two variance. The null distribution is an F with degrees of freedom given by the two 
samples:

> var.test (residuals(g)[savings$pop15>35], 

residuals(g)[savings$pop15<35])

F test to compare two variances

F=2.7851, num df=22, denom df=26, p-value=0.01358

alternative hypothesis: true ratio of variances is not equal to 1 

95 percent confidence interval:

1.2410 6.4302 

sample estimates: 

ratio of variances

            2.7851

A significant difference is seen.
There are two approaches to dealing with nonconstant variance. Use of weighted least 

squares (see Section 6.1) is appropriate when the form of the nonconstant variance is 
either known exactly or there is some known parametric form. Alternatively, one can 
transform the variables. Sometimes other changes to the model may fix the problem, but 
we consider transforming the response y to h(y) where h( ) is chosen so 

that var h(y) is constant. To see how to choose h consider this:
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62 Linear Models with R

 

We ignore the higher order terms. For var h(y) to be constant we need:

 

which suggests:

 

For example if var y=var " % (Ey)2, then h(y)=log y is suggested while if var " % (Ey),

then .
In practice, you need to look at the plot of the residuals and fitted values and take a

guess at the relationship. When looking at the plot, we see the change in SDy rather then
var y, because the SD is in the units of the response. If your initial guess is wrong, you
can always try another transformation.

Sometimes it can be difficult to find a good transformation. For example, when y
i
"0

for some i, square root or log transformations will fail. You can try, say, log (y+ +), for
some small + but this makes interpretation difficult.

Consider the residual vs. fitted plot for the Galapágos data:

> data (gala) 

> gg < - lm (Species ˜ Area + Elevation + Scruz + Nearest

  + Adjacent, gala) 

>  plot  (fitted  (gg),  residuals  (gg),  xlab="Fittedn,

ylab="Residuals")

We can see nonconstant variance in the first plot of Figure 4.4.
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Diagnostics 63

Figure 4.4 Residual vs. fitted plots for the Galápagos data before (left) 
and after  (right) transformation.

There  are  formal  tests  for  nonconstant  variance—for  example,  one  could  start  by 
regressing  on % or x

i
 The null hypothesis of constant variance is clear, but specifying a 

good alternative hypothesis is  problematic.  A formal test  may be good at  detecting a 
particular kind of nonconstant variance, but have no power to detect another. Residual 
plots are more versatile because unanticipated problems may be spotted.

A formal diagnostic test may have a reassuring aura of exactitude about it, but one 
needs  to  understand  that  any  such  test  may  be  powerless  to  detect  problems  of  an 
unsuspected nature. Graphical techniques are usually more effective at revealing structure 
that you may not have suspected. Of course, sometimes the interpretation of the plot may 
be ambiguous,  but  at  least  one can be sure  that  nothing is  seriously wrong with  the 
assumptions. For this reason, we usually prefer a graphical approach to diagnostics with 
formal tests reserved for the clarification of signs discovered in the plots.

Here we guess that a square root transformation will give us a constant variance:

> gs  <  -  lm  (sqrt  (Species)  ˜  Area+  Elevation+  Scruz+ Nearest 

+ Adjacent, gala)

> plot (fitted (gs), residuals (gs), xlab="Fitted", ylab="Residuals", 

main="Square root Response")

We see in the second plot of Figure 4.4 that the variance is now constant. Our guess at a 
variance stabilizing transformation worked out here, but had it not, we could always have 
tried  something  else.  The  square  root  transformation  is  often  appropriate  for  count 
response data. The Poisson distribution is a good model for counts and that distribution has the 
property that the mean is equal to the variance thus suggesting the square root transformation.
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64 Linear Models with R

The tests and confidence intervals we use are based on the assumption of normal errors.
The  residuals  can  be  assessed  for  normality  using  a  Q–Q  plot.  This  compares  the 

residuals to "ideal" normal observations. We plot the sorted residuals against 

for i =1,…, n. 
Let’s try it out on the savings data:

> qqnorm (residuals (g), ylab="Residuals")

> qqline (residuals (g))

See the first plot of Figure 4.5—qqline ( ) adds a line joining the first and third quartiles.
It is not influenced by outliers. Normal residuals should follow the line approximately.
Here, the residuals look normal.

Histograms and boxplots are not suitable for checking normality:

> hist (residuals (g))

The histogram seen in the second plot of Figure 4.5 does not have the expected bell
shape.  This  is  because  we  must  group  the  data  into  bins.  The  choice  of  width  and
placement of these bins is problematic and the plot here is inconclusive.

We can get an idea of the variation to be expected in Q–Q plots in the following experiment.
Such simulations are useful for self-calibration. I generate data from different distributions:

Figure 4.5 Normality checks for the savings data.

1.  Normal
2.  Lognormal—an example of a skewed distribution
3.  Cauchy—an example of a long-tailed (platykurtic) distribution
4.  Uniform—an example of a short-tailed (leptokurtic) distribution

4.1.2 Normality
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Diagnostics 65

> par(mfrow=c(3, 3) ) 

> for (i in 1:9) qqnorm (rnorm (50) ) 

> for (i in 1:9) qqnorm (exp (rnorm (50) ) ) 

> for (i in 1:9) qqnorm (rcauchy (50) ) 

> for (i in 1:9) qqnorm (runif (50) ) 

> par (mfrow=c(1, 1) )

In Figure 4.6, you can see examples of all four cases:
It is not always easy to diagnose the problem in Q–Q plots. Sometimes extreme cases 

may be a sign of a long-tailed error like the Cauchy distribution or they can be just 
outliers.  If  removing  such  observations  just  results  in  other  points  becoming  more 
prominent in the plot, the problem is likely due to a long-tailed error.

When the errors are not normal, least squares estimates may not be optimal. They will 
still be best linear unbiased estimates, but other robust estimators may be more effective. 
Also tests and confidence intervals are not exact. However, only long-tailed distributions 
cause large inaccuracies.  Mild nonnormality can safely be ignored and the larger  the 
sample size the less troublesome the nonnormality.

When nonnormality is found, the resolution depends on the type of problem found. For 
short-tailed distributions, the consequences of nonnormality are not serious and can reasonably

Figure 4.6 Q–Q plots of simulated data.

be ignored. For skewed errors, a transformation of the response may solve the problem. 
For long-tailed errors, we might just accept the nonnormality and base the inference on 
the assumption of another distribution or use resampling methods such as the bootstrap or 
permutation tests. You do not want to do this unless absolutely necessary. Alternatively, 
use robust methods, which give less weight to outlying observations.

Also you may find that other diagnostics suggest changes to the model. In this changed 
model, the problem of nonnormal errors might not occur.

The Shapiro-Wilk test is a formal test for normality:

> shapiro.test (residuals (g))

Here is how to generate nine replicates at a time from each of these test cases:
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66 Linear Models with R

Shapiro-Wilk normality test

data: residuals (g)

W = 0.987, p-value=0.8524

The null hypothesis is that the the residuals are normal. Since the p-value is large, we do
not reject this hypothesis.

We can only recommend this in conjunction with a Q–Q plot at best. The p-value is not
very helpful as an indicator of what action to take. After all, with a large dataset, even
mild deviations from nonnormality may be detected, but there would be little reason to
abandon least squares because the effects of nonnormality are mitigated by large sample
sizes. For smaller sample sizes, formal tests lack power.

4.1.3 Correlated Errors

We assume that the errors are uncorrelated, but for temporally or spatially related data
this  may  well  be  untrue.  For  this  type  of  data,  it  is  wise  to  check  the  uncorrelated
assumption.

Graphical checks include plots of  against time and against  while the Durbin-
Watson test uses the statistic:

 

The null  distribution based on the assumption of  uncorrelated errors  follows a linear

combination of ,2 distributions. The test is implemented in the Imtest package. The run
test is an alternative.

For the example, we use some data taken from an environmental study that measured
four variables—ozone, radiation, temperature and wind speed—for 153 consecutive days
in New York:

> data (airquality)

> airquality

  Ozone Solar.R Wind Temp Month Day

1    41     190  7.4   67     5   1

2    36     118  8.0   72     5   2

3    12     149 12.6   74     5   3

4    18     313 11.5   62     5   4

5    NA      NA 14.3   56     5   5

etc. .

We notice that there are some missing values. Take a look at the data (plot not shown):

> pairs (airquality, panel=panel.smooth)

We fit a standard linear model and check the residual vs. fitted plot in Figure 4.7.

> g < - lm (Ozone ˜ Solar.R + Wind + Temp, airquality,
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na.action = na.exclude) 

> summary (g)

Coefficients:

            Estimate Std. Error t value  Pr(>|t|)

(Intercept) !64.3421    23.0547   !2.79    0.0062 

Solar.R       0.0598     0.0232    2.58    0.0112 

Wind         !3.3336     0.6544   !5.09    1.5e–06 

Temp          1.6521     0.2535    6.52    2.4e–09 

Residual standard error: 21.2 on 107 degrees of freedom

Multiple R-Squared: 0.606, Adjusted R-squared: 0.595

F-statistic: 54.8 on 3 and 107 DF, p-value: < 2e–16 

> plot (fitted (g), residuals (g), xlab="Fitted", ylab="Residuals")

Notice how there are only 107 degrees corresponding to the 111 complete observations. 
The default behavior in R when performing a regression with missing values is to omit 
any case that contains a missing value. The option na.action= na. exclude does not use 
cases with missing values in the computation, but does keep track of which cases are 
missing in the residuals, fitted values and other quantities. We see some nonconstant 
variance and nonlinearity and so we try transforming the response:

> gl < - lm (log (Ozone) ˜ Solar.R + Wind + Temp, 

airquality,na.action=na.exclude)

> plot  (fitted  (gl),  residuals  (gl),  xlab="Fitted", 

ylab="Residuals")

The improvement can be seen in the second panel of Figure 4.7.

Figure 4.7 Residuals vs. fitted for the air quality data. Untransformed 
response on the left; logged response on the right.

Now  we  check  the  residuals  for  correlation.  First,  make  an  index  plot  of  the 
residuals—see the first plot of Figure 4.8:
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68 Linear Models with R

> plot (residuals (gl), ylab="Residuals")

> abline (h=0)

If there was serial correlation, we would see either longer runs of residuals above or
below the line for positive correlation or greater than normal fluctuation for negative
correlations.  Unless these effects  are strong,  they can be difficult  to spot.  Nothing is
obviously wrong here. It is often better to plot successive residuals:

> plot (residuals (gl) [–153] , residuals (gl) [–1] , xlab=

expression (hat (epsilon) [i]) , ylab=expression (hat

(epsilon) [i + 1]) )

There is no obvious problem with correlation here. We can see a single outlier (which
gets  plotted  twice  in  this  case).  Let’s  check  using  a  regression  of  successive
residuals—the intercept is omitted because residuals have mean zero:

> summary(lm(residuals(gl)[–1] ˜ Z–1+residuals (gl) [–153]))

Coefficients:

Figure 4.8 Diagnostic plots for correlated errors in the air quality data.

                     Estimate Std. Error t value Pr(>|t|)

residuals (gl)[!153]    0.110      0.105    1.05      0.3

Residual standard error: 0.508 on 91 degrees of freedom

Multiple R-Squared: 0.0119, Adjusted R-squared: 0.00107

F-statistic: 1.1 on 1 and 91 DF, p-value: 0.297

We omitted the intercept term because the residuals have mean zero. We see that there is
no significant correlation. You can plot more than just successive pairs if you suspect a
more complex dependence.

We can compute the Durbin-Watson statistic:
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> library(lmtest) 

>  dwtest  (Ozone  ˜  Solar.R  +  Wind  +  Temp,  data=na.omit 

(airquality))

Durbin-Watson test 

data: Ozone ˜ Solar.R + Wind + Temp 

DW=1.9355, p-value=0.3347 

alternative  hypothesis:  true  autocorrelation  is  greater 

than 0

where the p-value indicates no evidence of correlation. However, the result should be 
viewed with skepticism because of our omission of the missing values.

If you do have correlated errors, you can use generalized least squares—see Chapter 6. 
For data where there is no apparent link between observations, as there is in serial data, it 
is  almost  impossible  to  check for  correlation between errors.  Fortunately,  there is  no 
reason to suspect it either.

4.2 Finding Unusual Observations

Some  observations  do  not  fit  the  model  well—these  are  called  outliers.  Other 
observations  change  the  fit  of  the  model  in  a  substantive  manner—these  are  called 
influential observations. A point can be none, one or both of these. A leverage point is 
unusual in the predictor space—it has the potential to influence the fit.

4.2.1 Leverage

h
i
=H

ii
 are called leverages and are useful diagnostics. Since , a large

leverage, h
i
, will make  small. The fit will be “forced” close to y

i
. Sinc -

i
h

i
=p, an 

average value for h
i
 is p/n. A “rule of thumb” is that leverages of more than 2p/n should 

be  looked  at  more  closely.  Large  values  of  h
i 
 are  due  to  extreme  values  in  X.  h

i

corresponds to a (squared) Mahalanobis distance defined by X which is where

 is the estimated covariance of X. The value of h
i
depends only on X 

and not y so leverages contain only partial information about a point.

We will use the savings dataset as an example here:

> g < - 1m (sr ˜ pop15 + pop75 + dpi + ddpi, savings) > 

ginf < - influence (g) 

> ginf$hat

[1] 0.067713 0.120384 0.087482 0.089471 0.069559 0.158402 

….

> sum (ginf$hat)

[1] 5

We verify that the sum of the leverages is indeed five—the number of parameters in the 
model.
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70 Linear Models with R

Without making assumptions about the distributions of the predictors that would often
be unreasonable, we cannot say how the leverages would be distributed. Nevertheless, we
would like to identify unusually large values of the leverage. The halfnormal plot is a
good way to do this.

Half-normal plots are designed for the assessment of positive data. They could be used
for  , but are more typically useful for diagnostic quantities like the leverages. The idea 
is to plot the data against the positive normal quantiles.

The steps are:

1. Sort the data: x
[1]
"…x

[n]
.

2. Compute .

3. Plot x[i] against ui.

We are usually not looking for a straight line relationship since we do not necessarily
expect a positive normal distribution for quantities like the leverages. We are looking for
outliers, which will be apparent as points that diverge substantially from the rest of the
data.

We demonstrate the half-normal plot on the leverages for the savings data:

>  countries < - row.names (savings) 

> halfnorm. inf luence (g) $hat, labs=countries, 

ylab=“Leverages”)

The plot is the first shown in Figure 4.9—I have plotted the country name instead of just
a dot for the largest two cases, respectively, to aid identification:

Figure  4.9  Half-normal  plots  for  the  leverages  and  a  Q–Q  plot 
for  the studentized residuals.

As we have seen  this suggests the use of:
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Diagnostics 71

 

which are called (internally) studentized residuals. If the model assumptions are correct, 
var r

i
=1 and corr(r

i,
 r

j
) tends to be small. Studentized residuals are sometimes preferred 

in residual plots, as they have been standardized to have equal variance. Studentization 
can only correct for the natural nonconstant variance in residuals when the errors have 
constant  variance.  If  there  is  some  underlying  heteroscedasticity  in  the  errors, 
studentization cannot correct for it.

We now get the studentized residuals for the savings data:

> gs < - summary (g) 

> gs$sig

[1] 3.8027 

> stud < - residuals(g)/(gs$sig*sqrt(1-ginf$hat)) 

> qqnorm (stud) 

> abline (0, l)

We have displayed the Q–Q plot of the studentized residuals in the second plot of Figure
4.9.  Because  these  residuals  have  been  standardized,  we  expect  the  points  to 
approximately follow the y=x line if normality holds.

Some authors recommend using studentized rather than raw residuals in all diagnostic plots. 
However, in many cases, the studentized residuals are not effectively very different from 
the raw residuals. Only when there is unusually large leverage will the differences be noticeable.

4.2.2 Outliers

An outlier is a point that does not fit the current model. We need to be aware of such 
exceptions. An outlier test is useful because it enables us to distinguish between truly 
unusual observations and residuals that are large, but not exceptional.

Outliers may affect the fit. See Figure 4.10. The two additional marked points both 
have high leverage because they are far from the rest of the data. ▲ is not an outlier. ●
does not have a large residual if it is included in the fit. Only when we compute the fit 
without that point do we get a large residual.
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72 Linear Models with R

Figure 4.10  Outliers can conceal themselves. The solid line is the fit including
the ▲point but not the ● point. The dotted line is the fit without
either additional point and the dashed line is the fit with the ●
point but not the ▲ point.

To detect such points, we exclude point i and recompute the estimates to get  and 

where (i) denotes that the ith case has been excluded. Hence:

 

If  is  large,  then case  i  is  an  outlier.  Just  looking  at  misses  those  difficult
observations which pull the regression line so close to them that they conceal their true
status. To judge the size of a potential outlier, we need an appropriate scaling. We find:

 

and so we define the jackknife (or externally studentized or crossvalidated) residuals as:

 

which are distributed t
n!p!1

 if the model is correct and " ~ N(0,#2I). Fortunately, there is

an easier way to compute t
i
:
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which avoids doing n regressions.
Since t

i
 ~ t

n!p!1
, we can calculate a p-value to test whether case i is an outlier. Even 

though we might explicity test only one or two large tis, by identifying them as large, we 
are implicitly testing all  cases. Some adjustment of the level of the test is necessary; 
otherwise we would identify around 5% of observations as outliers even when none exist.

Suppose we want a level % test. Now P (all tests accept)=1&P(at least one rejects) $
1&-

i
P (test i rejects)=1&n%. So this suggests that if an overall level a test is required, then 

a level %/n  should be used in each of the tests.  This method is called the Bonferroni 
correction and is used in contexts other than outliers also. Its biggest drawback is that it is 
conservative—it finds fewer outliers than the nominal level of confidence would dictate. 
The larger that n is, the more conservative it gets.

Now get the jackknife residuals for the savings data:

> jack < - rstudent (g) 

> jack [which.max (abs (jack))] 

Zambia

2.8536

The largest residual of 2.85 is pretty big for a standard normal scale, but is it an outlier? 
Compute the Bonferroni critical value:

> qt (.05/(50*2), 44)

[1] !3.5258

Since  2.85  is  less  than  3.52,  we  conclude  that  Zambia  is  not  an  outlier.  For  simple 
regression,  the  minimum  critical  value  occurs  at  n=23  taking  the  value  3.51.  This 
indicates that it is not worth the trouble of computing the outlier test p-value unless the 
jackknife residual exceeds about 3.5 in absolute value.

Some points to consider about outliers:

1. Two or more outliers next to each other can hide each other.
2. An outlier in one model may not be an outlier in another when the variables have been 

changed or transformed. You will usually need to reinvestigate the question of outliers 
when you change the model.

3. The error distribution may not be normal and so larger residuals may be expected. For 
example, day-to-day changes in stock indices seem mostly normal, but large changes 
occur frequently.

4. Individual outliers are usually much less of a problem in larger datasets. A single point 
will  not  have the leverage to affect  the fit  very much.  It  is  still  worth identifying 
outliers  if  these  types  of  observations  are  worth  knowing  about  in  the  particular 
application. For large datasets, we need only to worry about clusters of outliers. Such 
clusters are less likely to occur by chance and more likely to represent actual structure. 
Finding these clusters is not always easy.

What should be done about outliers?
1. Check for a data-entry error first. These are relatively common. Unfortunately, the 

original source of the data may have been lost.
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74 Linear Models with R

2.  Examine the physical context—why did it happen? Sometimes, the discovery of an
outlier may be of singular interest. Some scientific discoveries spring from noticing
unexpected aberrations. Another example of the importance of outliers is in the statistical
analysis of credit card transactions. Outliers in this case may represent fraudulent use.

3.  Exclude the point from the analysis but try reincluding it later if the model is changed. The
exclusion of one or more observations may make the difference between  getting  a  statisti-
cally  significant  result  or  having  some  unpublishable research. This can lead to a difficult
decision about what exclusions are reasonable. To avoid any suggestion of dishonesty,
always report the existence of outliers even if you do not include them in your final model.

4.  Suppose  you  find  outliers  that  cannot  reasonably  be  identified  as  mistakes  or aber-
rations, but are viewed as naturally occurring. Rather than exclude these points and then use
least squares, it is more efficient and reliable to use robust regression, as explained in Section 
6.4. The preference for robust regression becomes stronger when there are multiple outliers.
Outlier rejection in conjunction with least squares is not a good method of estimation.

5.  It is dangerous to exclude outliers in an automatic manner. National Aeronautics and
Space Administation (NASA) launched the Nimbus 7 satellite to record atmospheric
information. After several years of operation in 1985, the British Antarctic Survey
observed a large decrease in atmospheric ozone over the Antarctic. On further exami-
nation of the NASA data, it was found that the data processing program automatically
discarded observations that were extremely low and assumed to be mistakes. Thus the
discovery of the Antarctic ozone hole was delayed several years. Perhaps, if this had been
known earlier, the chlorofluorocarbon (CFC) phaseout would have been agreed upon
earlier and the damage could have been limited. See Stolarski et al. (1986) for more.

Here is an example of a dataset with multiple outliers. Data are available on the log of
the surface temperature and the log of the light intensity of 47 stars in the star cluster CYG OB1,
which is in the direction of Cygnus. These data appear in Rousseeuw and Leroy (1987).

Read in and plot the data:

> data(star) 

> plot (star$temp, star$light, xlab="log(Temperature)", 

ylab="log(Light Intensity)")

There appears to be a positive correlation between temperature and light intensity, but
there are four stars that do not fit the pattern. We fit a linear regression and add the fitted
line to the plot:

> ga < - lm (light ˜ temp, star)

> abline (ga)
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Diagnostics 75

Figure 4.11 Regression line including four leftmost points is solid and 
excluding these points is dotted.

The plot is seen in Figure 4.11 with the regression line in solid type. This line does not 
follow the bulk of the data because it tries to fit the four unusual points. We check 
whether the outlier test detects these points:

> range (rstudent (ga))

[1] !2.0494 1.9058

No outliers are found even though we can see them clearly in the plot. The four stars on 
the upper left of the plot are giants. See what happens if these are excluded:

> ga < - lm (light ˜ temp, data=star, subset=( temp > 3.6)) 

> abline (ga, lty=2)

This illustrates the problem of multiple outliers. We can visualize the problems here and 
take corrective action, but for higher dimensional data this is much more difficult. Robust 
regression methods would be superior here.

4.2.3 Influential Observations

An influential point is one whose removal from the dataset would cause a large change in 
the fit. An influential point may or may not be an outlier and may or may not have large 
leverage but it will tend to have at least one of these two properties. In Figure 4.10, the ▲
point is not an influential point but the ● point is.

There are several measures of influence. A subscripted (i) indicates the fit without case

i. We might consider the change in the fit  but there will be n of 
these length n vectors to examine. For a more compact diagnostic, we might consider the

change in the coefficients .  There will  be n"p  of  these to  look at.  The Cook 
statistics are a  popular  influence diagnostic  because they reduce the information to a
single value for each case. They are defined as:
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76 Linear Models with R

 

The first term,  is the residual effect and the second is the leverage. The combination of
the two leads to influence. A half-normal plot of D

i
 can be used to identify influential

observations.
Continuing with our study of the savings data:

> cook < - cooks . distance (g) 

> halfnorm  (cook,  3,  labs=countries,  ylab="Cook's 

distances")

The Cook statistics may be seen in the first plot of Figure 4.12. I have identified the
largest three values. We now exclude the largest one (Libya) and see how the fit changes:

Figure 4.12 Half-normal plot of the Cook statistics and ’s for pop15 for

the savings data.

> gl < - lm (sr popl5+pop75+dpi+ddpi,savings,

  subset=(cook < max (cook)))

> summary (gl)

Coefficients:

             Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.524046   8.224026    2.98   0.0047
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Diagnostics 77

pop15       !0.391440   0.157909   !2.48   0.0171

pop75       !1.280867   1.145182  !1.12   0.2694 

dpi         !0.000319   0.000929   !0.34   0.7331 

ddpi         0.610279   0.268778    2.27   0.0281

Residual standard error: 3.79 on 44 degrees of freedom 

Multiple R-Squared: 0.355, Adjusted R-squared: 0.297

F-statistic: 6.07 on 4 and 44 DF, p-value: 0.000562

Compared to the full data fit:

> summary (g)

Coefficients:

             Estimate Std. Error t value Pr(>|t|) 

(Intercept) 28.566087   7.354516    3.88  0.00033 

pop15       !0.461193   0.144642   !3.19  0.00260 

pop75       !1.691498   1.083599   !1.56  0.12553 

dpi         !0.000337   0.000931   !0.36  0.71917 

ddpi         0.409695   0.196197    2.09  0.04247 

Residual standard error: 3.8 on 45 degrees of freedom 

Multiple R-Squared: 0.338, Adjusted R-squared: 0.28 

F-statistic: 5.76 on 4 and 45 DF, p-value: 0.00079

Among other changes, we see that the coefficient for ddpi changed by about 50%. We do 
not like our estimates to be so sensitive to the presence of just one country. It would be 
rather  tedious  to  leave  out  each  country  in  turn,  so  we  examine  the  leaveout-one 
differences in the coefficients:

> plot(ginf$coef [,2], ylab="Change in pop15 coef") 

> identify (1:50, ginf$coef [, 2], countries)

We just plotted the change in the second parameter estimate, when a case is left 
out, as seen in the second panel of Figure 4.12. The identify function allows interactive 
identification of points by clicking the left mouse button on the plot and then using the 
middle mouse button to finish. This plot should be repeated for the other variables. Japan 
sticks out on this particular plot so examine the effect of removing it:

> gj < - 1m (sr ˜ pop15+pop75+dpi+ddpi,savings, 

subset=(countries != "Japan"))

> summary (gj)

Coefficients:

             Estimate Std. Error t value Pr(>|t|) 

(Intercept) 23.940171   7.783997    3.08   0.0036 

pop15       !0.367901   0.153630   !2.39   0.0210 

pop75       !0.973674   1.155450   !0.84   0.4040 

dpi         !0.000471   0.000919   !0.51   0.6112 

ddpi         0.334749   0.198446    1.69   0.0987 

Residual standard error: 3.74 on 44 degrees of freedom 

Multiple R-Squared: 0.277, Adjusted R-squared: 0.211 

F-statistic: 4.21 on 4 and 44 DF, p-value: 0.00565
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78 Linear Models with R

Comparing this to the full data fit, we observe several qualitative changes. Notice that the

ddpi term is no longer significant and that the R2 value has decreased a lot.

4.3 Checking the Structure of the Model

How do we check whether the systematic part (Ey=X!) of the model is correct? Lack of
fit tests can be used when there is replication, which does not happen too often; however,
even if you do have it, the tests do not tell you how to improve the model.

We can look at plots of  against % and x
i
 to reveal problems or just simply look at

plots of y against each x
i
. The drawback to these plots is that the other predictors impact

the relationship. Partial regression or added variable plots can help isolate the effect of x
i

on y. Suppose we regress y on all x except x
i
, and get residuals . These represent y with 

the other X-effect taken out. Similarly, if we regress xi on all x except x
i
, and get residuals

, we have the effect of x
i
 with the other X-effect taken out. The added variable plot 

shows  against . Look for nonlinearity and outliers and/or influential observations in
the plot.

The slope of a line fitted to the plot is . The partial regression plot provides some
intuition about the meaning of regression coefficients. We are looking at the marginal
relationship between the response and the predictor after the effect of the other predictors
has been removed. Multiple regression is difficult because we cannot visualize the full
relationship because of the high dimensionality. The partial regression plot allows us to
focus on the relationship between one predictor and the response, much as in simple
regression.

We illustrate using the savings dataset as an example again. We construct a partial
regression (added variable) plot for pop15:

> d < - residuals (lm (sr ˜ pop75 + dpi + ddpi, savings) ) 

> m < - residuals(Im(popl5 ˜ pop75 + dpi + ddpi,savings)) 

> plot  (m,  d,  xlab="pop15  residuals",  ylab="Savings 

residuals")

Compare the slope on the plot to the original regression and show the line on the plot
(see Figure 4.13):

> coef (lm (d ˜ m)) 

(Intercept)           m 

 5.4259e–17 !4.6119e–01 

> coef (g) 

(Intercept)      pop15      pop75        dpi      ddpi

28.5660865  !0.4611931 !1.6914977 !0.0003369 0.4096949

> abline (0, coef (g) ['pop15'] )

Notice how the slope in the plot and the slope for pop15 in the regression fit are the same.
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Diagnostics 79

Partial residual  plots are a competitor to added variable plots.  These plot 
against x

i
. To see the motivation, look at the response with the predicted effect of the 

other X removed:

 

Again the slope on the plot will be and the interpretation is the same. Partial residual 
plots are reckoned to be better for nonlinearity detection while added variable plots are 
better for outlier/influential detection.

Figure 4.13 Partial regression (left)  and partial residual (right) 
plots for the savings data.

A partial residual plot is easier to construct:

> plot (savings$pop15, residuals(g)+coef(g) ['poplS']*savings

$popl5, xlab="pop'n under 15", ylab="Savings(Adjusted)") 

> abline (0, coef (g) ['pop15'])

Or more directly using a function from the faraway package:

> prplot(g,1)

We see the two groups in the plot. It suggests that there may be a different relationship 
in the two groups. We investigate this:

> gl < - lm (sr ˜ pop15+pop75+dpi+ddpi, savings, subset= 

(pop15 > 35) ) 

> g2 < - 1m (sr ˜ pop15+pop75+dpi+ddpi, savings, subset=

(pop15 < 35) )
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80 Linear Models with R

> summary

Coefficients:

             Estimate Std. Error t value Pr(>|t|)

(Intercept) !2.433969  21.155028   !0.12     0.91

pop15        0.273854   0.439191    0.62     0.54

pop75       –3.548477   3.033281   !1.17     0.26

dpi          0.000421   0.005000    0.08     0.93

ddpi         0.395474   0.290101    1.36     0.19

Residual standard error: 4.45 on 18 degrees of freedom

Multiple R-Squared: 0.156, Adjusted R-squared: !0.0319

F-statistic: 0.83 on 4 and 18 DF, p-value: 0.523

> summary(g2)

Coefficients:

             Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.961795   8.083750    2.96   0.0072

pop15      !0.385898   0.195369    !1.98   0.0609

pop75      !1.327742   0.926063    !1.43   0.1657

dpi        !0.000459   0.000724    !0.63   0.5326

ddpi        0.884394   0.295341     2.99   0.0067

Residual standard error: 2.77 on 22 degrees of freedom

Multiple R-Squared: 0.507,   Adjusted R-squared: 0.418

F-statistic: 5.66 on 4 and 22 DF, p-value: 0.00273

In the first regression on the subset of underdeveloped countries, we find no relation be-
tween the predictors and the response. The p-value is 0.523. We know from our previous 
examination  of  these  data  that  this  result  is  not  attributable  to  outliers  or
unsuspected transformations. In contrast, there is a strong relationship in the developed
countries. The strongest predictor is growth with a suspicion of some relationship to pro-
portion under 15. This latter effect has been reduced from prior analyses because we have
reduced the range of this predictor by the subsetting operation. The graphical analysis has
shown a relationship in the data that a purely numerical analysis might easily have missed.

Higher dimensional plots can also be useful for detecting structure that cannot be seen
in two dimensions. These are interactive in nature so you need to try them to see how
they work. We can make three-dimensional plots where color, point size and rotation are
used to give the illusion of a third dimension. We can also link two or more plots so that
points which are brushed in one plot are highlighted in another.

These tools look good but it is not clear whether they actually are useful in practice.
Certainly there are communication difficulties, as these plots cannot be easily printed. R
itself does not have such tools, but GGobi is a useful free tool for exploring higher
dimensional data that can be called from R. See www.ggobi.org.

Nongraphical techniques for checking the structural form of the model usually involve
proposing alternative transformations or recombinations of the variables. This approach
is explored in the chapter on transformation.

Excercises

1. Using the sat dataset, fit a model with the total SAT score as the response and expend,
salary, ratio and takers as predictors. Perform regression diagnostics on this model to
answer the following questions. Display any plots that are relevent. Do not provide
any plots about which you have nothing to say.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
] 

at
 1

6:
20

 2
3 

M
ay

 2
01

4 



Diagnostics 81

(a)  Check the constant variance assumption for the errors.
(b)  Check the normality assumption.
(c)  Check for large leverage points.
(d)  Check for outliers.
(e)  Check for influential points.
(f)  Check the structure of the relationship between the predictors and the response.

2. Using the teengamb dataset, fit a model with gamble as the response and the other 
variables as predictors. Answer the questions posed in the previous question.

3. For the prostate data, fit a model with lpsa as the response and the other variables as 
predictors. Answer the questions posed in the first question.

4. For the swiss data, fit a model with Fertility as the response and the other variables as 
predictors. Answer the questions posed in the first question.

5. For the divusa data, fit a model with divorce as the response and the other variables, 
except year as predictors. Check for serial correlation.
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CHAPTER 5
Problems with the Predictors

5.1 Errors in the Predictors

The regression model Y=X!+" allows for Y being measured with error by having the " 
term, but what if the X is measured with error? In other words, what if the X we see is not 
the X used to generate Y? It is not unreasonable that there might be errors in measuring X. 
For  example,  consider  the  problem of  determining the  effects  of  being exposed to  a 
potentially  hazardous  substance  such  as  secondhand  tobacco  smoke.  Such  exposure 
would be a predictor in such a study, but clearly it is very hard to measure this exactly 
over a period of years.

One should not confuse the errors in predictors with treating X as a random variable. 
For observational data,  X  could be regarded as a random variable,  but the regression 
inference proceeds conditional on a fixed value for X. We make the assumption that the Y 
is generated conditional on the fixed value of X. Contrast this with the errors in predictors 
case where the X we see is not the X that was used to generate the Y.

Suppose that what we observe is  for i=1,…n which are related to the true

values 

 

where the errors " and + are independent. The situation is depicted in Figure 5.1. The true 
underlying relationship is:

 

but we only see  Putting it together, we get:

 

Suppose we use least squares to estimate !
0
 and !

1
. Let’s assume E"

i
=E&

i
=0 and that

,  Let:
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84 Linear Models with R

experiment we can view it as just a numerical measure of the spread of the design. A

similar  distinction  should  be  made  for  cov(xA,+)  although  in  many  cases,  it  will  be
reasonable to assume that this is zero.

Figure 5.1 Measurement error: True vs. observed data.

Now and after some calculation we find that:

 

There are two main special cases of interest:

1. If there is no relation between XA and +, #
x" 

= 0, this simplifies to:

 

So  will  be biased towards zero,  regardless  of  the sample size.  If  is  small

relative to then the problem can be ignored. In other words, if the variability in
the errors of observation of X are small relative to the range of X, then we need not
be too concerned. For multiple predictors, the usual effect of measurement errors is

also to bias the  in the direction of zero.

For observational data,  is (almost) the sample variance of XA while for a controlled
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Problems with the Predictors 85

2. In controlled experiments, we need to distinguish two ways in which error in x may 

arise. In the first case, we measure x so although the true value is xA we observe x0. If 

we were to repeat the measurement, we would have the same xA but a different x0. In

the second case, you fix x0—for example, you make up a chemical solution with a 

specified concentration x0. The true concentration would be xA. Now if you were to 

repeat this, you would get the same x0, but the xA would be different. In this latter case 
we have:

 

and then we would have So our estimate would be unbiased. This seems 

paradoxical, until you notice that the second case effectively reverses the roles of xA

and x0 and if you get to observe the true X, then you will get an unbiased estimate of 
!

1
. See Berkson (1950) for a discussion of this.

If the model is used for prediction purposes, we can make the same argument as in 
the  second  case  above.  In  repeated  “experiments,”  the  value  of  x  at  which  the 
prediction is to be made will be fixed, even though these may represent different 
underlying “true” values of x.

In cases where the error in X can simply not be ignored, we should consider alternatives 
to the least squares estimation of !. The least squares regression equation can be written 
as:

 

so that . Note that if we reverse the roles of x and y, we do not get the 
same regression equation. Since we have errors in both x and y in our problem, we might 
argue that neither one, in particular, deserves the role of response or predictor and so the 
equation  should  be  the  same  either  way.  One  way  to  achieve  this  is  to  set

This is known as the geometric mean functional relationship. More on 
this can be found in Draper and Smith (1998). Another approach is to use the SIMEX 
method of Cook and Stefanski (1994), which we illustrate below.

Consider some data on the speed and stopping distances of cars in the 1920s. We plot 
the data, as seen in Figure 5.2, and fit a linear model:

> data (cars) 

> plot (dist ˜ speed, cars, ylab="distance")

> g < - lm (dist ˜ speed, cars) 

> summary (g)

Coefficients:

            Estimate Std. Error t  value Pr(>|t|)
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86 Linear Models with R

(Intercept)  !17.579      6.758   !2.60    0.012 

speed          3.932      0.416    9.46  1.5e–12

Residual standard error: 15.4 on 48 degrees of freedom

Multiple R-Squared: 0.651, Adjusted R-squared: 0.644

F-statistic: 89.6 on 1 and 48 DF, p-value: 1.49e–12 

> abline (g)

We could explore transformations and diagnostics for these data, but we will just focus on
the measurement error issue. Now we investigate the effect of adding measurement error
to the predictor. We plot the modified fits in Figure 5.2:

> gel < - lm (dist ˜ I (speed+rnorm (50)), cars)

> coef (ge1)

(Intercept)  I (speed + rnorm(50))

!15.0619                 3.7582 

> abline (gel, lty=2) 

> ge2 < - lm (dist ˜ I (speed+2*rnorm (50)), cars)

> coef (ge2)

        (Intercept) I (speed + 2 * rnorm(50))

           !5.3503                    3.1676

> abline (ge2, lty=3)

Figure 5.2 Stopping distance and speeds of cars. The least squares fit is
shown as a solid line. The fits with three progressively larger
amounts of measurement error on the speed are shown as dot-
ted lines, where the slope gets shallower as the error increases.

> ge5 < - lm (dist ˜ I (speed+5*rnorm(50)), cars)

> coef (ge5)

          (Intercept) I (speed + 5 * rnorm(50))

              15.1589                    1.8696

> abline (ge5, lty=4)

We can see that the slope becomes shallower as the amount of noise increases.
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Problems with the Predictors 87

Suppose we knew that the predictor, speed, in the original data had been measured with 
a known error variance, say 0.5. Given what we have seen in the simulated measurement 
error models, we might extrapolate back to suggest an estimate of the slope under no 
measurement error. This is the idea behind SIMEX.

Here we simulate the effects of adding normal random error with variances ranging 
from 0.1 to 0.5, replicating the experiment 1000 times for each setting:

> vv < - rep(1:5/10,each=1000) 

> slopes < - numeric(5000) 

> for (i in 1:5000) slopes [i] < - lm (dist ˜ 

I (speed+sqrt (vv [i] ) *rnorm(50) ) , cars) $coef [2]

Now plot the mean slopes for each variance. We are assuming that the data have variance
0.5 so the extra variance is added to this:

>  betas  <  -  c(coef  (g)  [2],  colMeans  (matrix  (slopes, 

nrow=1000) ) ) 

> variances < - c (0,1:5/10)+0.5 

> plot(variances, betas, xlim=c (0, 1), ylim=c (3.86, 4))

We fit a linear model and extrapolate to zero variance:

> gv < - lm (betas ˜ variances) 

> coef (gv)

Figure  5.3  Simulation-Extrapolation estimation of  the  unbiased slope in  
the presence of measurement error in the predictors. We predict 

at a variance of zero.

(Intercept)  variances

    3.99975   !0.13552 

> points (0, gv$coef [1], pch=3)
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88 Linear Models with R

The predicted value of  at variance equal to zero, that is no measurement error, is 4.0.
Better models for extrapolation are worth considering; see Cook and Stefanski (1994) for 
details.

5.2 Changes of Scale

Suppose we reexpress x
i
 as (x

i
+a)/b.  We might want to do this because predictors of

similar  magnitude result  in  of  similar  sizes.   is  easier  to parse than 
 and we can choose a and b to achieve this. Furthermore, a change of units 

might aid interpretability. Finally, numerical stability in estimation is enhanced when all 
the predictors are on a similar scale.

Rescaling  x
i 
 leaves  the  t-  and  F-tests  and   and  R2  unchanged  and

Rescaling y in the same way leaves the t- and F-tests and R2 unchanged, but  and  will
rescaled by b.

To demonstrate this, we use the same old model:

> data(savings) 

> g < - 1m (sr ˜ popl5+pop75+dpi+ddpi,
 
savings)

> summary (g)

Coefficients:

             Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.566087   7.354516    3.88  0.00033

pop15       !0.461193   0.144642   !3.19  0.00260

pop75       !1.691498   1.083599   !1.56  0.12553 

dpi         !0.000337   0.000931   !0.36  0.71917

ddpi         0.409695   0.196197    2.09  0.04247

Residual standard error: 3.8 on 45 degrees of freedom

Multiple R-Squared: 0.338, Adjusted R-squared: 0.28

F-statistic: 5.76 on 4 and 45 DF, p-value: 0.00079

The coefficient for income is rather small—let’s measure income in thousands of dollars 
instead and refit: 

> g < ˜ 1m (sr ˜ pop15+pop75+I(dpi/1000)+ddpi, savings) 

> summary (g) Coefficients:

           Estimate Std. Error t value Pr(>|t|)

(Intercept)  28.566      7.355    3.88  0.00033 

pop15        !0.461      0.145   !3.19  0.00260 

pop75        !1.691      1.084   !1.56  0.12553

I(dpi/1000)  !0.337      0.931   !0.36  0.71917 

ddpi          0.410      0.196    2.09  0.04247

Residual standard error: 3.8 on 45 degrees of freedom

Multiple R-Squared: 0.338, Adjusted R-squared: 0.28

F-statistic: 5.76 on 4 and 45 DF, p-value: 0.00079
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Problems with the Predictors 89

What changed and what stayed the same?
One rather thorough approach to scaling is to convert all the variables to standard units 

(mean 0 and variance 1) using the scale ( ) command:

> scsav < - data.frame(scale(savings)) 

> g < - lm (sr , scsav) 

> summary (g) Coefficients:

           Estimate Std Error t value Pr(>|t|) 

(Intercept) 4.0e–16    0.1200 3.3e–15   1.0000 

pop15      !0.9420     0.2954   !3.19   0.0026 

pop75      !0.4873     0.3122   !1.56   0.1255 

dpi        !0.0745     0.2059   !0.36   0.7192 

ddpi        0.2624     0.1257    2.09   0.0425 

Residual standard error: 0.849 on 45 degrees of freedom 

Multiple R-Squared: 0.338, Adjusted R-squared: 0.28 

F-statistic: 5.76 on 4 and 45 DF, p-value: 0.00079

As may be seen, the intercept is zero. This is because the regression plane always runs 
through the point of the averages, which because of the centering, is now at the origin. 
Such  scaling  has  the  advantage  of  putting  all  the  predictors  and  the  response  on  a 
comparable scale, which makes comparisons simpler. It also allows the coefficients to be 
viewed as a kind of partial correlation—the values will always be between minus one and 
one. It also avoids some numerical problems that can arise when variables are of very 
different  scales.  The  downside  of  this  scaling  is  that  the  regression  coefficients  now 
represent the effect of a one standard unit increase in the predictor on the response in 
standard units—this might not always be easy to interpret.

5.3 Collinearity

When some predictors are linear combinations of others, then XTX is singular, and we 

have (exact) collinearity. There is no unique least squares estimate of ! If XTX is close to 
singular,  we  have  collinearity  (some  call  it  multicollinearity).  This  causes  serious 
problems with the estimation of ! and associated quantities, as well as the interpretation. 
Collinearity can be detected in several ways:

1.  Examination of  the correlation matrix of  the predictors  may reveal  large pairwise 
collinearities.

2. A regression of x
i
 on all other predictors gives . Repeat for all predictors.  close

to one indicates a problem. The offending linear combination may be discovered by 
examining these regression coefficients.

3. Examine the eigenvalues of XTX, where $
1
 is the largest eigenvalue with the others in 

decreasing  order.  Relatively  small  eigenvalues  indicate  a  problem.  The  condition 
number is defined as:
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90 Linear Models with R

 

where .$30 is considered large. . is called the condition number. Other condition

numbers, are also worth considering because they indicate whether more 
than just one independent linear combination is to blame. Alternative calculations 
involve standardizing the predictors and/or excluding the intercept term. 
Collinearity makes some of the parameters hard to estimate. Define:

 

then:

 

We can see that if x
j
 does not vary much, then the variance of 

j
 will be large. Another

consequence of this equation is that it tells us which designs will minimize the variance 
of the regression coefficients if we have the ability to place the X. Orthogonality means

that  which minimizes the variance. Also we can maximize S
xjxj

 by spreading X

as much as possible. The maximum is attained by placing half the points at the minimum 
practical value and half at the maximum. Unfortunately, this design assumes the linearity 
of the effect and would make it impossible to check for any curvature. So, in practice, 
most would put some design points in the middle of the range to allow checking of the fit.

If  is close to one, then the variance inflation factor will be large.
Collinearity leads to imprecise estimates of !. The signs of the coefficients can be the 

opposite of what intuition about the effect of the predictor might suggest. The standard 
errors are inflated so that t-tests may fail to reveal significant factors. The fit becomes 
very sensitivite to measurement errors where small changes in y can lead to large change

in .
Car drivers like to adjust the seat position for their own comfort. Car designers would 

find it helpful to know where different drivers will position the seat depending on their 
size  and age.  Researchers  at  the  HuMoSim laboratory at  the  University  of  Michigan 
collected data on 38 drivers. They measured age in years, weight in pounds, height with 
shoes and without shoes in cm, seated height arm length, thigh length, lower leg length 
and hipcenter the horizontal distance of the midpoint of the hips from a fixed location in 
the car in mm. We fit a model with all the predictors:
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Problems with the Predictors 91

> data (seatpos) 

> g < - lm (hipcenter ˜ . , seatpos) 

> summary (g)

Coefficients:

            Estimate Std. Error t value Pr(>|t|) 

(Intercept) 436.4321   166.5716    2.62     0.014 

Age           0.7757     0.5703    1.36     0.184 

Weight        0.0263     0.3310    0.08     0.937 

HtShoes      !2.6924     9.7530   !0.28     0.784 

Ht            0.6013    10.1299    0.06     0.953 

Seated        0.5338     3.7619    0.14     0.888 

Arm          !1.3281     3.9002   !0.34     0.736 

Thigh        !1.1431     2.6600   !0.43     0.671 

Leg          !6.4390     4.7139   !1.37     0.182 

Residual standard error: 37.7 on 29 degrees of freedom 

Multiple R-Squared: 0.687, Adjusted R-squared: 0.6 

F-statistic: 7.94 on 8 and 29 DF, p-value: 1.31e–05

This model already shows the signs of collinearity. The p-value for the F-statistics is very 

small and the R2 is quite substantial, but none of the individual predictors is significant. 
We take a look at the pairwise correlations:

> round(cor(seatpos), 3)

             Age Weight HtShoes     Ht Seated   Arm   Thigh 

Age        1.000  0.081  !0.079 !0.090 !0.170  0.360  0.091 

Weight     0.081  1.000   0.828  0.829  0.776  0.698  0.573 

HtShoes   !0.079  0.828   1.000  0.998  0.930  0.752  0.725 

Ht        !0.090  0.829   0.998  1.000  0.928  0.752  0.735 

Seated    !0.170  0.776   0.930  0.928  1.000  0.625  0.607 

Arm        0.360  0.698   0.752  0.752  0.625  1.000  0.671 

Thigh      0.091  0.573   0.725  0.735  0.607  0.671  1.000 

Leg       !0.042  0.784   0.908  0.910  0.812  0.754  0.650 

hipcenter  0.205 !0.640  !0.797 !0.799 !0.731 !0.585 !0.591

            Leg hipcenter

Age       !0.042  0.205

Weight     0.784 !0.640

HtShoes    0.908  !0.797

Ht         0.910  !0.799

Seated     0.812  !0.731

Arm        0.754  !0.585

Thigh      0.650  !0.591

Leg        1.000  !0.787 

hipcenter !0.787   1.000

There  are  several  large  pairwise  correlations  both  between  predictors  and  between 
predictors and the response. Now we check the eigendecomposition:

> x < - model.matrix(g)[,!1] > 

e < - eigen (t(x) %*% x) 

> e$val
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92 Linear Models with R

[1] 3.6537e + 06  2.14796+04  9.0432e+03  2.9895e  +  02 1.48396+02

[6] 8.1174e+01 5.3362e + 01 7.2982e+00 >

sqrt(e$val[1]/e$val)

[1]    1.000 13.042 20.100 110.551 156.912 212.156 261.667

[8]  707.549

There is a wide range in the eigenvalues and several condition numbers are large. This
means that problems are being caused by more than just one linear combination.

Now check the variance inflation factors (VIFs). For the first variable this is:

> summary (lm (x [, 1] ˜ x[,!1]))$r.squared

[1] 0.49948 

> 1/(1!0.49948)

[1] 1.9979

which is moderate in size—the VIF for orthogonal predictors is one. Now we compute all
the VIFs in one go, using a function from the f araway package:

> vif (x)

   Age Weight  HtShoes       Ht Seated     Arm Thigh

1.9979 3.6470 307.4294 333.1378 8.9511 4.4964 2.7629

   Leg

6.6943

There is  much variance inflation.  For  example,  we can interpret   as
telling us that the standard error for height with shoes is 17.5 times larger than it would
have been without collinearity. We cannot apply this as a correction because we did not
actually observe orthogonal data, but it does give us a sense of the size of the effect.

There is substantial instability in these estimates. Measuring the hipcenter is difficult to
do  accurately  and  we  can  expect  some  variation  in  these  values.  Suppose  the
measurement error had a SD of 10 mm. Let’s see what happens when we add a random
perturbation of this size to the response:

> g < - lm (hipcenter+10*rnorm(38) ˜ . , seatpos) 

> summary (g)

Coefficients: 

Estimate Std. Error t value Pr (>|t|) 

(Intercept) 501.295 164.752 3.04 0.0049 

Age         0.632   0.564   1.12  0.2720 

Weight      0.129   0.327   0.39  0.6967 

HtShoes    !2.329   9.647  !0.24  0.8109 

Ht          0.705  10.019   0.07  0.9444 

Seated     !0.751   3.721  !0.20  0.8414 

Arm        !0.951   3.858  !0.25  0.8070 

Thigh      !1.879   2.631  !0.71  0.4808 

Leg        !7.087   4.662  !1.52  0.1393 

Residual standard error: 37.3 on 29 degrees of freedom Multiple

R-Squared: 0.696, Adjusted R-squared: 0.612

F-statistic: 8.3 on 8 and 29 DF, p-value: 8.71e–06
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Problems with the Predictors 93

Although the R2 and standard error are very similar to the previous fit, we see much larger 
changes in the coefficients indicating their sensitivity to the response values caused by the 
collinearity.

One cure for collinearity is amputation. We have too many variables that are trying to 
do the same job of explaining the response. When several variables, which are highly 
correlated, are each associated with the response, we have to take care that we do not 
conclude that the variables we drop have nothing to do with the response. Examine the 
full correlation matrix above. Consider just the correlations of the length variables:

> round (cor (x [ , 3:8] ), 2)

         HtShoes    Ht Seated   Arm  Thigh   Leg 

HtShoes     1.00  1.00   0.93  0.75   0.72  0.91 

Ht          1.00  1.00   0.93  0.75   0.73  0.91 

Seated      0.93  0.93   1.00  0.63   0.61  0.81 

Arm         0.75  0.75   0.63  1.00   0.67  0.75 

Thigh       0.72  0.73   0.61  0.67   1.00  0.65 

Leg         0.91  0.91   0.81  0.75   0.65  1.00

These six variables are strongly correlated with each other—any one of them might do a 
good job of representing the other. We pick height as the simplest to measure. We are not 
claiming that the other predictors are not associated with the response, just that we do not 
need them all to predict the response:

> g2 < - lm (hipcenter ˜ Age + Weight + Ht, seatpos) 

> summary (g2)

Coefficients:

             Estimate Std. Error t value Pr (>|t|) 

(Intercept) 528.29773  135.31295    3.90   0.00043 

Age           0.51950    0.40804    1.27   0.21159 

Weight        0.00427    0.31172    0.01   0.98915 

Ht           !4.21190    0.99906   !4.22   0.00017 

Residual standard error: 36.5 on 34 degrees of freedom 

Multiple R-Squared: 0.656, Adjusted R-squared: 0.626 

F-statistic: 21.6 on 3 and 34 DF, p-value: 5.13e–08

Comparing this with the original fit, we see that the fit is very similar in terms of R2, but
much fewer predictors are used. Further simplification is clearly possible.

If  you must  keep all  your  variables  in  the  model,  you should  consider  alternative 
methods of estimation such as ridge regression.

The effect of collinearity on prediction depends on where the prediction is to be made. 
The greater the distance is  from the observed data,  the more unstable the prediction. 
Distance needs to be considered in a Mahalanobis rather than a Euclidean sense.

Exercises

1. Using the faithful data, fit a regression of duration on waiting. Assuming that there 
was a measurement error in waiting of 30 seconds, use the SIMEX method to obtain 
a better estimate of the slope.
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94 Linear Models with R

2. What would happen if the SIMEX method was applied to the response error variance
rather than predictor measurement error variance?

(a)  Fit a regression model with divorce as the response and unemployed, femlab, marriage,
birth and military as predictors. Compute the condition numbers and interpret their
meaning.

(b) For the same model, compute the VIFs. Is there evidence that collinearity causes
some predictors not to be significant? Explain.

(c) Does the removal of insignificant predictors from the model reduce the collinearity?
Investigate.

4.  For  the  longley  data,  fit  a  model  with  Employed  as  the  response  and  the  other 
variables as predictors.

(a)  Compute and comment on the condition numbers.
(b)  Compute and comment on the correlations between the predictors.
(c)  Compute the variance inflation factors.

5. For the prostate data, fit a model with lpsa as the response and the other variables as 
predictors.

(a)  Compute and comment on the condition numbers.
(b)  Compute and comment on the correlations between the predictors.
(c)  Compute the variance inflation factors.

3. Using the divorce data:
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CHAPTER 6
Problems with the Error

The standard assumption about the error term " is that it is independent and identically 

distributed (i.i.d.) from case to case. That is, var "=#2I. Furthermore, we also assume that 
the errors are normally distributed in order to carry out the usual statistical inference. We 
have  seen  that  these  assumptions  can  often  be  violated  and  we  must  then  consider 
alternatives.  When the  errors  are  not  i.i.d.,  we  consider  the  use  of  generalized  least 
squares (GLS). When the errors are independent, but not identically distributed, we can 
use weighted least squares (WLS), which is a special case of GLS. Sometimes, we have a 
good idea how large the error should be, but the residuals may be much larger than we 
expect. This is evidence of a lack of fit. When the errors are not normally distributed, we 
can use robust regression.

6.1 Generalized Least Squares

Until now we have assumed that var "=#2I, but sometimes the errors have nonconstant 
variance or are correlated. Suppose instead that var "=#2- where #2 is unknown but - is 
known—in  other  words,  we  know the  correlation  and  relative  variance  between  the 
errors, but we do not know the absolute scale. Right now, it might seem redundant to 
distinguish between # and -, but we will see how this will be useful later.

We can write -=SST, where S is a triangular matrix using the Choleski decomposition. 
Now we can transform the regression model as follows:

 

Now we find that:

 

So we can reduce GLS to ordinary least squares (OLS) by a regression of y!= S!ly on 

S!1X which has error "! that is i.i.d. So we simply reduce the problem to one thatwe have 

 

already solved. In this transformed model, the sum of squares is:
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Problems with the Error 97

 

We find that:

 

Since "!=S!1", diagnostics should be applied to the residuals, . If we have the right
-, then these should be approximately i.i.d.

The main problem in applying GLS in practice is that - may not be known and we 
may have to estimate it.  To illustrate this  we will  use a built-in R dataset  known as 
Longley’s regression data.  Our response is the number people employed, yearly from 
1947 to 1962 and the predictors are gross national product (GNP) and population 14 
years of age and over. The data originally appeared in Longley (1967).

Fit a linear model:

> data (longley) 

> g < - lm (Employed ˜ GNP + Population, longley) 

> summary (g, cor=T)

Coefficients:

            Estimate  Std. Error t value Pr(>|t|) 

(Intercept)  88.9388     13.7850    6.45  2.2e–05 

GNP           0.0632      0.0106    5.93  5.0e–05 

Population   !0.4097      0.1521   !2.69    0.018 

Residual standard error: 0.546 on 13 degrees of freedom 

Multiple R-Squared: 0.979, Adjusted R-squared: 0.976 

F-statistic: 304 on 2 and 13 DF, p-value: 1.22e–11 

Correlation of Coefficients:

            (Intercept) GNP

GNP         0.98

Population !1.00       !0.99

The correlation between the coefficients for GNP and Population is strongly negative 
while the correlation between the corresponding variables:

> cor (longley$GNP, longley$Pop)

[1] 0.99109

is strongly positive.

In data collected over time such as this,  successive errors could be correlated. The 
simplest way to model this is the autoregressive form:

"
i+l

 =/
i
++

i 
 

where +
i
 ~ N(0, 02). We can estimate this correlation / by:

> cor (residuals (g) [!1], residuals (g) [!16])

[1] 0.31041

which is minimized by:
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98 Linear Models with R

Under this assumption -
ij
=/i!j. For simplicity, let’s assume we know that /= 0.31041. 

We now construct the - matrix and compute the GLS estimate of ! along with its
standard errors. The calculation is for demonstration purposes only:

> x < - model.matrix (g) 

> Sigma < - diag (16) 

> Sigma < - 0 . 31041ˆ abs (row(Sigma) –col(Sigma))

> Sigi < - solve (Sigma) 

> xtxi < - solve (t (x) %*% Sigi %*% x) 

> (beta < - solve (t (x) %*% Sigi %*% x, t (x) %*%

Sigi %*% longley$Empl))

                [,1] 

(Intercept) 94.89889 

GNP 0.06739 

Population !0.47427 

> res < - longley$Empl - x %*% beta 

> (sig < - sqrt ( (t (res) %*% Sigi %*% res)/g$df))

[,1] 

[1,] 0.5424432 

> sqrt (diag (xtxi))*sig

[1] 13.94477260 0.01070339 0.15338547

Compare with the model output above where the errors are assumed to be uncorrelated.

Another way to get the same result is to regress S!1y on S!1x as we demonstrate here:

> sm < - chol (Sigma) 

> smi < - solve (t (sm)) 

> sx < - smi %*% x 

> sy < - smi %*% longley$Empl

> summary(1m(sy ˜ sx !1))

Coefficients:

               Estimate Std. Error t value Pr(>|t|) 

sx (Intercept)  94.8989    13.9448    6.81  1.3e–05

sxGNP            0.0674     0.0107    6.30  2.8e–05

sxPopulation    !0.4743     0.1534   !3.09   0.0086

Residual standard error: 0.542 on 13 degrees of freedom

In practice, we would not know that the /=0.31 and we will need to estimate it from the
data.  Our initial  estimate is  0.31,  but once we fit  our GLS model we would need to
reestimate it as:

> cor (res [ !1], res [!16])

[1] 0.35642

and then recompute the model again with /=0.35642 . This process would be iterated
until convergence. This is cumbersome. A more convenient approach may be found in
the nlme package of Pinheiro and Bates (2000), which contains a GLS fitting function.
We can use it to fit this model:
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Problems with the Error 99

> library (nlme) 

> g < - gls (Employed ˜ GNP + Population,

correlation=corARl(form= ˜ Year), data=longley)

> summary (g)

Correlation Structure: AR(1)

  Formula: ˜ Year

  Parameter estimate (s):

     Phi

  0.64417

Coefficients:

              Value Std.Error t-value p-value 

(Intercept) 101.858 14.1989  7.1736  <.0001

GNP           0.072  0.0106  6.7955  <.0001

Population   !0.549  0.1541–3.5588  0.0035

Residual standard error: 0.68921 

Degrees of freedom: 16 total; 13 residual

We see  that  the  estimated  value  of  /  is  0.64.  However,  if  we  check  the  confidence 
intervals for this:

> intervals (g)

Approximate 95% confidence intervals 

Coefficients:

               lower       est.      upper 

(Intercept) 71.183204 101.858133 132.533061 

GNP          0.049159   0.072071   0.094983 

Population  !0.881491  !0.548513  !0.215536 

Correlation structure:

       lower    est.   upper

Phi !0.44335 0.64417 0.96451 

Residual standard error: 

lower    est.   upper

0.24772 0.68921 1.91748

we see from the interval, (&0.44, 0.96), that it is not significantly different from zero. So 
there is no evidence of serial correlation.

6.2 Weighted Least Squares

Sometimes the errors are uncorrelated, but have unequal variance where the form of the 
inequality  is  known.  When  -  is  diagonal,  the  errors  are  uncorrelated  but  do  not 
necessarily have equal variance. WLS can be used in this situation. We can write -=

diag(1/w
1
,…, 1/w

n
), where the wi are the weights so 

So we can regress on (although the column of ones in the X-matrix needs to

be  replaced  with  ).  Cases  with  low  variability  should  get  a  high  weight,  high
variability a low weight. Some examples:
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100 Linear Models with R

1. Errors proportional to a predictor:  suggests .

2.  When the  Y
i
 are  the  averages  of  n

i
 observations,  then  var  y

i
=var  "

i
=#2/n

i
,  which

suggests w
i
=n

i
. Responses that are averages arise quite commonly, but take care that

the variance in the response really is  proportional  to the group size.  For example, 
consider the life expectancy for different countries. At first glance, one might consider
setting the weights equal to the populations of the countries, but notice that there are
many other sources of variation in life expectancy that would dwarf the population
size effect. Setting w

i
=n

i
 is only likely to be sensible for small n

i
.

When weights are used, the residuals must be modified. Use 

> data (fpe)

> fpe

               EI   A  B  C  D E F G H J K  A2  B2

Ain           260  51 64 36 23 9 5 4 4 3 3 105 114

Alpes          75  14 17  9  9 3 1 2 1 1 1  32  31

…

A and B stand for Mitterand’s and Giscard’s votes in the first round, respectively, while
A2 and B2 represent their votes in the second round. C–K are the first round votes of the
other candidates while EI is electeur inscrits  or registered voters.  All  numbers are in
thousands. The total number of voters in the second round was greater than the first—we
can compute the difference as N.

We  will  treat  this  group  effectively  as  another  first  round  candidate  (we  could
reasonably handle this differently). Now we can represent the transfer of votes as:

A2=!
A
A+!

B
B+!

C
C+!

D
D+!

E
E+!

F
F+!

G
G+!

H
H+!

J
J+!

K
K+!

N
N  

where !
i
 represents the proportion of votes transferred from candidate i to Mitterand in

the second round. Now we would expect these transfer proportions to vary somewhat 
between departments, so if we treat the above as a regression equation, there will be some
error from department to department. The error will have a variance in proportion to the
number of voters because it will be like a variance of a sum rather than a mean. Since the
weights should be inversely proportional to the variance, this suggests that the weights
should be set to 1/EI. Notice also that the equation has no intercept, hence the &1 in the

for diagnostics.

Elections  for  the  French  presidency  proceed  in  two  rounds.  In  1981,  there  were
10 candidates in the first round. The top two candidates then went on to the second
round, which was won by François Mitterand over Valéry Giscard-d’Estaing. The
losers in the first round can gain political favors by urging their supporters to vote for
one of the two finalists. Since voting is private, we cannot know how these votes
were transferred; we might  hope  to  infer  from  the  published  vote  totals  how  this
might  have  happened. Anderson  and  Loynes  (1987)  published  data  on  these  vote 
totals  in  every  fourth department of France:

model formula. We fit the appropriate model:

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
] 

at
 1

6:
20

 2
3 

M
ay

 2
01

4 



Problems with the Error 101

> g  <  -  lm  (A2  ˜  A+B+C+D+E+F+G+H+J+K+N!l,  fpe, 

weights=l/EI) 

> coef (g)

       A        B       C       D       E       F       G

1.06713 !0.10505 0.24596 0.92619 0.24940 0.75511 1.97221

       H       J       K       N 

!0.56622 0.61164 1.21066 0.52935

Note that the weights do matter—see what happens when we leave them out:

> lm (A2 ˜ A+B+C+D+E+F+G+H+J+K+N!l, fpe) $coef

       A        B       C       D       E       F       G

1.07515 !0.12456 0.25745 0.90454 0.67068 0.78253 2.16566

       H       J       K       N 

!0.85429 0.14442 0.51813 0.55827

which causes substantial changes for some of the lesser candidates. Furthermore, only the 
relative proportions of the weights matter—for example, suppose we multiply the weights 
by 53:

> lm (A2 ˜ A+B+C+D+E+F+G+H+J+K+N!l, fpe, weights=53/EI)$coef

       A        B       C       D       E       F       G

1.06713 !0.10505 0.24596 0.92619 0.24940 0.75511 1.97221

        H       J       K       N 

!0.56622 0.61164 1.21066 0.52935

This makes no difference.
Now there is one remaining difficulty, unrelated to the weighting, in that proportions 

are supposed to be between zero and one. We can impose an ad hoc fix by truncating the 
coefficients that violate this restriction either to zero or one as appropriate. This gives:

> lm (A2 ˜ offset(A+G+K)+C+D+E+F+N!1,  fpe,  weights=l/EI) $coef 

C D E F N

0.22577 0.96998 0.39020 0.74424 0.60854

We see that voters for the Communist candidate D apparently almost all voted for the 
Socialist Mitterand in the second round. However, we see that around 20% of the voters 
for the Gaullist candidate C voted for Mitterand. This is surprising since these voters 
would normally favor the more right wing candidate, Giscard. This appears to be the 
decisive factor. We see that of the larger blocks of smaller candidates, the Ecology party 
voters, E, roughly split their votes as did the first round nonvoters. The other candidates 
had very few voters and so their behavior is less interesting.

This analysis is somewhat crude and more sophisticated approaches are discussed in 
Anderson and Loynes (1987).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
] 

at
 1

6:
20

 2
3 

M
ay

 2
01

4 



102 Linear Models with R

using a small number of parameters. For example:

var "
i
=*

0
+*

1
x

1 
 

might  seem reasonable  in  a  given  situation.  The  iteratively  reweighted  least  squares
(IRWLS) fitting algorithm is:

1. Start with w
i
=1.

2. Use least squares to estimate !.

3. Use the residuals to estimate *, perhaps by regressing on x.
4. Recompute the weights and go to 2.

Continue until convergence. There are some concerns about this because the estimation
of the * has some uncertainty and consumes some degrees of freedom. This affects the
subsequent inference about !. An extensive investigation of this may be found in Carroll
and Ruppert (1988).

Another  approach is  to  model  the variance and jointly estimate the regression and
weighting parameters using a likelihood-based method. This can be implemented in R
using the gls ( ) function in the nlme library.

6.3 Testing for Lack of Fit

How can we tell whether a model fits the data? If the model is correct, then  should be

an unbiased estimate of #2. If we have a model that is not complex enough to fit the data

or simply takes the wrong form, then  will overestimate #2. The situation is illustrated

in Figure 6.1. Alternatively, if our model is too complex and overfits the data, then 
will be an underestimate.

In cases where the form of the variance of " is not completely known, we may model -

Figure 6.1 True quadratic fit shown with the solid line and incorrect linear
fit shown with the dotted line. Estimate of $2 will be unbiased
for the quadratic model, but far too large for the linear model.
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Problems with the Error 103

This suggests  a  possible testing procedure—we should compare  to  #2.  The usual

problem, of course, is that we do not know the true value of #
2
 and so the comparison

cannot  be  made.  In  a  few  cases,  we  might  actually  know  #2—for  example,  when
measurement error is the only source of variation and we know its variance because we
are very familiar with the measurement device. This is rather uncommon and we do not
discuss it here—see Weisberg (1985) for an example. A more realistic possibility is that

we have replication in our data that allows an estimate of #2 that does not depend on any
particular model.

The  that is based in the chosen regression model needs to be compared to some

model-free estimate of #2. We can do this if we have repeated y for one or more fixed x.
These  replicates  do  need  to  be  truly  independent.  They  cannot  just  be  repeated
measurements on the same subject or unit. Such repeated measures would only reveal the
within subject variability or the measurement error. We need to know the between subject

variability, as this reflects the #2 described in the model. Let y
ij
 be the ith observation in

the group of replicates j.

The “pure error” estimate of #2 is given by SS
pe

/df
pe

 where:

and degrees of freedom dfpe='j(#replicates#1)=n##groups.

If you fit a model that assigns one parameter to each group of observations with fixed

x, then the  from this model will be the pure error . This model is just the one-way
analyis  of  variance  (ANOVA) model—see  Chapter  14.  Comparing  this  model  to  the
regression model amounts to the lack of fit test.

The data for this example consist of 13 specimens of 90/10 Cu-Ni alloys with varying
percentages of iron content. The specimens were submerged in seawater for 60 days and
the weight loss due to corrosion was recorded in units of milligrams per square decimeter
per day. The data come from Draper and Smith (1998). We load in and plot the data, as
seen in Figure 6.2:

> data(corrosion) 

> plot (loss ˜ Fe, corrosion, xlab=nlron content", 

ylab="Weight loss")

We fit a straight-line model:

> g < - lm (loss ˜ Fe, corrosion) > summary (g)

Coefficients:

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)   129.79       1.40    92.5  < 2e–16
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104 Linear Models with R

Fe            !24.02       1.28   !18.8  1.1e–09 Residual

standard error: 3.06 on 11 degrees of freedom Multiple R-

Squared: 0.97, Adjusted R-squared: 0.967 F-statistic: 352

on 1 and 11 DF, p-value: 1.06e–09

Now show the regression line on the plot:

> abline (coef (g) )

Figure 6.2 Linear fit to the Cu-Ni corrosion data. Group means denoted
by black diamonds.

We have an R2 of 97% and an apparently good fit to the data. We now fit a model that reserves 
a  parameter  for  each  group  of  data  with  the  same  value  of  x.  This  is accomplished
by declaring the predictor to be a factor. We will describe this in more detail in chapter 14:

> ga < - lm (loss ˜ factor (Fe), corrosion)

The fitted values are the means in each group—put these on the plot:

> points (corrosion$Fe, fitted (ga), pch=18)

We can now compare the two models in the usual way:

> anova (g, ga)

Analysis of Variance Table

Model 1: loss ˜ Fe 

Model 2: loss ˜ factor (Fe)

  Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1    11   102.9 

2     6    11.8  5      91.1    9.28  0.0086
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Problems with the Error 105

that  the  pure  error  ,  is  substantially  less  than  the  regression
standard error of 3.06. We might investigate models other than a straight line although no
obvious alternative is suggested by the plot. Before considering other models, we would
first find out whether the replicates are genuine. Perhaps the low pure error SD can be
explained by some correlation in the measurements. They may not be genuine replicates.
Another possible explanation is that an unmeasured third variable is causing the lack of
fit.

When there are replicates, it is impossible to get a perfect fit. Even when there is a
parameter assigned to each group of x-values, the residual sum of squares will not be

zero. For the factor model above, the R2 is 99.7%. So even this saturated model does not

attain a 100% value for R2. For these data, it is a small difference but in other cases, the

difference can be substantial. In these cases, one should realize that the maximum R2 that
may be attained might be substantially less than 100% and so perceptions about what a

good value for R2 should be downgraded appropriately.
These methods are good for detecting lack of fit, but if the null hypothesis is accepted,

we cannot conclude that we have the true model. After all, it may be that we just did not
have enough data to detect the inadequacies of the model. All we can say is that the
model is not contradicted by the data.

When there are no replicates, it may be possible to group the responses for similar x
but this is not straightforward. It  is also possible to detect lack of fit  by less formal,
graphical methods.

A more general  question is  how good a fit  do you really want? By increasing the
complexity of the model, it is possible to fit the data more closely. By using as many
parameters as data points, we can fit the data exactly. Very little is achieved by doing this
since we learn nothing beyond the data and any predictions made using such a model will
tend to have a very high variance. The question of how complex a model to fit is difficult
and fundamental. For example, we can fit the mean responses for the previous example
exactly using a sixth order polynomial:

> gp < - lm (loss ˜ Fe+I (Feˆ2)+I (Feˆ3)+I (Feˆ4)+I (Feˆ5)+ 

I (Feˆ6), corrosion)

Now look at this fit:

> plot (loss ˜ Fe, data=corrosion, ylim=c (60, 130) ) 

> points(corrosion$Fe,fitted(ga),pch=18) 

> grid < - seq(0, 2, len=50) 

> lines (grid, predict (gp, data.frame (Fe=grid)))

as shown in Figure 6.3. The fit of this model is excellent—for example:

The low p-value indicates that we must conclude that there is a lack of fit. The reason is
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106 Linear Models with R

Figure 6.3 Polynomial fit to the corrosion data.

> summary (gp) $r.squared

[1] 0.99653 

but it is clearly ridiculous. There is no plausible reason corrosion loss should suddenly 
drop at 1.7 and thereafter increase rapidly. This is a consequence of overfitting the data.

This illustrates the need not to become too focused on measures of fit like R2. The fit
needs to reflect knowledge of the subject matter and simplicity in modeling is a virtue.

6.4 Robust Regression

When the errors are normal, least squares regression is clearly best, but when the errors
are nonnormal, other methods may be considered. Of particular concern are long-tailed
error distributions. One approach is to remove the largest residuals as outliers and still use
least squares, but this may not be effective when there are several large residuals because
of  the  leave-out-one  nature  of  the  outlier  tests.  Furthermore,  the  outlier  test  is  an
accept/reject procedure that is not smooth and may not be statistically efficient for the
estimation of !. Robust regression provides an alternative. There are several methods, but
we will present just two popular methods.

6.4.1 M-Estimation

M-estimates choose ! to minimize:
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Problems with the Error 107

Some possible choices for / are:

1. /(x)=x2 is just least squares.
2.  /(x)=x  is  called least  absolute  deviation (LAD) regression.  This  is  also  called L

1
regression.

3.

 

is  called  Huber’s  method and is  a  compromise  between least  squares  and LAD
regression. c should be a robust estimate of #. A value proportional to the median of

 is suitable.
Robust regression is related to WLS. The normal equations tell us that:

 

With weights and in nonmatrix form this becomes:

 

Now differentiating the M-estimate criterion with respect to !
j
 and setting to zero we get:

 

Now let to get:

 

so we can make the identification of w(u)=(!(u)/u. We find for our choices of / above
that:

1.   LS: w(u) is constant.
2.  LAD:  w(u)=1/u—note  the  asymptote  at  0—this  makes  a  weighting  approach

infeasible.
3.   Huber:
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108 Linear Models with R

 

There are many other choices that have been used. Because the weights depend on the
residuals, an IRWLS approach to fitting must be used. We can get standard errors by

using a robust estimate of #2.

We demonstrate the methods on the Galápagos Islands data. Using least squares first:

> data (gala) 

> gl < - lm (Species ˜ Area + Elevation + Nearest +

Scruz + Adjacent, gala) 

> summary (gl)

Coefficients:

            Estimate Std. Error t value Pr(>|t|)

(Intercept)  7.06822   19.15420    0.37   0.7154

Area        !0.02394    0.02242   !1.07   0.2963

Elevation    0.31946    0.05366    5.95   3.8e–06

Nearest      0.00914    1.05414    0.01   0.9932

Scruz       !0.24052    0.21540   !1.12   0.2752

Adjacent    !0.07480    0.01770   !4.23   0.0003

Residual standard error: 61 on 24 degrees of freedom

Multiple R-Squared: 0.766, Adjusted R-squared: 0.717

F-statistic: 15.7 on 5 and 24 DF, p-value: 6.84e–07

Least  squares  works  well  when  there  are  normal  errors,  but  performs  poorly  for
long-tailed errors. The Huber method is the default choice of the rlm ( ) function, which
is part of the MASS package of Venables and Ripley (2002).

> library (MASS) 

> gr < ˜ rlm (Species ˜ Area + Elevation + Nearest +

Scruz + Adjacent, gala) 

> summary (gr)

Coefficients :

             Value Std . Error  t value 

(Intercept)  6.36     1 12.390    0.513 

Area        !0.006       0.015   !0.421 

Elevation    0.248       0.035    7.132 

Nearest      0.359       0.682    0.527 

Scruz       !0.195       0.139   !1.401 

Adjacent    !0.055       0.011   !4.765 

Residual standard error: 29.7 on 24 degrees of freedom

The R2 and F-statistics are not given because they cannot be calculated (at least not in the
same  way).  Similarly,  p-values  are  not  given  although  we  can  use  the  asymptotic
normality  of  the  estimator  to  make  approximate  inferences  using  the  t-values.  The
numerical  values  of  the  coefficients  have  changed  a  small  amount,  but  the  general signif-
icance of the variables remains the same and our substantive conclusion would not be altered.
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Problems with the Error 109

We can also do LAD regression using the quantreg package. The default option does 
LAD while other options allow for quantile regression:

> library (quantreg) 

> attach (gala) 

> gq  <  ˜  rq  (Species

˜Area+Elevation+Nearest+Scruz+Adjacent) 

> summary (gq)

Coefficients:

            coefficients    lower bd  upper bd 

(Intercept)    1.3144484  !19.877769 24.374115 

Area          !0.0030600   !0.031851  0.527999 

Elevation      0.2321147    0.124526  0.501955 

Nearest        0.1636558   !3.163385  2.988965 

Scruz         !0.1231408   !0.479867  0.134763 

Adjacent      !0.0518535   !0.104577  0.017394 

Degrees of freedom: 30 total; 24 residual 

> detach(gala)

Again, there is some change in the coefficients. The confidence intervals now suggest 
that adjacent is not significant.

For this example, we do not see any big qualitative difference in the coefficients and 
for want of evidence to the contrary, we might stick with least squares as the easiest to 
work  with.  Had we seen  something  different,  we  would  need  to  find  out  the  cause. 
Perhaps some group of observations were not being fit well and the robust regression 
excluded these points.

6.4.2 Least Trimmed Squares

Another popular method is least trimmed squares (LTS). Here one minimizes
where q is some number less than n and (i) indicates sorting. This method has a high 
breakdown point because it can tolerate a large number of outliers depending on how q is 
chosen. The Huber and L

1
 methods will still fail if some LTS is an example of a

resistant regression method. Resistant methods are good for dealing with data where we 
expect there to be a certain number of bad observations that we want to have no weight in 
the analysis:

> library (lqs) 

> g < - Itsreg(Species ˜ Area+Elevation+Nearest+ Scruz+Adjacent, 

gala) 

> coef (g) 

(Intercept)      Area Elevation   Nearest      Scruz

   7.410175  1.627483  0.011830  1.095214  !0.125413

   Adjacent

  !0.204292 

> g < - Itsreg (Species ˜ Area+Elevation+Nearest+ Scruz + Adja-

cent, gala)
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110 Linear Models with R

> coef (g) 

(Intercept)     Area Elevation  Nearest     Scruz

   5.972165 1.578810  0.025237 0.948129 !0.108829

   Adjacent

  !0.201755

The default choice of q is [n/2]+[(p+ 1)/2] where [x] indicates the largest integer less
than or equal to x. I repeated the command twice and you will notice that the results are
somewhat different. This is because the default genetic algorithm used to compute the
coefficients is nondeterministic. An exhaustive search method can be used:

>  g  <  -  Itsreg  (Species  ˜  Area  +  Elevation  +  Nearest  + Scruz

   + Adjacent, gala, nsamp="exact") 

> coef (g) 

(Intercept)     Area Elevation  Nearest     Scruz

   9.381145 1.543658  0.024125 0.811109 !0.117732

Adjacent 

!0.197923

This takes about 17 seconds on a 2.4 GHz Intel Pentium IV processor. For larger datasets,
it  will  take much longer so this method might be impractical and the default  method
might be required.

This really does make substantial differences to the coefficients. For example, the Area
coefficient  is  now substantially  larger  while  the  Elevation  coefficient  is  substantially
smaller. However, we do not have the standard errors for the LTS regression coefficients.
We now use a general method for inference that is especially useful when such theory is
lacking—the bootstrap.

To  understand  how  this  method  works,  think  about  how  we  might  empirically
determine the distribution of an estimator. We could repeatedly generate artificial data
from the true model, compute the estimate each time and gather the results to study the
distribution. This technique, called simulation, is not available to us for real data, because
we do not know the true model. The bootstrap emulates the simulation procedure above
except  instead  of  sampling  from the  true  model,  it  samples  from the  observed  data.
Remarkably,  this  technique  is  often  effective.  It  sidesteps  the  need  for  theoretical
calculations that may be extremely difficult or even impossible. See Efron and Tibshirani
(1993)  for  an  introductory  text.  To  see  how  the  bootstrap  method  compares  with
simulation, we spell out the steps involved. In both cases, we consider X fixed.

Simulation
The idea is to sample from the known distribution and compute the estimate, repeating
many times to find as good an estimate of the sampling distribution of the estimator as we
need. For the regression case, it is easiest to start with a sample from the error distribution
since these are assumed to be independent and identically distributed:

1. Generate " from the known error distribution.
2. Form y=X!+" from the known ! and fixed X.

3. Compute .
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Problems with the Error 111

We repeat these three steps many times. We can estimate the sampling distribution of 

using the empirical distribution of the generated , which we can estimate as accurately 

as we please by simply running the simulation for long enough. This technique is useful 
for a theoretical investigation of the properties of a proposed new estimator. We can see 
how its performance compares to other estimators. However, it  is of no value for the 
actual data since we do not know the true error distribution and we do not know the true 
!

Bootstrap
The bootstrap method mirrors the simulation method, but uses quantities we do know. 
Instead of sampling from the population distribution, which we do not know in practice, 
we resample from the data:

1. Generate "* by sampling with replacement from 

2. 

3. Compute from (X, y*).

This  time,  we  use  only  quantities  that  we  know.  For  very  small  n,  it  is  possible  to

compute  for every possible sample from , but usually we can only take as 
many samples as we have computing power available. This number of bootstrap samples 
can be as small as 50 if all we want is an estimate of the variance of our estimates but 
needs to be larger if confidence intervals are wanted.

To implement this, we need to be able to take a sample of residuals with replacement. 
sample ( ) is good for generating random samples of indices:

> sample(10, rep=T)

[1] 7 9 9 2 5 7 4 1 8 9

and hence a random sample (with replacement) of LTS residuals is:

> residuals(g) [sample (30, rep=TRUE)]

   Onslow   Seymour    Onslow     Rabida Daphne.Major 

!5.252656 33.841670 !5.252656 156.797891     0.040351

(rest deleted)
We now execute the bootstrap. We extract the fixed X and then make a matrix to save 

the results in. We repeat the bootstrap process 1000 times:

> x < - model.matrix ( ˜ Area+Elevation+Nearest+Scruz+

  Adj acent, gala) [,!1] 

> bcoef < - matrix (0, 1000, 6) 

> for (i in 1:1000){ 

+ newy < - predict (g) + residuals(g)[sample(30,rep=T)] 

+ brg < - ltsreg (x, newy, nsamp="best") 

+ bcoef [i,] < - brg$coef 

+ }
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112 Linear Models with R

It is not convenient to use the nsamp=“exact” since that would require 1000 times the
time it takes to make the original estimate. That is about four hours on our computer.
Being impatient, we compromised and used the second best option of nsamp=“best”. This
likely means that our bootstrap estimates of variability will be somewhat on the high side.
This illustrates a common practical difficulty with the bootstrap—it can take a long time
to compute. Fortunately, this problem recedes as processor speeds increase.

We can make a 95% confidence interval for this parameter by taking the empirical
quantiles:

> quantile (bcoef [,2], c (0.025,0.975))

  2.5%  97.5%

1.4906 1.6173

Zero lies outside this interval so we are confident that there is an area effect. We can get a
better picture of the distribution by looking at the density and marking the confidence
interval:

>  plot(density(bcoef [,2]), xlab="Coefficient  of  Area", main="")

> abline (v=quantile (bcoef[, 2], 0(0.025, 0.975) ) )

See Figure 6.4. We see that the distribution is more peaked than a normal with some
longish tails.

Figure 6.4 Bootstrap distribution of Area
 with 95% confidence intervals.

This  would  be  more  accurate  if  we  took  more  than  1000  bootstrap  resamples.  The
conclusion here would be that the area variable is significant. That is in contrast to the
conclusion from the least squares fit. Which estimates are best? An examination of the
Cook distances for the least squares fit shows the island of Isabela to be very influential.
If we exclude this island from the least squares fit, we find that:

> gli < - lm (Species ˜ Area + Elevation + Nearest + Scruz +
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Problems with the Error 113

> data(star) 

> plot (light ˜ temp, star) 

> gsl < - lm (light ˜ temp, star) 

> abline (coef (gs1) ) 

> gs2 < - rlm (light ˜ temp, star) 

> abline (coef (gs2), lty=2) 

> gs3 < - ltsreg (light ˜ temp, star, nsamp="exact")

> abline (coef (gs3), lty=5)

Adjacent, gala, subset= (row.names (gala) ! = "Isabela"))

> summary (gli)

Coefficients:

            Estimate Std. Error t value Pr(>|t|) (Intercept)  

22.5861    13.4019    1.69   0.1055 

Area          0.2957     0.0619    4.78   8.0e–05

Elevation     0.1404     0.0497    2.82   0.0096

Nearest      !0.2552     0.7217   !0.35   0.7269

Scruz        !0.0901     0.1498   !0.60   0.5534

Adjacent     !0.0650     0.0122   !5.32   2.1e–05

Residual standard error: 41.6 on 23 degrees of freedom

Multiple R-Squared: 0.871, Adjusted R-squared: 0.843

F-statistic: 31.2 on 5 and 23 DF, p-value: 1.62e–09

This fit is much closer to the LTS fit in that Area and Adjacent are very significant 
predictors. Thus, there are two routes to the same goal. We can use regression diagnostics 
in conjunction with least squares to identify bad or unusual points or we can use robust 
methods. The former approach is more flexible and allows for the discovery of a wider 
class of problems, but it is time consuming and does require human intervention. When 
data  need  to  be  quickly  analyzed,  perhaps  without  expert  assistance  or  when  large 
numbers of datasets need to be fitted, robust methods give some protection against aberrant data.

Another interesting point is that the M-estimate failed to identify the unusual island, 
Isabela, and gave similar results to the full data least squares fit. We can show similar 
behavior on  another dataset—consider the Star data presented in  Section  4.2.2.  We 
compute the least squares, Huber and LTS fits and display them in Figure 6.5:

Figure 6.5 Regression fits compared. Least squares is the solid line, Huber 
is the dotted line and LTS is the dashed line. Only LTS finds the 
fit in the bulk of the data.
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114 Linear Models with R

Only LTS managed to capture the trend in the main group of points. The Huber estimate 
is almost the same as the least squares estimate.

Summary

1.  Robust  estimators  provide  protection  against  long-tailed  errors,  but  they  cannot 
overcome problems with the choice of model and its variance structure.

2.  Robust estimates just give you  and possibly standard errors without the associated 
inferential methods. Software and methodology for this inference is not easy to come 
by.  The bootstrap is  a  general-purpose inferential  method which is  useful  in these 
situations.

3.  Robust methods can be used in addition to least squares as a confirmatory method. 
You have cause to worry if the two estimates are far apart. The source of the difference 
should be investigated.

4.  Robust  estimates  are  useful  when  data  need  to  be  fit  automatically  without  the 
intervention of a skilled analyst.

Exercises

1.  Researchers  at  National  Institutes  of  Standards  and  Technology  (NIST)  collected 
pipeline ine data on ultrasonic measurements of the depths of defects in the Alaska 
pipeline in the field. The depth of the defects were then remeasured in the laboratory. 
These measurements were performed in six different batches.  It  turns out that this 
batch effect is not significant and so can be ignored in the analysis that follows. The 
laboratory measurements are more accurate than the in-field measurements, but more 
time  consuming  and  expensive.  We  want  to  develop  an  regression  equation  for 
correcting the in-field measurements.

(a) Fit a regression model Lab ˜ Field. Check for nonconstant variance.
(b) We wish to use weights to account for the nonconstant variance. Here we split the 

range of Field into 12 groups of size nine (except for the last group which has only 
eight values). Within each group, we compute the variance of Lab as varlab and the 
mean of Field as meanf ield. Supposing pipeline is the name of your data frame, the 
following R code will make the needed computations:

> i < - order(pipeline$Field) 

> npipe < - pipeline [i,] 

> ff < - gl (12, 9) [!108] 

> meanfield < - unlist (lapply (split (npipe$Field, ff),

mean)) 

> varlab < - unlist (lapply (split (npipe$Lab, ff), var))

Suppose we guess that the the variance in the response is linked to the predictor in 
the following way:
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Problems with the Error 115

 
Regress log (varlab) on log (meanf ield) to estimate a

0
 and a

1
. (You might choose 

to remove the last point.) Use this to determine appropriate weights in a WLS fit of 
Lab on Field. Show the regression summary.

(c) An alternative to weighting is transformation. Find transformations on Lab and/or Field so 
that in the transformed scale the relationship is approximately linear with constant 
variance. You may restrict your choice of transformation to square root, log and inverse.

2.  Using  the  divorce  data,  fit  a  regression  model  with  divorce  as  the  response  and 
unemployed, femlab, marriage, birth and militaryaspredictors.

(a)   Make two graphical checks for correlated errors. What do you conclude?
(b)  Allow  for  serial  correlation  with  an  AR(1)  model  for  the  errors.  (Hint:  Use 

maximum  likelihood  to  estimate  the  parameters  in  the  GLS  fit  by  gls  (…, 
method=“ML”,…)). What is the estimated correlation and is it significant? Does 
the GLS model change which variables are found to be significant?

(c)   Speculate why there might be correlation in the errors.

3. For the salmonella dataset, fit a linear model with colonies as the response and log 
(dose+1) as the predictor. Check for lack of fit.

4. For the cars dataset, fit a linear model with distance as the response and speed as the 
predictor. Check for lack of fit.

5. Using the stackloss data, fit a model with stack. loss as the response and the other 
three variables as predictors using the following methods:

(a)  Least squares
(b)  Least absolute deviations
(c)  Huber method
(d)  Least trimmed squares

Compare  the  results.  Now  use  diagnostic  methods  to  detect  any  outliers  or 
influential  points.  Remove these points  and then use least  squares.  Compare the 
results.
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CHAPTER 7 
Transformation

Transformations of the response and predictors can improve the fit and correct violations 
of model assumptions such as nonconstant error variance. We may also consider adding 
additional predictors that are functions of the existing predictors like quadratic or cross-
product terms. This means we have more choice in choosing the transformations on the 
predictors than on the response.

7.1 Transforming the Response

We start with some general considerations about transforming the response. Suppose that 
you are contemplating a logged response in a simple regression situation:

log y=!
0
+!

1
x+"  

In the original scale of the response, this model becomes:

y=exp(!
0
+!

1
x).exp(")  

In this model, the errors enter multiplicatively and not additively as they usually do. So 
the use of standard regression methods for the logged response model requires that we 
believe the errors enter multiplicatively in the original scale. Notice that if we believe the 
true model for y to be:

y=exp(!
0
+!

1
x)+"  

then we cannot linearize this model and nonlinear regression methods would need to be 
applied.

As  a  practical  matter,  we  usually  do  not  know  how  the  errors  enter  the  model, 
additively,  multiplicatively  or  otherwise.  The  typical  approach  is  to  try  different 
transforms  and  then  check  the  residuals  to  see  whether  they  satisfy  the  conditions 
required for linear regression. Unless you have good information that the error enters in 
some particular way, this is the simplest and most appropriate approach.

Although  you  may  transform  the  response,  you  will  probably  need  to  express 
predictions  in  the  original  scale.  This  is  simply  a  matter  of  back  transforming.  For 
example,  in  the  logged  model  above,  your  prediction  would  be  exp  (10).  If  your 
prediction confidence interval in the logged scale was [l, u], then you would use [exp l, 
exp u]. This interval will not be symmetric, but this may be desirable. For example, the 
untransformed prediction intervals for the Galapágos data went below zero in Section 3.5. 
Transformation of the response avoids this problem.

Regression coefficients  will  need to  be interpreted with  respect  to  the  transformed
scale.  There  is  no  straightforward  way of back transforming them to values that can be
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118 Linear Models with R

interpreted in the original scale. You cannot directly compare regression coefficients for 
models where the response transformation is different. Difficulties of this type may 
dissuade one from transforming the response even if this requires the use of another type 
of model, such as a generalized linear model.

When you use a log transformation on the response, the regression coefficients have a 
particular interpretation:

 

Thus when a log scale is  used,  the regression coefficients  can be interpreted in a 
multiplicative rather than an additive manner.

The Box-Cox method is a popular way to determine a transformation on the response. 
It is designed for strictly positive responses and chooses the transformation to find the 
best fit to the data. The method transforms the response y�g

#  
(y) where the family of 

transformations indexed by $ is:

 

For fixed y>0, g
$
(y) is continuous in $. Choose $ using maximum likelihood. The profile 

log-likelihood assuming normality of the errors is:

 

where RSS
$
 is the residual sum of squares when g

$
(y) is the response. You can compute

numerically to maximize this. If the purpose of the regression model is just prediction,

then use  y$  as  the  response (no need to  use  ,  as  the  rescaling is  just  for 

convenience in maximizing the likelihood).  If  explaining the model is important,  you

should round $ to the nearest interpretable value. For example, if it would be

hard to explain what this new response means, but might be easier.
Transforming the response can make the model harder to interpret so we do not want to 

do it unless it is really necessary. One way to check this is to form a confidence interval 
for $. A 100(1–%)% confidence interval for $ is:

 

An increase of one in x
1
 would multiply the predicted response (in the original scale) by
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Transformation 119

This interval can be derived by inverting the likelihood ratio test of the hypothesis that

H
0
: $=$

0
 which uses the statistic having approximate null distribution

The confidence interval also tells you how much it is reasonable to round $ for the 
sake of interpretability.

We check whether the response in the savings data need transformations. We will need 
the boxcox function from the MASS package:

> library (MASS)

Try it out on the savings dataset and plot the results:

> data(savings) 

> g < - 1m (sr ˜ popl5+pop75+dpi+ddpi,savings) 

> boxcox(g,plotit=T) 

> boxcox (g, plotit=T, lambda=seq (0.5, 1.5, by=0.1))

Figure 7.1 Log-likelihoodplots for the Box-Cox transformation of the 
savings data.

The first plot shown in Figure 7.1 is too broad. I narrowed the range of $ in the second 
plot so that we can read off the confidence interval more easily.

The confidence interval for $ runs from about 0.6 to about 1.4. We can see that there is 
no good reason to transform.

Now consider the Galápagos Islands dataset analyzed earlier:

> data (gala) 

> g < - lm (Species ˜ Area + Elevation + Nearest + Scruz +

  Adjacent, gala) 

> boxcox (g, plotit=T) 

> boxcox (g, lambda=seq (0.0, 1.0, by=0.05), plotit=T)
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120 Linear Models with R

be best here. A square root is also a possibility, as this falls just within the confidence 
intervals. Certainly there is a strong need to transform.

Some general considerations concerning the Box–Cox method are:

1. The Box-Cox method gets upset by outliers—if you find =5, then this is probably 
the  reason—there  can  be  little  justification  for  actually  making  such  an  extreme 
transformation.

2. If some y
i
<0, we can add a constant to all the y. This can work provided the constant is 

small, but this is an inelegant solution.
3. If max

i
y

i
/min

i
y

i
 is small, then the Box-Cox will not have much real effect because 

power transforms are well approximated by linear transformations over short intervals 
far from the origin.

Figure 7.2 Log-likelihood  plots  for  the  Box-Cox  transformation  
of  the Galápagos data.

4. There is some doubt whether the estimation of $, counts as an extra parameter to be 
considered in the degrees of freedom. This is a difficult question since $ is not a linear 
parameter and its estimation is not part of the least squares fit.

The Box-Cox method is not the only way of transforming the predictors. For responses 
that are proportions (or percentages), the logit transformation, log (y/(1–y)), is often used, 
while for responses that are correlations, Fisher’s z transform, y=0.51og ((1+y)/(1–y))

,
 is

worth considering.

7.2 Transforming the Predictors

You  can  take  a  Box-Cox  style  approach  for  each  of  the  predictors,  choosing  the 
transformation  to  minimize  the  RSS.  However,  this  takes  time.  You  can  also  use 
graphical  methods such as  partial  residual  plots  to select  transforming the predictors. 
These methods are designed to replace x in the model with f (x) for some chosen f. The

The plots are shown in Figure 7.2. We see that perhaps a cube root transformation might
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Transformation 121

methods we consider below are more general in that they replace x with more than one 
term—f (x)+g (x)+…. This allows more flexibility.

7.2.1 Broken Stick Regression

Sometimes we have reason to believe that different linear regression models apply in 
different  regions  of  the  data.  For  example,  in  the  analysis  of  the  savings  data,  we 
observed that there were two groups in the data and we might want to fit  a different 
model to the two parts. Supp1ose we focus attention on just the pop15 predictor for ease 
of presentation. We fit the two regression models depending on whether pop15 is greater 
or less than 35%. The two fits are seen in Figure 7.3:

> g1 < - lm (sr ˜ pop15, savings, subset=(pop15 < 35) ) 

> g2 < - lm (sr ˜ pop15, savings, subset=(pop15 > 35))

> plot (sr ˜ popl5,savings,xlab="Pop'n under 15", 

ylab="Savings Rate") 

> abline (v=35, lty=5) 

> segments (20, gl$coef [1] +gl$coef[2]*20,35, 

gl$coef [1] +g1$coef [2] *35) 

> segments (48, g2$coef [1] +g2$coef[2]*48,35, 

g2$coef [1] +g2$coef [2] * 35)

Figure 7.3 Subset regression fit is shown with the solid line, while 
the broken stick regression is shown with the dotted line.

A possible objection to this subsetted regression fit is that the two parts of the fit do 
not meet at the join. If we believe the fit should be continuous as the predictor 
varies, we should consider the broken stick regression fit. Define two basis functions:
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122 Linear Models with R

 

and:

 

where c marks the division between the two groups. B
l
 and B

r
 form a first-order spline

basis  with  a  knotpoint  at  c.  Sometimes  B
l
 and  B

r
 are  called  hockey-stick  functions

because of their shape. We can now fit a model of the form:

y=!
0
+!

1
B

l
(x)+!

2
B

r
(x)+"  

using standard regression methods.  The two linear parts  are guaranteed to meet at  c.
Notice that this model uses only three parameters in contrast to the four total parameters
used  in  the  subsetted  regression  illustrated  before.  A parameter  has  been  saved  by
insisting on the continuity of the fit at c.

We define the two hockey-stick functions, compute and display the fit:

> Ihs < - function (x) ifelse(x < 35, 35!x, 0) 

> rhs < - function (x) ifelse(x < 35, 0, x!35) 

> gb < - 1m (sr ˜ Ihs (pop15) + rhs(pop15), savings) 

> x < - seq(20, 48, by=l) 

> py < - gb$coef[1]+gb$coef[2]*lhs(x)+gb$coef[3]*rhs(x)

> lines (x, py, lty=2)

The two (dotted) lines now meet at 35, as shown in Figure 7.3. The intercept of this
model is the value of the response at the join.

We might  question which fit  is  preferable  in  this  particular  instance.  For  the  high
pop15 countries, we see that the imposition of continuity causes a change in sign for the
slope of the fit. We might argue that because the two groups of countries are so different
and  there  are  so  few countries  in  the  middle  region,  we  might  not  want  to  impose
continuity at all.

We can have more than one knotpoint simply by defining more basis functions with
different knotpoints. Broken stick regression is sometimes called segmented regression.
Allowing the knotpoints to be parameters is worth considering, but this will result in a
nonlinear model.

7.2.2 Polynomials

Another way of generalizing the X! part of the model is to add polynomial terms. In the
one-predictor case, we have:
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Transformation 123

y=!
0
+!

1
x+…+!

d
xd+"  

which allows for  a  more  flexible  relationship,  although we usually  do not  believe  it 
exactly represents any underlying reality.

There are two ways to choose d. We can keep adding terms until the added term is not 
statistically  significant.  Alternatively,  we  can  start  with  a  large  d  and  eliminate 
nonstatistically significant terms starting with the highest order term.

Do not eliminate lower order terms from the model even if they are not statistically 
significant. An additive change in scale would change the t-statistic of all but the highest 
order term. We would not want the conclusions of our study to be so brittle to such 
changes in the scale which ought to be inconsequential.

Let’s see if we can use polynomial regression on the ddpi variable in the savings data. 
First, fit a linear model:

> summary (1m (sr ˜ ddpi, savings) )

Coefficients:

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)    7.883      1.011    7.80  4.5e–10 

ddpi           0.476      0.215    2.22    0.031

The p-value of ddpi is significant so move on to a quadratic term:

> summary (lm (sr ˜ ddpi+I (ddpiˆ2),savings)) 

Coefficients:

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)   5.1304     1.4347    3.58  0.00082 

ddpi          1.7575     0.5377    3.27  0.00203 

I(ddpiˆ2)    !0.0930     0.0361   !2.57  0.01326

Again the p-value of ddpi2 is significant so move on to a cubic term:

> summary (lm (sr ˜ ddpi+I (ddpiˆ2)+I (ddpiˆ3), savings)) 

Coefficients:

            Estimate Std. Error t value Pr(>|t|) 

(Intercept) 5.145360   2.198606    2.34    0.024 

ddpi        1.746017   1.380455    1.26    0.212 

I (ddpiˆ2) !0.090967   0.225598   !0.40    0.689 

I (ddpiˆ3) !0.000085   0.009374   !0.01    0.993

The p-value of ddpi3 is not significant so stick with the quadratic. Notice how the other 
p-values are not significant in contrast with earlier results. Note that starting from a large 
model (including the fourth power) and working downwards gives the same result.

To  illustrate  the  point  about  the  significance  of  lower  order  terms,  suppose  we 
transform ddpi by subtracting 10 and refit the quadratic model:

> savings < - data.frame (savings, mddpi=savings$ddpi-10) > 

summary (lm (sr ˜ mddpi+I (mddpiˆ2), savings))

Coefficients:
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124 Linear Models with R

             Estimate Std. Error t value Pr(>|t|)

(Intercept)  13.4070     1.4240    9.41  2.2e–12

mddpi        !0.1022     0.3027   !0.34    0.737

I(mddpiˆ2)   !0.0930     0.0361   !2.57    0.013

We  see  that  the  quadratic  term  remains  unchanged,  but  the  linear  term  is  now
insignificant.  Since  there  is  often  no  necessary  importance  to  zero  on  a  scale  of
measurement, there is no good reason to remove the linear term in this model but not in
the previous version. No advantage would be gained.

You have to refit the model each time a term is removed and for large d there can be a
problem with numerical stability.  Orthogonal polynomials get around this problem by
defining:

z
1
=a

1
+b

1
x

z
2
=a

2
+b

2
x+c

2
x2

z
3
=a

3
+b

3
x+c

3
x3+d

3
x3

 

etc. where the coefficients a, b, c,…are chosen so that  when . The z are
called orthogonal polynomials. The value of orthogonal polynomials has declined with
advances in computing speeds although they are still worth knowing about because of
their  numerical  stability and ease of use.  The poly (  )  function constructs orthogonal
polynomials:

> g < - 1m (sr ˜ poly(ddpi,4),savings)

> summary (g)

Coefficients:

             Estimate Std. Error t value Pr(>|t|)

(Intercept)    9.6710     0.5846   16.54  <2e–16

poly(ddpi,4)1  9.5590     4.1338    2.31   0.025

poly(ddpi,4)2 !10.4999    4.1338   !2.54   0.015

poly(ddpi,4)3 !0.0374     4.1338   !0.01   0.993

poly(ddpi,4)4  3.6120     4.1338    0.87   0.387

Residual standard error: 4.13 on 45 degrees of freedom

Multiple R-Squared: 0.218, Adjusted R-squared: 0.149

F-statistic: 3.14 on 4 and 45 DF, p-value: 0.0232

We can come to the same conclusion as above, that the quadratic model is best, with just
this summary.

You can also  define  polynomials  in  more  than  one  variable.  These  are  sometimes
called response surface models. A second degree model would be:

 

an example of which could be fit as:
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Transformation 125

> g < - lm (sr ˜ polym(popl5, ddpi, degree=2), savings)

7.2.3 Regression Splines

Polynomials have the advantage of smoothness, but the disadvantage that each data point
affects the fit globally. This is because the power functions used for the polynomials take
nonzero values  across  the whole range of  the predictor.  In  contrast,  the  broken stick
regression method localizes the influence of each data point  to its  particular segment
which is good, but we do not have the same smoothness as with the polynomials. There is
a way we can combine the beneficial aspects of both these methods—smoothness and
local influence—by using B-spline basis functions.

We  may  define  a  cubic  B-spline  basis  on  the  interval  [a,  b]  by  the  following
requirements on the interior basis functions with knotpoints at t

1
,…, t

k
:

1. A given basis function is nonzero on an interval defined by four successive knots and
zero elsewhere. This property ensures the local influence property.

2.  The basis  function is  a  cubic polynomial  for  each subinterval  between successive
knots.

3.  The  basis  function  is  continuous  and  is  also  continuous  in  its  first  and  second
derivatives at each knotpoint. This property ensures the smoothness of the fit.

4. The basis function integrates to one over its support.

The basis functions at the ends of the interval are defined a little differently to ensure
continuity in derivatives at the edge of the interval. A full definition of B-splines and
more details about their properties may be found in de Boor (2002). The broken stick
regression is an example of the use of linear splines.

Let’s see how the competing methods do on a constructed example. Suppose we know
the true model is:

 

The advantage of using simulated data is that we can see how close our methods come to
the truth. We generate the data and display them in the first plot of Figure 7.4.

> funky < - function (x) sin (2*pi*xˆ3) ˆ3 

> x < - seq (0, l, by=0.01) 

> y < - funky (x) + 0.1*rnorm (101) 

>  matplot  (x,  cbind  (y,  funky  (x)),  type="pl",  ylab="y", 

pch=18, lty=l)
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126 Linear Models with R

Figure 7.4 Data and true function shown on the left. Orthogonal polynomial
of order 4 (dashed) and order 12 (solid) shown on the right.

We see how orthogonal polynomial bases of orders 4 and 12 do in fitting these data:

> g4 < - lm (y ˜ poly(x,4)) 

> g12 < - lm (y ~ poly(x,12)) 

> matplot (x, cbind(y, g4$f it, g12$f it) , type="pll, 

ylab="y", pch=18,lty=c (1,2))

The two fits are shown in the second panel of Figure 7.4. We see that order 4 is a clear
underfit; order 12 is much better although the fit is too wiggly in the first section and
misses the point of inflection around x=0.8.

We now create the B-spline basis. You need to have three additional knots at the start
and end to get the right basis. I have chosen to the knot locations to put more in the
regions  of  greater  curvature.  I  have used 12 basis  functions  for  comparability  to  the
orthogonal polynomial fit:

> library (splines) 

> knots < - c (0, 0, 0, 0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.85, 0.9, 1, 1, 1, 1) 

> bx < - splineDesign (knots, x) 

> gs < - 1m (y ˜ bx) 

> matplot (x, bx, type="1") 

> matplot  (x,  cbind  (y,  gs$fit),type="pl", 
 
ylab="y", 

pch=18, lty=l)

The basis functions themselves are seen in the first panel of Figure 7.5 while the fit itself
appears in the second panel. We see that the fit comes very close to the truth.
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Transformation 127

Figure 7.5 Cubic spline basis function on the left, cubic spline fit to the 
data on the right.

Regression splines are useful for fitting functions with some flexibility provided we have 
enough data. We can form basis functions for all the predictors in our model but we need 
to be careful not to use up too many degrees of freedom.

7.2.4 Overview

The methods described above are somewhat awkward to apply exhaustively and even then 
they may miss important structure because of the problem of trying to find good transfor-
mations on several variables simultaneously. One recent approach is the additive model:

y=!
0 

+ f
1
(x

1
) + f

2
(x

2
) + … + f

p
(x

p
) + "  

where nonparametric regression techniques are used to estimate the f
i
s. Alternatively, you 

could implement this using the regression spline bases for each predictor variable. Other 
techniques  are  ACE,  AVAS,  regression  trees,  MARS  and  neural  networks.  See,  for 
example, Ripley (1996) and Hastie, Tibshirani, and Friedman (2001) among many others.

It is important to realize the strengths and weaknesses of regression analysis. For larger 
datasets with relatively little noise, more recently developed complex models will be able 
to fit the data better while keeping the number of parameters under control. For smaller 
datasets or where the noise level is high (as is typically found in the social sciences), 
more complex models are not justified and standard regression is most effective. One 
relative advantage of regression is that the models are easier to interpret in contrast to 
techniques like neural networks which are usually only good for predictive purposes.

Exercises

1. The aatemp data come from the U.S. Historical Climatology network. They are the 
annual mean temperatures (in degrees F) in Ann Arbor, Michigan going back about
150 years.
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128 Linear Models with R

(a)  Is there a linear trend?
(b)  Observations in successive years may be correlated. Fit a model that estimates this

correlation. Does this change your opinion about the trend?
(c)  Fit a polynomial model with degree 10 and use backward elimination to reduce the

degree of the model. Plot your fitted model on top of the data. Use this model to
predict the temperature in 2020.

(d) Suppose someone claims that the temperature was constant until 1930 and then
began a linear trend. Fit a model corresponding to this claim. What does the fitted
model say about this claim?

(e)  Make a cubic spline fit with six basis functions evenly spaced on the range. Plot the
fit in comparison to the previous fits. Does this model fit better than the straight-line
model?

2. The cornnit data on the relationship between corn yield (bushels per acre) and nitrogen
(pounds  per  acre)  fertilizer  application  were  studied  in  Wisconsin  in  1994.  Use
transformations  to  find  a  good  model  for  predicting  yield  from  nitrogen.  Use  a
goodness of fit test to check your model.

3. Using the ozone data, fit a model with O3 as the response and temp, humidity and ibh
as predictors. Use the Box–Cox method to determine the best transformation on the
response.

4.  Using the pressure data, fit a model with pressure as the response and temperature as
the predictor using transformations to obtain a good fit.

5. Use transformations to find a good model for volume in terms of girth and height
using the trees data.
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CHAPTER 8
Variable Selection

Variable selection is intended to select the “best” subset of predictors. Several reasons for 
wanting to do this follow:

1. We want to explain the data in the simplest  way. Redundant predictors should be 
removed.  The  principle  of  Occam’s  Razor  states  that  among  several  plausible 
explanations for a phenomenon, the simplest is best. Applied to regression analysis, 
this implies that the smallest model that fits the data is best.

2.  Unnecessary  predictors  will  add  noise  to  the  estimation  of  other  quantities  that 
interested  us.  Degrees  of  freedom  will  be  wasted.  More  precise  estimates  and 
predictions might be achieved with a smaller model.

3. Collinearity  is  caused  by  having  too  many  variables  trying  to  do  the  same  job. 
Removing excess predictors will aid interpretation.

4. If  the model is  to be used for prediction, we can save time and/or money by not 
measuring redundant predictors.

Variable selection is a process that should not be separated from the rest of the analysis. 
Other parts of the data analysis can have an impact. For example, outliers and influential 
points can do more than just change the current model—they can change the model we 
select. It is important to identify such points. Also transformations of the variables can 
have  an  impact  on  the  model  selected.  Some  iteration  and  experimentation  is  often 
necessary to find better models.

There  are  two  main  types  of  variable  selection.  The  stepwise  testing  approach 
compares successive models while the criterion approach attempts to find the model that 
optimizes some measure of goodness.

8.1 Hierarchical Models

Some models have a natural hierarchy. For example, in polynomial models, x2 is a higher 
order  term than x.  When selecting variables,  it  is  important  to  respect  the  hierarchy. 
Lower order terms should not be removed from the model before higher order terms in 
the same variable. There are two common situations where this can arise:

Consider the polynomial model:

y = !
0 

+ !
1
x + !

2
x2 + "  

Suppose we fit this model and find that the regression summary shows that the term in x 

is not significant but the term in x2 is. If we then remove the x term, our reduced model 
would become:
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Variable Selection 131

y=!
0
+!

2
x2+"  

However, suppose we make a scale change x→ x+a; then the model would become:

y=!
0
+!

2
a2+2!

2
ax+!

2
x2+"  

The first order x term has now reappeared. Scale changes should not make any important 
change to the model,  but in this case an additional term has been added. This is not 
desirable. This illustrates why we should not remove lower order terms in the presence of 
higher order terms. We would not want interpretation to depend on the choice of scale. 
Removal of the first-order term here corresponds to the hypothesis that  the predicted 
response is symmetric about and has an optimum at x=0. Usually this hypothesis is not 
meaningful and should not be considered. Only when this hypothesis makes sense in the 
context of the particular problem could we justify the removal of the lower order term.

For models with interactions, consider the example of a second order response surface 
model:

 

We  would  not  normally  consider  removing  the  x
1
x

2 
 interaction  term  without

simultaneously considering the removal of the and terms. A joint removal would 
correspond to the clearly meaningful comparison of a quadratic surface and a linear one. 
Just removing the x1x2 term would correspond to a surface that is aligned with the coor-
dinate axes. This is hard to interpret and should not be considered unless some 
particular meaning can be attached. Any rotation of the predictor space would reintroduce 
the interaction term and, as with the polynomials, we would not ordinarily want our 
model interpretation to depend on the particular basis for the predictors.

8.2 Testing-Based Procedures

8.2.1 Backward Elimination

This is the simplest of all variable selection procedures and can be easily implemented without 
special software. In situations where there is a complex hierarchy, backward elimination 
can be run manually while taking account of what variables are eligible for removal.

We start with all the predictors in the model and then remove the predictor with highest 
p-value greater than %

crit
. Next refit the model and remove the remaining least significant

predictor provided its p-value is greater than %crit. Sooner or later, all “nonsignificant” 
predictors will be removed and the selection process will be complete.
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132 Linear Models with R

prediction performance is the goal, then a 15 to 20% cutoff may work best, although
methods designed more directly for optimal prediction should be preferred.

8.2.2 Forward Selection

This just reverses the backward method. We start with no variables in the model and then
for all predictors not in the model, we check their p-value if they are added to the model.
We  choose  the  one  with  lowest  p-value  less  than  %

crit
.  We  continue  until  no  new

predictors can be added.

8.2.3 Stepwise Regression

This is a combination of backward elimination and forward selection. This addresses the
situation where variables  are  added or  removed early in  the process and we want  to
change our mind about them later. At each stage a variable may be added or removed and
there are several variations on exactly how this is done.

8.2.4 Verdict on Testing-Based Methods

Testing-based procedures are relatively cheap computationally, but they do have some of
the following drawbacks:

1. Because of the “one-at-a-time” nature of adding/dropping variables, it is possible to
miss the "optimal" model.

2. The p-values used should not be treated too literally. There is so much multiple testing
occurring that the validity is dubious. The removal of less significant predictors tends
to  increase  the  significance  of  the  remaining  predictors.  This  effect  leads  one  to
overstate the importance of the remaining predictors.

3. The procedures are not directly linked to final objectives of prediction or explanation
and so may not really help solve the problem of interest. With any variable selection
method, it is important to keep in mind that model selection cannot be divorced from
the underlying purpose of the investigation. Variable selection tends to amplify the
statistical  significance  of  the  variables  that  stay  in  the  model.  Variables  that  are
dropped can still be correlated with the response. It would be wrong to say that these
variables  are  unrelated  to  the  response;  it  is  just  that  they  provide  no  additional
explanatory effect beyond those variables already included in the model.

4. Stepwise variable selection tends to pick models that are smaller than desirable for
prediction purposes. To give a simple example, consider the simple regression with
just  one  predictor  variable.  Suppose  that  the  slope  for  this  predictor  is  not  quite
statistically significant. We might not have enough evidence to say that it is related to
y but it still might be better to use it for predictive purposes.

We illustrate the variable selection methods on some data on the 50 states from the 1970s.
The data were collected from U.S. Bureau of the Census. We will take life expectancy as
the response and the remaining variables as predictors:

> data(state)

The   %
crit  

 is   sometimes  called  the  “p-to-remove”  and  does  not  have  to  be  5%.  If
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Variable Selection 133

> statedata < - data.frame (state.x77, row.names=state.abb) > g < 

- lm (Life.Exp ˜ . , data=statedata) 

> summary (g)

Coefficients:

            Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.09e+01   1.75e+00   40.59  < 2e–16

Population  5.18e–05   2.92e–05    1.77    0.083

Income     !2.18e–05   2.446!04   !0.09    0.929

Illiteracy  3.38e–02   3.666!01    0.09    0.927

Murder     !3.016!01   4.666!02   !6.46  8.7e–08

HS.Grad     4.896!02   2.33e–02    2.10    0.042 

Frost      !5.74e!03   3.14e!03   !1.82    0.075 

Area       !7.38e–08   1.67e–06   !0.04    0.965

Residual standard error: 0.745 on 42 degrees of freedom

Multiple R-Squared: 0.736, Adjusted R-squared: 0.692

F-statistic: 16.7 on 7 and 42 DF, p-value: 2.53e–10

The signs of some of the coefficients match plausible expectations concerning how the 
predictors might affect the response. Higher murders rate decrease life expectancy as one might 
expect. Even so, some variables such as income, are not significant, contrary to what one might 
expect.

We illustrate the backward method—at each stage we remove the predictor with the 
largest p-value over 0.05:

> g < - update (g, . ˜ . - Area)

> summary (g)

Coefficients:

            Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.10e+01   1.39e+00   51.17  < 2e–16

Population  5.19e–05   2.88e–05    1.80    0.079

Income     –2.44e–05   2.34e–04   !0.10    0.917

Illiteracy  2.85e–02   3.42e–01    0.08    0.934

Murder     –3.02e–01   4.33e–02   !6.96  1.5e–08

HS.Grad     4.85e–02   2.07e–02    2.35    0.024

Frost      –5.78e–03   2.97e–03   !1.94    0.058

> g < - update (g, . ~ . - Illiteracy) 

> summary (g)

Coefficients:

          Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.11e+01   1.03e+00   69.07  < 2e–16

Population  5.11e–05   2.71e–05    1.89    0.066

Income     !2.48e–05   2.32e–04   !0.11    0.915

Murder     !3.00e–01   3.70e–02   !8.10  2.9e–10

HS.Grad     4.78e–02   1.866!02   2.57     0.014

Frost      !5.916–03   2.47e–03  !2.39     0.021

> g < - update (g, . ~ . - Income) 

> summary (g

Coefficients:

          Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.10e+01   9.53e–01   74.54  < 2e–16

Population  5.01e–05   2.51e–05    2.00   0.0520
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134 Linear Models with R

Murder     !3.00e–01   3.66e–02   !8.20  1.86–10

HS.Grad     4.666!02   1.486!02    3.14  0.0030

Frost      !5.94e–03   2.42e–03   !2.46  0.0180

> g < - update (g, . ˜ .– Population) 

> summary (g)

Coefficients:

          Estimate Std. Error t value Pr(>|t)

(Intercept) 71.03638    0.98326   72.25   <2e!16

Murder      !0.28307    0.03673   !7.71    8e–10

HS.Grad      0.04995    0.01520    3.29    0.0020 

Frost       !0.00691    0.00245   !2.82    0.0070

Residual standard error: 0.743 on 46 degrees of freedom

Multiple R-Squared: 0.713,     Adjusted R-squared: 0.694

F-statistic: 38 on 3 and 46 DF, p-value: 1.63e–12

The final removal of the Population variable is a close call. We may want to consider
including this variable if interpretation is made easier. Notice that the R2 for the full
model of 0.736 is reduced only slightly to 0.713 in the final model. Thus the removal of
four predictors causes only a minor reduction in fit.

It is important to understand that the variables omitted from the model may still be
related to the response. For example:

> summary(1m(Life.Exp ˜ Illiteracy+Murder+Frost, statedata))

Coefficients:

            Estimate Std. Error t value Pr(>|t|)

(Intercept) 74.55672    0 8425 1 27.61 <   2e!1

Illiteracy  !0.60176    0 9893 !  2.01 0   .05C 

Murder      !0.28005    0 4339 !  6.45 6    e–0 

Frost       !0.00869    0 0296 !  2.94 0   .005 

Residual standard error: 0.791 on 46 degrees of freedom

Multiple R-Squared: 0.674,      Adjusted R-squared: 0.653

F-statistic: 31.7 on 3 and 46 DF, p-value: 2.91e–11

we see that Illiteracy does have some association with Life Expectancy. It is true that
replacing Illiteracy with High School graduation rate gives us a somewhat better fitting
model, but it would be insufficient to conclude that Illiteracy is not a variable of interest.

8.3 Criterion-Based Procedures

If we have some idea about the purpose for which a model is intended, we might propose
some measure of how well  a given model meets that  purpose.  We could choose that
model  among  those  possible  that  optimizes  that  criterion.  If  there  are  q  potential

predictors, then there are 2q possible models. We could fit all these models and choose
the best one according to some criterion. For larger q, this might be too time consuming 
and we may need to economize by limiting the search. Some possible criteria are the
Akaike Information Criterion (AIC), defined as &2 max loglikelihood+2p. Also used is
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Variable Selection 135

the Bayes Information Criterion (BIC) which is &2 max log-likelihood +plog n. For linear 
regression  models,  the  &2  max  loglikelihood  is  nlog(RSS/n)+a  constant.  Since  the 
constant is the same for a given data set and assumed error distribution, it can be ignored 
for regression model comparisons on the same data. Additional care is necessary for other 
types of comparisons.

We want to minimize AIC or BIC. Larger models will fit better and so have smaller 
residual sum of squares (RSS), but use more parameters. Thus the best model choice will 
balance fit with model size. BIC penalizes larger models more heavily and so will tend to 
prefer smaller models in comparison to AIC. AIC and BIC are often used as selection 
criteria for other types of models too.

We can apply the AIC (and optionally the BIC) to the state data. The function does not 
evaluate the AIC for all possible models but uses a search method that compares models 
sequentially. Thus it bears some comparison to the stepwise method described above, but 
only in the method of search—there is no hypothesis testing.

> g < - lm (Life.Exp ˜ ., data=statedata) 

> step (g)

Start: AIC= !22.18 

Life. Exp ˜ Population + Income + Illiteracy + Murder 

+ HS.Grad + Frost + Area

            Df Sum of Sq   RSS AIC 

! Area       1    0.0011  23.3 !24.2 

! Income     1    0.0044  23.3 !24.2 

! Illiteracy 1    0.0047  23.3 !24.2 

<none>                    23.3 !22.2 

! Population 1       1.7  25.0 !20.6 

! Frost      1       1.8  25.1 !20.4 

! HS.Grad    1       2.4  25.7 !19.2 

! Murder     1      23.1  46.4  10.3 

Step: AIC= !24.18

Life. Exp ˜ Population + Income + Illiteracy + Murder + 

HS.Grad + Frost 

.. intermediate steps omitted ..

Step: AIC= !28.16 

Life. Exp ˜ Population + Murder + HS.Grad + Frost

            Df Sum of Sq  RSS  AIC 

<none>                   23.3 !28.2 

! Population 1       2.1 25.4 !25.9 

! Frost 1 3.1 26.4 !23.9 

! HS.Grad 1 5.1 28.4 !20.2 

! Murder 1 34.8 58.1 15.5

Coefficients: 

(Intercept) Population    Murder  HS.Grad     Frost

   7.10e+01   5.01e–05 !3.00e–01 4.66e–02–5.94e–03

The sequence of variable removal is the same as with backward elimination. The only 
difference is that the population variable is retained.

Another  commonly  used  criterion  is  adjusted  R2,  written  Recall  that  R2=
1&RSS/TSS. Adding a variable to a model can only decrease the RSS and so only increase

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
] 

at
 1

6:
20

 2
3 

M
ay

 2
01

4 



136 Linear Models with R

the R2. Hence R2 by itself is not a good criterion, because it would always choose the 
largest possible model:

 

Adding a  predictor  will  only  increase  R2  if  it  has  some predictive  value.  There  is  a 

connection to .  Minimizing the standard error for prediction means minimizing 

which in term means maximizing R2.
Our final criterion is Mallow’s C

p
 statistic. A good model should predict well, so the 

average mean square error of prediction might be a good criterion:

 

which can be estimated by the C
p
 statistic:

 

where  is from the model with all predictors and RSS
p
 indicates the RSS from a model 

with p parameters. For the full model C
p
=p exactly. If a p predictor model fits, then E 

(RSSp)=(n#p))2 and then E(C
p
) % p. A model with a bad fit will have C

p
 much bigger 

than p. It is usual to plot C
p
 against p. We desire models with small p and C

p
 around or 

less than p.
C

p
,  and AIC all trade-off fit in terms of RSS against complexity (p).

Now we try the C
p
 and  methods for the selection of variables in the state dataset.

For a model of a given size, all the methods above (with the possible exception of 
PRESS) will select the model with the smallest residual sum of squares. We first discover 
the best models for each size: 

> library(leaps) 

> b< - regsubsets(Life.Exp˜.,data=statedata)

> (rs < - summary (b)) 

1 subsets of each size up to 7 

Selection Algorithm: exhaustive

    Population  Income  Illiteracy  Murder  HS.Grad  Frost Area

1 (1) " "        " "    " "         " *"    " "      " "    " "

2 (1) " "        " "    " "         " *"    " *"     " "    " "
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Variable Selection 137

3 (1)      " "      " "     " "     "*"   "*"     "*"    " "

4 (1)      "*"      " "     " "     "*"   "*"     "*"    " "

5 (1)      "*"      "*"     " "     "*"   "*"     "*"    " "

6 (1)      "*"      "*"     "*"     "*"    "*"    "*"    " "

7 (1)      "*"      "*"     "*"     "*"    "*"    "*"    "*"

In some cases, we might consider more than one model per size. Here we see that the best 
one predictor model uses Murder and so on. The C

p
 plot can be constructed as:

> plot (2:8, rs$cp, xlab="No. of Parameters", ylab="Cp Statistic") 

> abline (0, l)

as seen in the first panel of Figure 8.1.

Figure 8.1 The C
p
 plot for the state data on the left; adjusted R2 on the right.

The competition is between the four-parameter, three-predictor, model including Frost, 
HS graduation and Murder and the model also including Population. Both models are on 
or below the C

p
=p line, indicating good fits. The choice is between the smaller model and 

the larger model, which fits a little better. Some even larger models fit in the sense that 
they are on or below the C

p
=p line, but we would not opt for these in the presence of 

smaller models that fit.

Now let’s which model the adjusted R2 criterion selects using the plot shown in the 
second panel of Figure 8.1:

> plot (2:8, rs$adjr2, xlab="No. of Parameters", 

ylab="Adjusted R-square")

We see that the Population, Frost, HS graduation and Murder model has the largest 
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138 Linear Models with R

for high leverage points:

> h < - 1m.influence (g) $hat

> names (h) < - state.abb 

> rev (sort (h))

      AK       CA        HI        NV        NM       TX       NY

0.809522  0.408857  0.378762  0.365246  0.324722  0.284164 0.256950

We can see that Alaska has high leverage. Let’s try excluding it:

> b< - regsubsets (Life.Exp˜., data=statedata,

subset=(state.abb! ="AK")) 

> rs < - summary (b) 

> rs$which [which.max (rs$adjr),]

(Intercept) Population Income Illiteracy Murder

       TRUE       TRUE  FALSE      FALSE   TRUE

    HS.Grad      Frost   Area

       TRUE       TRUE   TRUE  

We see that Area now makes it into the model. Transforming the predictors can also have
an effect. Take a look at the variables:

> stripchart (data.frame (scale  (statedata)), vertical=TRUE,

method="jitter")

Jittering adds a small amount of noise (in the horizontal direction in this example). It is
useful for moving apart points that would otherwise overprint each other.

Figure 8.2 Strip charts of the state data; all variables have been standardized.

In Figure 8.2, we see that Population and Area are skewed—we try transforming them:

> b< - regsubsets (Life.Exp˜ log(Population)+Income+Illiteracy+ 

Murder+HS.Grad+Frost+log(Area), statedata)

Variable selection methods are sensitive to outliers and influential points. Let’s check

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
] 

at
 1

6:
20

 2
3 

M
ay

 2
01

4 



Variable Selection 139

> rs < - summary (b) 

>rs$which [which.max (rs$adjr), ] 

(Intercept) log(Population)   Income   Illiteracy

       TRUE           TRUE     FALSE        FALSE

     Murder        HS.Grad     Frost    log (Area)

       TRUE           TRUE      TRUE         FALSE

This  changes  the  “best”  model  again  to  log  (Population),  Frost,  HS  graduation  and 

Murder. The adjusted R2 of 71.7% is the highest among models we have seen so far.

8.4 Summary

Variable selection is a means to an end and not an end itself. The aim is to construct a model 
that predicts well or explains the relationships in the data. Automatic variable selections 
are not guaranteed to be consistent with these goals. Use these methods as a guide only.

Stepwise methods use a restricted search through the space of potential models and use 
a dubious hypothesis testing-based method for choosing between models. Criterion-based 
methods typically involve a wider search and compare models in a preferable manner. 
For this reason, I recommend that you use a criterion-based method.

Accept the possibility that several models may be suggested which fit about as well as 
each other. If this happens, consider:

1. Do the models have similar qualitative consequences?
2. Do they make similar predictions?
3. What is the cost of measuring the predictors?
4. Which has the best diagnostics?

If  you  find  models  that  seem  roughly  equally  as  good,  but  lead  to  quite  different 
conclusions,  then  it  is  clear  that  the  data  cannot  answer  the  question  of  interest 
unambiguously.  Be alert  to  the possibility  that  a  model  contradictory to  the tentative 
conclusions might be out there.

Exercises

1. Use the prostate data with lpsa as the response and the other variables as predictors. 
Implement the following variable selection methods to determine the "best" model:

(a) Backward Elimination
(b) AIC

(c) Adjusted R2

(d) Mallows C
p

2. Using the teengamb dataset with gamble as the response and the other variables as 
predictors, repeat the work of the first question.

3.  Using  the  divusa  dataset  with  divorce  as  the  response  and  the  other  variables  as
predictors, repeat the work of the first question.
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140 Linear Models with R

4. Using the trees data, fit a model with log (Volume) as the response and a second-order
polynomial (including the interaction term) in Girth and Height. Determine whether
the model may be reasonably simplified.

5. Fit a linear model to the stackloss data with stack. loss as the predictor and the other
variables as predictors. Simplify the model if possible. Check the model for outliers
and influential points. Now return to the full model, determine whether there are any outliers
or influential points, eliminate them and then repeat the variable selection procedures.
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CHAPTER 9
Shrinkage Methods

9.1 Principal Components

Recall  that  if  the  X-matrix  is  orthogonal  then  testing  and  interpretation  are  greatly 
simplified.  One  motivation  for  principal  components  (PCs)  is  to  rotate  the  X  to 
orthogonality. For example, consider the case with two predictors depicted in Figure 9.1.

Figure 9.1 Original predictors are x1 and x2; principal components are Z1 and

Z2.

The original predictors, x
1
 and x

2
, are clearly correlated and so the X-matrix will not be 

orthogonal. This will complicate the interpretation of the effects of x
1
 and x

2
 on the 

response. Suppose we rotate the coordinate axes so that in the new system, the predictors 
are orthogonal. Furthermore, suppose we make the rotation so that the first axis lies in the 
direction of the greatest variation in the data, the second in the second greatest direction 
of variation in those dimensions remaining and so on. These rotated directions, z

1
 and z

2
in our two predictor example, are simply linear combinations of the original predictors. 
This is the geometrical description of PCs. We now indicate how these directions may be 
calculated.
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Shrinkage Methods 143

$
1
$$

2
$…$$

p
0. Zero eigenvalues indicate nonidentifiability. Since:

ZTZ=XTXTXU  

the eigenvalues of XTX are $
1
,…, $

p
 and the eigenvectors of XTX are the columns of U. 

The columns of Z are called the PCs and these are orthogonal to each other. $
i
 is the 

variance of Z
i
.

Another way of looking at it is to try to find the linear combinations of X that have the

maximum  variation.  We  find  the  u
1 

 such  that  var  is  maximized  subject  to

.  Now find u
2
 such that  var  is  maximized subject  to  and

 .  We  keep  finding  directions  of  greatest  variation  orthogonal  to  those 
directions we have already found. A simpler version of this is illustrated in Figure 9.1.

There are some variations on this theme:

1. We can use an X that includes the intercept as a column of ones or we can center each 
variable by its mean in which case we dispense with the intercept since the centered 
variables are orthogonal to it. The latter choice is more common since it means the 
PCs will just be linear combinations of predictors without a constant, which is easier 
to interpret.

2. As well as centering each variable, we could also divide by its standard deviation, thus 
standardizing each variable. This is equivalent to doing principal components analysis 
(PCA) on the correlation matrix of the predictors. This option makes the most sense 
when the predictors are measured on different scales, say millimeters and grams. If no 
scaling is done, the PCs will be dominated by the numerically largest predictors, but 
this may not make sense. When all the predictors are on the same scale, say distances 
between locations on the face, we might choose to center only.

PCA is a general technique for reducing the dimension of data. PCA is not specifically 
designed  for  regression  and  most  applications  lie  in  other  fields.  See  Johnson  and 
Wichern (2002) for an introduction. Typically, only a few eigenvalues will be large so 
that  almost  all  the variation in X  will  be representable by the first  few PCs.  Various 
methods are used to determine how many components should be used. In application to 
regression, we replace the regression y ˜ X with y ˜ Z where we use only a few columns 
of Z. This is known as principal components regression or PCR. The technique is used in 
two distinct ways.
Explanation  When  the  goal  of  the  regression  is  to  find  simple,  well-fitting  and 

understandable models for the response, PCR may help. The PCs are linear 
combinations of the predictors. If we use these directly, then little is gained, but 
perhaps a close approximation may have a good interpretation. For example, suppose:

Z
1 

= 0.71X
1
+0.02X

2
&0.06X

3
&0.69X

4 
 

We wish to find a rotation p!p matrix U such that Z=XU and ZTZ=diag ($
1
,…, $

p
) and
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144 Linear Models with R

and X
4
 was the distance between his or her hands when outstretched to the side, this

would represent a measure of the shape of the person. However, if X
4
 was the person’s

weight, then X
1
#X

4
 would be harder to interpret. If this interpretation process works well, a

large number of X is reduced to a much smaller number of (approximate) Z that can be 
understood and used to model the response. However, for this to work, we typically need the 
predictors  to  measure  quantities  for  which  linear  combinations  are  interpretable
—usually the predictors would need the same units. Furthermore, we would need some
luck to get interpretable PCs and we would need to make some creative approxima-
tions. These requirements severely restrict the utility of PCR for explanatory purposes. 

Prediction It may be that we can make better predictions with a small number of Z than
a much larger number of X. We shall see this in the example that follows. Success requires
that we make a good choice of the number of components. PCA does not use y so it is
possible (although less likely) that some lesser PC is actually very important in predicting the
response.
A Tecator Infratec Food and Feed Analyzer working in the wavelength range of 850 to

1050 nm by the near infrared transmission (NIT) principle was used to collect data on
samples of finely chopped pure meat. 215 samples were measured. For each sample, the
fat content was measured along with a 100 channel spectrum of absorbances. Since
determining the fat content via analytical chemistry is time consuming, we would like to
build a model to predict the fat content of new samples using the 100 absorbances which
can be measured more easily. See Thodberg (1993).

The true performance of any model is hard to determine based on just the fit to the
available data. We need to see how well the model does on new data not used in the
construction of the model. For this reason, we will partition the data into two parts—a
training sample consisting of the first 172 observations that will be used to build the
models and a testing sample of the remaining 43 observations.

Let’s start with the least squares fit:

> data (meatspec) 

> model 1 < - lm (fat ˜ ., meatspec[1:172,])

> summary (modell) $r.squared

[1] 0.99702

We see that the fit of this model is already very good in terms of R2. How well does this
model  do  in  predicting  the  observations  in  the  test  sample?  We  need  a  measure  of
performance—we use root mean square error (RMSE):

 

where n=43 in this instance. We find for the training sample that:

> rmse < - function (x, y) sqrt (mean ( (x-y)ˆ2) )

> rmse (modell$fit, meatspec$fat [1:172])

[1] 0.69032

Now Z
1
 is approximately proportional to X

1
#X

4
. So, suppose X

1
 was a person’s height

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
] 

at
 1

6:
20

 2
3 

M
ay

 2
01

4 



Shrinkage Methods 145

while for the test sample:

> rmse (predict (modell, meatspec [173:215,]), meatspec$fat

[173:215] )

[1] 3.814

We see that the performance is much worse for the test sample. This is not unusual, as the 
fit  to the data we have almost always gives an overoptimistic sense of how well  the 
model will do with future data. In this case, the actual error is about five times greater 
than the model itself suggests.

Now,  it  is  quite  likely  that  not  all  100  predictors  are  necessary  to  make  a  good 
prediction. In fact, some of them might just be adding noise to the prediction and we 
could improve matters by eliminating some of them. We use the default stepwise model 
selection:

> mode12 < - step (model1)

> rmse(mode12$fit, meatspec$fat [1:172] )

[1] 0.7095

>  rmse  (predict  (mode12,  meatspec  [173:215,]),

meatspec$fat[173:215] ]

[1] 3.5902

The model selection step removed 28 variables. Of course, the nominal fit got a little 
worse  as  it  always  will  when  predictors  are  removed,  but  the  actual  performance 
improved somewhat from 3.81 to 3.59.

Now let’s compute the PCA on the training sample predictors:

> library (mva)

> meatpca < - prcomp(meatspec[1:172, !101])

We can examine the square roots of the eigenvalues:

> round (meatpca$sdev, 3)

[1] 5.055 0.511 0.282 0.168 0.038 0.025 0.014 0.011 0.005

etc

[97] 0.000 0.000 0.000 0.000

It  is  better  to  examine  the  square  roots  because  the  eigenvalues  themselves  are  the 
variances of the PCs, but standard deviations are a better scale for comparison. We see 
that  the  first  PC  accounts  for  about  ten  times  more  variation  than  the  second.  The 
contribution drops off sharply. This suggests that most of the variation in the predictors 
can be explained with just a few dimensions.

The eigenvalues can be found in the object meatpca$rotat ion. We plot these vectors 
against the predictor number (which represents a range of frequencies in this case) in 
Figure 9.2 using:

> matplot (l:100, meatpca$rot [,1:3] , type="l",

xlab="Frequency", ylab="")
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146 Linear Models with R

These vectors are the linear combinations of the predictors that generate the PCs. We see
that  the  first  PC  comes  from an  almost  constant  combination  of  the  frequencies.  It
measures whether the predictors are generally large or small. The second PC represents a
contrast between the higher and lower frequencies. The third is more difficult to interpret.
It is sometimes possible, as in this example, to give some meaning to the PCs. This is
typically a matter of intuitive interpretation. In some other cases, no interpretation can be
found—this is almost always the case when the predictors measure variables on different
scales (like a person’s height and age).

We can get the PCs themselves from the columns of the object meatpca$x. Let’s use
the first four PCs to predict the response:

> mode13 < - lm (fat ˜ meatpca$x [,1:4], meatspec [1:172,])

> rmse(mode13$fit, meatspec$fat [1:172])

[1] 4.0647

Figure 9.2 Eigenvectors for the PCA of the meat spectrometer data. The solid
line corresponds to the first PC, the dotted is for the second PC 
and the dashed is for the third PC.

We do not expect as good a fit using only four variables instead of the 100. Even so,
considering that, the fit is not much worse than the much bigger models.

PCR is an example of shrinkage estimation. Let’s see where the name comes from.
We plot the 100 slope coefficients for the full least squares fit:

> plot(modell$coef[!1],
 
ylab="Coefficient")

which is shown in the left panel of Figure 9.3. We see that the coefficients range is in the
thousands  and  that  the  adjacent  coefficients  can  be  very  different.  This  is  perhaps
surprising because one might expect that adjacent frequencies might have a very similar
effect  on  the  response.  Because  the  PCs  represent  a  linear  combination  of  the  100
predictors, we can compute the contribution of each in the PCR of just the four PCs and
plot it. The PCR model is y=Z*+" which is y=XU*+" We compute U* and plot it in the
panel on the left of Figure 9.3.
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Shrinkage Methods 147

> svb < - meatpca$rot [,1:4] %*% mode13$coef [!1]

> plot (svb, ylab="Coefficient")

Here we see that the coefficients are much smaller, ranging from &10 to 10 rather than in 
the thousands. Instead of wildly varying coefficients in the least squares case, we have a 
more stable result. This is why the effect is known as shrinkage. Furthermore, there is 
some smoothness between adjacent frequencies.

Why use  four  PCs here?  The standard  advice  for  choosing the  number  of  PCs to 
represent the variation in X is to choose the number beyond which all the eigenvalues are 
relatively small. A good way to determine this number is to make a scree plot, which 
simply makes an index plot of the eigenvalues. We show here the square roots of the 
eigenvalues and only the first ten values to focus on the area of interest; see Figure 9.4:

> plot(meatpca$sdev[l:10],type="l",ylab="SD of PC",

xlab="PC number")

We could make a case for using only the first PC, but there is another identifiable
“elbow” at five indicating the choice of four PCs. Now let’s see how well the test sample 
is predicted. The default version of PCs used here centers the predictors so we need to 
impose the same centering (using the means of the training sample) on the predictors:

Figure 9.3 Coefficients for the least squares fit on the left and for the 
PCR with four components on the right.
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148 Linear Models with R

Figure  9.4  Scree  plot  of  the  standard  deviations  of  the  first  ten  principal
components.

> mm < - apply (meatspec[1:172, !101], 2, mean) 

> tx < - as.matrix (sweep (meatspec [173:215, !101], 2, mm))

We now form the four linear combinations determined by the first four eigenvectors and
compute the predicted values:

> nx < - tx %*% meatpca$rot[,1:4] 

> pv < - cbind (l, nx) %*% mode13$coef

We find the RMSE to be:

> rmse (pv, meatspec$fat [173:215])

[1] 4.534

which is not at all impressive. It turns out that we can do better by using more PCs—we
figure out how many would give the best result on the test sample:

> rmsmeat < - numeric(50) 

> for (i in 1:50) { 

+ nx < - tx %*% meatpca$rot[,1:i] 

+ mode13 < - lm (fat ˜ meatpca$x[,1:i] , meatspec[1:172,])

+ pv < - cbind (l, nx) %*% mode13$coef 

+ rmsmeat [i] < - rmse(pv, meatspec$fat[173:215] ) 

+ } } 

> plot (rmsmeat, ylab="Test RMS") 

> which.min (rmsmeat)
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Shrinkage Methods 149

[1] 27

> min (rmsmeat)

[1] 1.8549

The plot of the RMSE is seen in Figure 9.5. The best result occurs for 27 PCs for which 
the RMSE is far better than anything achieved thus far. Of course, in practice we would 
not have access to the test  sample in advance and so we would not know to use 27 
components. We could, of course, reserve part of our original dataset for testing. This is 
sometimes called a validation sample. This is a reasonable strategy, but the downside is 
that we lose this sample from our estimation which degrades its quality. Furthermore, 
there is the question of which and how many observations should go into the validation 
sample. We can avoid this dilemma with the use of crossvalidation (CV). We divide the 
data into m parts, equal (or close to) in size. For each part, we use the rest of the data as 
the training set and that part as the test set. We evaluate the criterion of interest, RMSE in 
this case. We repeat for each part and average the result.

The pls.pcr package can compute this CV. We center the training set X and divide the 
data into ten parts for the CV:

> library (pls.pcr)

> trainx < - as.matrix (sweep (meatspec [1:172,!101] , 2, mm))

> pcrg < – pcr(trainx,meatspec$fat[1:172] ,1:50,

validation="CV", grpsize=10)

>  plot  (pcrg$validat$RMS,  ylab="CV  RMS",  xlab="No.  of components")

Figure 9.5 RMS for the test sample on the left and RMS estimated using CV for
varying numbers of PCs on the right.

The crossvalidated estimates of the RMSE are shown in the right panel of Figure 9.5. The 
minimum occurs at 21 components. This gives an RMSE on the test sample, 2.21, that is 
close to the optimum.
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150 Linear Models with R

9.2 Partial Least Squares

Partial least squares (PLS) is a method for relating a set of input variables X
1
,…X

m
 and

outputs  Y
1
,…,Y

l
.  PLS was  developed by Herman Wold—see Wold,  Ruhe,  Wold,  and

Dunn (1984). PLS regression is comparable to PCR in that both predict the response 
using some number of linear combinations of the predictors. The difference is that while
PCR ignores Y in determining the linear combinations, PLS regression explicitly chooses
them to predict Y as well as possible.

We will consider only univariate PLS—that is to say l=1 so that Y is scalar. We will
attempt to find models of the form:

 

where T
k
 is a linear combination of the X

s
. See Figure 9.6

Various algorithms have been presented for computing PLS. Most work by iteratively
determining the T

i
s to predict y well, but at the same time maintining orthogonality. One

criticism of PLS is  that  it  solves no well-defined modeling problem, which makes it 
difficult  to  distinguish  between  the  competing  algorithms  on  theoretical  rather  than
empirical grounds. Garthwaite (1994) presents an intuitive algorithm, but de Jong (1993)
describes  the  SIMPLS  method,  which  is  now  the  most  well-known.  Several  other
algorithms exist.

As with PCR, we must choose the number of components carefully. CV can be helpful
in doing  this. We apply PLS to the meat spectroscopy data using CV to select the number

Figure 9.6 Schematic representation of partial least squares.
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Shrinkage Methods 151

of components. We center the predictors first and compute the PLS on all models up to 
size 50. We plot the linear combination used for a four-component model in the left panel 
of Figure 9.7. The crossvalidated estimates of the RMSE are shown in the right panel.

> trainx < - as.matrix (sweep (meatspec [1:172, –101], 2, mm))

> plsg < - pls(trainx,meatspec$fat[1:172] ,1:50,

  validation="CV",grpsize=10)

> plot (plsg$training$B[ , , 4], ylab="Coefficient"

> plot  (plsg$validat$RMS,  ylab="CV  RMS",  xlab="No.  of 

components")

We see that  the  effective  linear  combination of  the  predictors  in  the  four-component 
model is similar to the PCR indicating the shrinkage effect. As before, four components 
do  not  appear  to  be  enough—we  need  around  14  components  as  suggested  by  the 
crossvalidated estimate of the RMSE. We need only half the number of components as 
PCR, which is expected since we are using information about the response. Note that the 
CV randomly divides the data into ten groups so if you repeat this calculation, you will 
not get exactly the same result.

Now we determine the performance on the training set for the 14–component model:

> ypred < - plsg$training$Ypred [,,14]

> rmse (ypred,meatspec$fat [1:172])

[1] 1.9528

which is similar to PCR, but now see how we do on the test set. Because the response is 
centered by PLS we need to add the mean response for the training set back in. We also 
need to center the test set:

Figure 9.7 Coefficients of X for a four-component PLS model are 
shown on the left. Estimated CV error is shown on the right.
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152 Linear Models with R

> testx < - as.matrix (sweep (meatspec [173:215,!101], 2, mm))

> plsbeta < - plsg$training$B[,,14] 

> ytpred < - testx %*% plsbeta + mean(meatspec$fat[1:172]) 

> rmse (ytpred,meatspec$f at [173:215] )

[1] 2.0112

which is slightly better than the 2.21 achieved by PCR.
We  have  not  checked  any  diagnostics  in  this  analysis.  PLS  and  PCR  are  just  as

sensitive to assumptions as OLS so these are still mandatory in any full analysis.

PCR and PLS compared
PCR and PLS have the biggest advantage over OLS when there are large numbers of
variables  relative  to  the  number  of  cases.  They  do  not  even  require  that  n$p.  PCR
attempts to find linear combinations of the predictors that explain most of the variation in
these  predictors  using  just  a  few  components.  The  purpose  is  dimension  reduction.
Because the PCs can be linear combinations of all the predictors, the number of variables
used is not always reduced. Because the PCs are selected using only the X-matrix and not
the  response,  there  is  no  definite  guarantee  that  the  PCR  will  predict  the  response
particularly well, although it turns out that way. If it happens that we can interpret the
PCs in a meaningful way, we may achieve a much simpler explanation of the response.
Thus PCR is geared more towards explanation than prediction.

In  contrast,  PLS  finds  linear  combinations  of  the  predictors  that  best  explain  the
response. It is most effective when there are large numbers of variables to be considered.
If successful, the variability of prediction is substantially reduced. On the other hand,
PLS is virtually useless for explanation purposes.

9.3 Ridge Regression

Ridge  regression  makes  the  assumption  that  the  regression  coefficients  (after
normalization)  are  not  likely  to  be  very  large.  The  idea  of  shrinkage  is  therefore
embedded in the method. It is appropriate for use when the design matrix is collinear and
the usual least squares estimates of ! appear to be unstable.

Suppose that the predictors have been centered by their  means and scaled by their
standard  deviations  and  that  the  response  has  been  centered.  The  ridge  regression
estimates of !s are then given by:

 

The use of ridge regression can be motivated in two ways. Suppose we take a Bayesian
point of view and put a prior (multivariate normal) distribution on ! that expresses the
belief  that  smaller  values  of  !  are  more  likely  than  larger  ones.  Large  values  of  $
correspond to  a  belief  that  the  !  are  really  quite  small  whereas  smaller  values  of  $
correspond to a more relaxed belief about !. This is illustrated in Figure 9.8.
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Shrinkage Methods 153

Figure 9.8 Ridge regression illustrated. The least squares estimate is at 
the center of the ellipse while the ridge regression is the point 
on the ellipse closest to the origin. The ellipse is a contour of 
equal density of the posterior probability, which in this case 
will be comparable to a confidence ellipse. % controls the size 
of the ellipse—the larger % is, the larger the ellipse will be.

Another way of looking at it is to suppose we place some upper bound on !T! and then compute 
the least squares estimate of ! subject to this restriction. Use of Lagrange multipliers leads 
to ridge regression. The choice of $ corresponds to the choice of an upper bound in this 
formulation.

$ may be chosen by automatic methods, but it is also safer to plot the values of  as a
function of $. You should pick the smallest value of $ that produces stable estimates of !

We demonstrate the method on the meat spectroscopy data; $=0 corresponds to least

squares while we find that as

> library (MASS) 

> yc < - meatspec$fat[1:172]-mean(meatspec$fat[1:172]) 

> gridge <  -  lm.ridge  (yc  ˜  trainx,  lambda  = 

seq(0,5e!8,le–9)) 

> matplot (gridge$lambda, t(gridge$coef), type="l",lty=1, 

xlab=expression (lambda), ylab=expression (hat (beta)))

Some experimentation was necessary to determine the appropriate range of $. The ridge 
trace plot is shown in Figure 9.9.
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154 Linear Models with R

Figure 9.9 Ridge trace plot for the meat spectroscopy data. The gener-
alized crossvalidation choice of % is shown as a vertical line.

Various automatic selections for $ are available:

> select (gridge) 

modified HKB estimator is 1.0583e–08

modified L–W estimator is 0.70969

smallest value of GCV at 1.8e–08 

> abline (v=l.8e–8)

We will use the generalized crossvalidation (GCV) estimate of 1.8e–8. First, we compute
the  training  sample  performance.  This  ridge  regression  both  centers  and  scales  the
predictors, so we need to do the same in computing the fit. Furthermore, we need to add
back in the mean of the response because of the centering:

> which.min (gridge$GCV)

1.8e–08

     19 

>  ypredg  <  -  scale  (trainx,  center=FALSE,

scale=gridge$scales) 

%*% gridge$coef [, 19] + mean(meatspec$fat[1:172]) 

> rmse(ypredg,meatspec$fat[1:172])

[1] 0.80454

which is comparable to the above, but for the test sample we find:

> ytpredg < - scale (testx, center=FALSE, scale=gridge$scales) 

%*% gridge$coef [, 19] + mean(meatspec$fat[1:172])

> rmse (ytpredg, meatspec$fat[173:215])

[1] 4.0966
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Shrinkage Methods 155

which is dismayingly poor. However, a closer examination of the predictions reveals that 
just one of the ridge predictions is bad:

> c (ytpredg [13], ytpred [13], meatspec$fat [172+13] )

   185    185

11.188 35.690 34.800

The PLS prediction (second) is close to the truth (third), but the ridge prediction is bad. If 
we remove this case:

> rmse (ytpredg[!13], meatspec$fat[173:215] [!13])

[1] 1.9765

we get a good result.
Ridge regression estimates of coefficients are biased. Bias is undesirable, but it is not 

the  only  consideration.  The  mean-squared  error  (MSE)  can  be  decomposed  in  the 
following way:

 

Thus  the  MSE of  an  estimate  can  be  represented  as  the  square  of  the  bias  plus  the 
variance. Sometimes a large reduction in the variance may be obtained at the price of an 
increase in the bias. If the MSE is reduced as a consequence, then we may be willing to 
accept  some  bias.  This  is  the  trade-off  that  ridge  regression  makes—a  reduction  in 
variance at the price of an increase in bias. This is a common dilemma.

Frank and Friedman (1993) compared PCR, PLS and ridge regression and found the 
best results for ridge regression. Of course, for any given dataset any of the methods may 
prove to be the best, so picking a winner is difficult.

Exercises

1. Using the seatpos data, perform a PCR analysis with hipcenter as the response and 
HtShoes, Ht, Seated, Arm, Thigh and Leg as predictors. Select an appropriate number 
of components and give an interpretation to those you choose. Add Age and Weight as 
predictors  and  repeat  the  analysis.  Use  both  models  to  predict  the  response  for 
predictors taking these values:

   Age  Weight HtShoes      Ht Seated

64.800 263.700 181.080 178.560 91.440 

Arm   Thigh    Leg

35.640 40.950  38.790

2.  Fit  a  PLS model  to the seatpos data with hipcenter  as  the response and all  other 
variables as predictors. Take care to select an appropriate number of components. Use 
the model to predict the response at the values of the predictors specified in the first 
question.
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156 Linear Models with R

3. Fit a ridge regression model to the seatpos data with hipcenter as the response and all
other variables as predictors. Take care to select an appropriate amount of shrinkage.
Use the model to predict the response at the values of the predictors specified in the
first question.

4. Take the bodyfat at data, and use the percentage of body fat as the response and the
other variables as potential predictors. Remove every tenth observation from the data
for use as a test sample. Use the remaining data as a training sample building the
following models:

(a) Linear regression with all predictors
(b) Linear regression with variables selected using AIC
(c) Principal component regression
(d) Partial least squares
(e) Ridge regression

Use the models you find to predict the response in the test sample. Make a report on
the performance of the models.
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CHAPTER 10
Statistical Strategy and Model Uncertainty

10.1 Strategy

Thus far we have learned various tactics:

1.  Diagnostics:  Checking  of  assumptions—constant  variance,  linearity,  normality,
outliers, influential points, serial correlation and collinearity

2.  Transformation:  Transforming the response—Box-Cox, transforming the predictors
—splines and polynomial regression

3. Variable selection: Testing- and criterion-based methods

In what order should these be done? Should procedures be repeated at later stages? When
should we stop? There are no definite answers to these questions. If the reader insists, I
would recommend Diagnostics → Transformation → Variable Selection → Diagnostics as
a rudimentary strategy. However, regression analysis is a search for structure in data and
there are no hard-and-fast rules about how it should be done. Regression analysis requires
some skill. You must be alert to unexpected structure in the data. Thus far, no one has
implemented a computer program for conducting a complete analysis. Because of the
difficulties in automating the assessment of regression graphics in an intelligent manner, I
do not expect that this will be accomplished soon. The human analyst has the ability to
assess plots in light of contextual information about the data.

There  is  a  danger  of  doing  too  much  analysis.  The  more  transformations  and
permutations of leaving out influential points you do, the better fitting model you will
find. Torture the data long enough, and sooner or later it will confess. Remember that
fitting the data well is no guarantee of good predictive performance or that the model is a
good representation of the underlying population. So:

1. Avoid complex models for small datasets.
2. Try to obtain new data to validate your proposed model. Some people set aside some

of their existing data for this purpose.
3. Use past experience with similar data to guide the choice of model.

Data analysis is not an automatic process. Analysts have personal preferences in their
choices of  methodology,  use software with varying capabilities  and will  interpret  the
same  graphical  display  differently.  In  comparing  the  competing  analyses  of  two
statisticians,  it  may  sometimes  be  possible  to  determine  that  one  analysis  is  clearly
superior.  However,  in  most  cases,  particularly  when  the  analysts  are  experienced,  a
universally acceptable judgment of superiority will not be possible.

The same data may support different models. Conclusions drawn from the models may
differ  quantitatively and qualitatively.  However,  except  for  those well-known datasets
that  circulate  endlessly  through  textbooks  and  research  articles,  most  data  are  only
analyzed once. The analyst may be unaware that a second independent look at the data
may result in quite different conclusions. We call this problem model multiplicity. In the
next section, we describe an experiment illustrating the depth of this problem.
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158 Linear Models with R

10.2 An Experiment in Model Building

In 1996, I taught a semester length masters level course in applied regression analysis to
28 students. Towards the end of the semester, I decided to set an assignment to test the
students’ ability in building a regression model for the purposes of prediction. I generated
regression data with a response y and five uncorrelated predictors and n=50 from a model
known only to me, which was:

 

where x
1 

~
 
U (0, 1), x

2 
~ N (0, 1), 1/x

3 
~ U (0, 1), x

4 
~ N (1, 1), x

5 
~ U (1, 3) and " ~ N (0, 1).

I asked students to predict the mean response at ten values of the predictors that I
specified. I also asked them to provide a standard error for each of their predictions. The
students understood and were reminded of the distinction between the standard error for
the mean response and for a future observed value. The students were told that their score
on the assignment would depend only on the closeness of their predicted values and the
true values and on how closely their standard errors reflected the difference between
these two quantities. Students were told to work independently.

For a given student’s input, let p
i
 be his or her prediction, t

i
 be the true value and s

i
 be

the standard error where i=1,…, 10. To assess his or her prediction accuracy, I used:

 

whereas to measure the “honesty” of their standard errors, I used:

 

We would expect the predicted value to differ from the true value by typically about one
standard  error  if  the  latter  has  been  correctly  estimated.  Therefore,  the  measure  of
standard error honesty should be around one:

1.12 1.20 1.46 1.46 1.54 1.62 1.69

1.69 1.79 3.14 4.03 4.61 5.04 5.06

5.13 5.60 5.76 5.76 5.94 6.25 6.53

6.53 6.69 10.20 34.45 65.53 674.98 37285.95

Table  10.1  Measures  of  prediction  accuracy  for  28  students  in  ascending 
order  of magnitude.
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Statistical Strategy and Model Uncertainty 159

The prediction accuracy scores for the 28 students are shown in Table 10.1. We see that 
one student did very poorly. An examination of his or her model and some conversation 
revealed that this student neglected to back transform predictions to the original scale 
when using a model with a transform on the response. Three pairs of scores are identical 
in the table, but an examination of the models used and more significant digits revealed 
that only one pair was due to the students using the same model. This pair of students 
were known associates. Thus 27 different models were found by 28 students.

The scores for honesty of standard errors are shown in Table 10.2. The order in which 
scores are shown correspond to that given in Table 10.1:

0.75 7.87 6.71 0.59 4.77 8.20 11.74

10.70 1.04 17.10 3.23 14.10 84.86 15.52

80.63 17.61 14.02 14.02 13.35 16.77 12.15

12.15 12.03 68.89 101.36 18.12 2.24 40.08

Table 10.2 Honesty of standard errors—order of scores corresponds to that in Table 10.1.

We see that the students’ standard errors were typically around an order of magnitude 
smaller than they should have been.

10.3 Discussion

Why was there so much model multiplicity? The students were all in the same class and 
used the same software, but almost everyone chose a different model. The course covered 
many of the commonly understood techniques for variable selection, transformation and 
diagnostics  including  outlier  and  influential  point  detection.  The  students  were 
confronted with the problem of selecting the order in which to apply these methods and 
choosing from several competing methods for a given purpose.

The reason the models were so different was that students applied the various methods 
in  different  orders.  Some did variable  selection before transformation and others,  the 
reverse. Some repeated a method after the model was changed and others did not. I went 
over the strategies that several of the students used and could not find anything clearly 
wrong with what they had done. One student made a mistake in computing his or her 
predicted  values,  but  there  was  nothing  obviously  wrong  in  the  remainder.  The 
performance on this assignment did not show any relationship with that in the exams.

The implications for statistical practice are serious. Often a dataset is analyzed by a 
single analyst who comes up with a single model. Predictions and inferences are based on 
this  single  model.  The  analyst  may  be  unaware  that  the  data  support  quite  different 
models which may lead to very different conclusions. Clearly one will not always have a 
stable of 28 independent analysts to search for alternatives, but it does point to the value 
of  a  second  or  third  independent  analysis.  It  may  also  be  possible  to  automate  the 
components of the analysis to some extent as in Faraway (1994) to see whether changes 
in the order of analysis might result in a different model.
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160 Linear Models with R

Another issue is raised by the standard error results. Often we use the data to help determine
the model. Once a model is built or selected, inferences and predictions may be made. Usually
inferences are based on the assumption that the selected model was fixed in advance and
so only reflect uncertainty concerning the parameters of that model. Students took that approach
here. Because the uncertainty concerning the model itself is not allowed for, these infer-
ences tend to be overly optimistic leading to unrealistically small standard errors. Meth-
ods for realistic inference when the data are used to select the model have come under the
heading of Model Uncertainty—see Chatfield (1995) for a review. The effects of model
uncertainty often overshadow the parametric uncertainty and the standard errors need to be
inflated to reflect this. Faraway (1992) developed a bootstrap approach to compute these
standard errors while Draper (1995) is an example of a Bayesian approach. These meth-
ods are a step in the right direction in that they reflect the uncertainty in model selection.
Nevertheless, they do not address the problem of model multiplicity since they proscribe a
particular method of analysis that does not allow for differences between human analysts.

Sometimes the data speak with a clear and unanimous voice—the conclusions are in-
contestable. Other times, differing conclusions may be drawn depending on the model chosen.
We should acknowledge the possibility of alternative conflicting models and seek them. 
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CHAPTER 11
Insurance Redlining—A Complete Example

In this chapter, we present a relatively complete data analysis. The example is interesting 
because it illustrates several of the ambiguities and difficulties encountered in statistical 
practice.

Insurance redlining refers to the practice of refusing to issue insurance to certain types 
of people or within some geographic area. The name comes from the act of drawing a red 
line  around an  area  on  a  map.  Now few would  quibble  with  an  insurance  company 
refusing  to  sell  auto  insurance  to  a  frequent  drunk  driver,  but  other  forms  of 
discrimination would be unacceptable.

In the late 1970s, the U.S. Commission on Civil Rights examined charges by several 
Chicago  community  organizations  that  insurance  companies  were  redlining  their 
neighborhoods.  Because  comprehensive  information  about  individuals  being  refused 
homeowners insurance was not available, the number of FAIR plan policies written and 
renewed in Chicago by zip code for the months of December 1977 through May 1978 
was recorded. The FAIR plan was offered by the city of Chicago as a default policy to 
homeowners  who  had  been  rejected  by  the  voluntary  market.  Information  on  other 
variables  that  might  affect  insurance  writing  such  as  fire  and  theft  rates  were  also 
collected at the zip code level. The variables are: 
race racial composition in percentage of minority 
fire fires per 100 housing units 
theft theft per 1000 population 
age percentage of housing units built before 1939 
involact new FAIR plan policies and renewals per 100 housing units 
income median family income in thousands of dollars 
side North or South Side of Chicago 

The data come from Andrews and Herzberg (1985) where more details of the 
variables and the background are provided.

11.1 Ecological Correlation

Notice that we do not know the race of those denied insurance. We only know the racial 
composition in the corresponding zip code. This is an important difficulty that needs to 
be considered before starting the analysis.

When data are collected at the group level, we may observe a correlation between two 
variables. The ecological fallacy is concluding that the same correlation holds at the indi-
vidual level. For example, in countries with higher fat intakes in the diet, higher rates of 
breast cancer have been observed. Does this imply that individuals with high fat intakes 
are at a higher risk of breast cancer? Not necessarily. Relationships seen in observational 
data are subject to confounding, but even if this is allowed for, bias is caused by 
aggregating data. We consider an example taken from U.S. demographic data:

> data (eco)
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162 Linear Models with R

>  plot  (income  ˜  usborn,  data=eco,  xlab="Proportion  US born", 

ylab="Mean Annual Income")

In the first panel of Figure 11.1, we see the relationship between 1998 per capita income dollars
from all sources and the proportion of legal state residents born in the United States in 1990
for each of the 50 states plus the District of Columbia (D.C.). We can see a clear negative
correlation.

Figure 11.1 1998 annual per capita income and proportion U.S. born for 
50 states plus D. C. The plot on the right shows the same data
as on the left, but with an extended scale and the least squares fit
shown.

We can fit a regression line and show the fitted line on an extended range:

> g < - lm (income ˜ usborn, eco) >

summary (g)

Coefficients:

           Estimate Std.Error t value Pr(>|t|) 

(Intercept)   68642      8739    7.85  3.2e–10 

usborn       !46019      9279   !4.96  8.9e–06 

Residual standard error: 3490 on 49 degrees of freedom

Multiple R-Squared: 0.334, Adjusted R-squared: 0.321 F-

statistic: 24.6 on 1 and 49 DF, p-value: 8.891e–06 

>  plot  (income  ˜  usborn,  data=eco,  xlab="Proportion  US born", 

ylab="Mean  Annual  Income",  xlim=c  (0,  1),  ylim=c(15000,

70000), xaxs="i") 

> abline (coef (g) )

We see that there is a clear statistically significant relationship between the per capita
annual  income and the  proportion  who are  U.S.  born.  What  does  this  say  about  the
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Insurance Redlining—A Complete Example 163

average  annual  income of  people  who  are  U.S.  born  and  those  who  are  naturalized 
citizens?  If  we  substitute  usborn=l  into  the  regression  equation,  we  get 
68642&460190=$22,623, while if we put usborn=0, we get $68,642. This suggests that on 
average,  naturalized  citizens  earn  three  times  more  than  U.S.  born  citizens.  In  truth, 
information from the U.S. Bureau of the Census indicates that U.S. born citizens have an 
average income just slightly larger than naturalized citizens. What went wrong with our 
analysis?

The  ecological  inference  from  the  aggregate  data  to  the  individuals  requires  an 
assumption of constancy. Explicitly, the assumption would be that the incomes of the 
native born do not depend on the proportion of native born within the state (and similarly 
for  naturalized  citizens).  This  assumption  is  unreasonable  for  these  data  because 
immigrants are naturally attracted to wealthier states.

This assumption is also relevant to the analysis of the Chicago Insurance data since we 
have only aggregate data. We must keep in mind that the results for the aggregated data 
may not hold true at the individual level.

11.2 Initial Data Analysis

Start by reading the data in and examining it:

> data (chredlin) 

> chredlin

      race fire theft  age involact income side 

60626 10.0  6.2    29 60.4      0.0 11.744   n 

60640 22.2  9.5    44 76.5      0.1  9.323   n 

…etc… 

60645  3.1  4.9    27  46.6     0.0  3.731    n

Summarize:

> summary (chredlin)

     race           fire          theft            age 

Min.   : 1.00  Min.   : 2.00  Min.   :  3.0  Min.   : 2.0 

1st Qu.: 3.75  1st Qu.: 5.65  1st Qu.: 22.0  1st Qu.:48.6 

Median :24.50  Median :10.40  Median : 29.0  Median :65.0 

Mean   :34.99  Mean   :12.28  Mean   : 32.0  Mean   :60.3 

3rd Qu.:57.65  3rd Qu.:16.05  3rd Qu.: 38.0  3rd Qu.:77.3 

Max.   :99.70  Max.   :39.70  Max.   :147.0  Max.   :90.1

   involact      incoome      side

Min.   :0.000  Min.   : 5.58  n:25 

1st Qu.:0.000  1st Qu.: 8.45  s:22 

Median :0.400  Median : 10.69 

Mean   : 0.615 Mean   :10.70 

3rd Qu.: 0.900 3rd Qu.:11.99 

Max.   : 2.200 Max.   :21.48

We see that there is a wide range in the race variable, with some zip codes almost entirely 
minority or nonminority. This is good for our analysis since it will reduce the variation in
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164 Linear Models with R

the regression coefficient for race, allowing us to assess this effect more accurately. If all
the zip codes were homogeneous, we would never be able to discover an effect from
these aggregated data. We also note some skewness in the theft and income variables.
The response involact has a large number of zeros. This is not good for the assumptions
of  the  linear  model  but  we  have  little  choice  but  to  proceed.  We  will  not  use  the
information about North vs. South Side until later. Now make some graphical summaries:

> par(mfrow=c (2, 3)) 

> for  (i  in  1:6)  stripchart  (chredlin  [,  i],  main=names 

(chredlin) [i] vertical=TRUE,method="jitter")

> par(mfrow=c (1, 1)) 

> pairs (chredlin)

The strip plots are seen in Figure 11.2. Jittering has been added to avoid overplotting of
symbols. Now look at the relationship between involact and race:

Figure 11.2 Strip plots of the Chicago Insurance data.

> summary (1m (involact race, chredlin)

Coefficients:

           Estimate  Std. Error t value  Pr(>|t|)

(Intercept) 0.12922     0.09661    1.34      0.19 

race        0.01388     0.00203    6.84   1.8e–08

Residual standard error: 0.449 on 45 degrees of freedom

Multiple R-Squared: 0.509, Adjusted R-squared: 0.499

F-statistic: 46.7 on 1 and 45 DF, p-value: 1.78e–08

We can clearly see that homeowners in zip codes with a high percentage of minorities are
taking the default FAIR plan insurance at a higher rate than other zip codes. That is not in
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Insurance Redlining—A Complete Example 165

doubt. However, can the insurance companies claim that the discrepancy is due to greater 
risks in some zip codes? The insurance companies could claim that they were denying 
insurance in neighborhoods where they had sustained large fire-related losses and any 
discriminatory effect was a by-product of legitimate business practice. We plot some of 
the variables involved by this question in Figure 11.3:

> plot (involact ˜ race, chredlin) 

> abline (1m (involact ˜ race, chredlin)) 

> plot (fire ˜ race, chredlin) 

> abline (1m (fire ˜ race, chredlin))

Figure 11.3 Relationship between fire, race and involact in the Chicago data.

The question of which variables should also be included in the regression so that their 
effect  may  be  adjusted  for  is  difficult.  Statistically,  we  can  do  it,  but  the  important 
question is whether it should be done at all. For example, it is known that the incomes of 
women in the United States and other countries are generally lower than those of men. 
However, if one adjusts for various factors such as type of job and length of service, this 
gender difference is reduced or can even disappear. The controversy is not statistical but 
political—should these factors be used to make the adjustment?

For the present data, suppose that the effect of adjusting for income differences was to 
remove the race effect. This would pose an interesting, but nonstatistical question. I have 
chosen to include the income variable in the analysis just to see what happens.

I have decided to use log (income) partly because of skewness in this variable, but also 
because income is  better  considered on a multiplicative rather than additive scale.  In 
other words,  $1,000 is  worth a lot  more to a poor person than a millionaire because 
$1,000 is a much greater fraction of the poor person’s wealth.

11.3 Initial Model and Diagnostics

We start with the full model:
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166 Linear Models with R

> g < - lm (involact ˜ race + fire + theft + age + log

(income),

  chredlin)

> summary (g)

Coefficients:

            Estimate Std. Error t value  Pr(>|t|)

(Intercept) !1.18554    1.10025   !1.08   0.2875 

race         0.00950    0.00249    3.82   0.0004 

fire         0.03986    0.00877    4.55  4.8e–05 

theft       !0.01029    0.00282   !3.65   0.0007 

age          0.00834    0.00274    3.04  0.00413 

log (income) 0.34576    0.40012    0.86   0.3925

Residual standard error: 0.335 on 41 degrees of freedom

Multiple R-Squared: 0.752, Adjusted R-squared: 0.721

F-statistic: 24.8 on 5 and 41 DF, p-value: 2.01e-11

Before leaping to any conclusions, we should check the model assumptions. These two
diagnostic plots are seen in Figure 11.4:

> plot (fitted (g), residuals (g), xlab="Fitted",

ylab="Residuals") 

>  abline (h=0) 

>  qqnorm (residuals (g))

>  qqline (residuals (g))

The diagonal  streak in the residual-fitted plot  is  caused by the large number of  zero

response values in the data. When y=0, the residual , hence the line.
Turning a blind eye to this feature, we see no particular problem. The Q–Q plot looks fine
too.

Now let’s look at influence—what happens if points are excluded? We plot the leave-

out-one differences in  for theft and the Cook distances:

> gi < - influence (g) 

> qqnorml (gi$coef [,4]) 

> halfnorm (cooks. distance (g))

See Figure 11.5 where cases 6 and 24 stick out. It is worth looking at other leaveout-one
coefficient plots also. We check the jackknife residuals for outliers:

> range (rstudent (g))

[1]  !3.1850    2.7929
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Insurance Redlining—A Complete Example 167

Figure 11.4 Diagnostic plots of the initial model for the Chicago Insurance data.

Figure 11.5 A Q–Q plot of the leave-out-one coefficient differences for 
the theft variable is shown on the left. A half-normal plot of 
the Cook distances is shown on the right.

There is nothing extreme enough to call an outlier. Let’s take a look at the two cases:

> chredlin [c (6, 24), ]

      race fire theft  age involact income side 

60610 54.0 34.1    68 52.6      0.3  8.231    n 

60607 50.2 39.7   147 83.0      0.9  7.459    n

These are high theft and fire zip codes. See what happens when we exclude these points:

> g < - lm (involact ˜ race + fire + theft + age + log 

(income), chredlin, subset=!c(6, 24))
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168 Linear Models with R

> summary (g)

Coefficients:

            Estimate Std. Error t value Pr(>|t|)

(Intercept) !0.57674    1.08005   !0.53     0.59

race         0.00705    0.00270    2.62     0.03

fire         0.04965    0.00857    5.79    1e–06

theft       !0.00643    0.00435   !1.48     0.14

age          0.00517    0.00289    1.79     0.08

log(income)  0.11570    0.40111    0.29     0.77

Residual standard error: 0.303 on 39 degrees of freedom

Multiple R-Squared: 0.804,   Adjusted R-squared: 0.779

F-statistic: 32 on 5 and 39 DF, p-value: 8.2e–13

theft and age are no longer significant at the 5% level.

11.4 Transformation and Variable Selection

We now look for transformations. We try some partial residual plots as seen in Figure
11.6:

> prplot (g, 1)

> prplot (g, 2)

These plots indicate no need to transform. It would have been inconvenient to transform
the race variable since that would have made interpretation more difficult. Fortunately,
we do not need to worry about this. We examined the other partial residual plots and
experimented with polynomials for the predictors. No transformation of the predictors
appears to be worthwhile.

We choose to avoid even considering a transformation of the response. The zeros in the
response  would  have  restricted  the  possibilities  and  furthermore  would  have  made
interpretation more difficult.

We now move on to variable selection. We are not so much interested in picking one
model here because we are mostly interested in the dependency of involact on the race

variable. So  is the estimate we want to focus on. The problem is that collinearity with

the other variables may cause  to vary substantially depending on what other variables
are in the model. We address this question here. We leave out the two influential points and
force race to be included in every model. We do this because race is the primary predictor
of interest in this model and we want to measure its effect. We are not prejudging whether it is
significant or not—we will check that later:
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Insurance Redlining—A Complete Example 169

Figure 11.6 Partial residualplots for race and fire. 

>  chreduc  <  -  matplot  (x,  cbind  (y,  gs$fit),  type="pl",

ylab="y", pch=18, lty=l)

> library(leaps)

> b< - regsubsets (involact ˜ race + fire + theft + age + log 

(income), force.in=1, data=chreduc)

> (rs < = - summary (b))

Subset selection object

         Forced in Forced out

race          TRUE      FALSE

fire         FALSE      FALSE

theft        FALSE      FALSE

age          FALSE      FALSE

log(income)  FALSE      FALSE

1 subsets of each size up to 5

Selection Algorithm: exhaustive

       race  fire theft age log (income)

2 ( 1 ) "*"   "*" " "   " " " "

3 ( 1 ) "*"   "*" " "   "*" " "

4 ( 1 ) "*"   "*" "*"   "*" " "

5 ( 1 ) "*"   "*" "*"   "*" "*"

> rs$adj

[1] 0.76855 0.77650 0.78402 0.77895

The best model seems to be this one:

> g < - lm (involact ˜ race + fire + theft + age, chredlin,

  subset= !c(6,24))

> summary (g)
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170 Linear Models with R

Coefficients:

            Estimate Std. Error t value Pr(>|t|)

(Intercept) !0.26787    0.13967   !1.92   0.0623 

race         0.00649    0.00184    3.53   0.0011 

fire         0.04906    0.00823    5.96  5.3e–07

theft       !0.00581    0.00373   !1.56   0.1271 

age          0.00469    0.00233    2.01   0.0514

Residual standard error: 0.3 on 40 degrees of freedom

Multiple R-Squared: 0.804, Adjusted R-squared: 0.784

F-statistic: 40.9 on 4 and 40 DF, p-value: 1.24e–13

The fire rate is significant and actually has higher t-statistics; but nevertheless, we have verified
that there is a positive relationship between involact and race while controlling for a selection
of the other variables. Even so we must consider the reliability of this conclusion. For ex-
ample, would other analysts have come to the same conclusion? One alternative model is:

> galt < - lm (involact ˜ race+fire+log (income), chredlin,

subset= - c(6, 24)) 

> summary (galt) Coefficients:

            Estimate Std. Error t value Pr(>|t|)

(Intercept)  0.75326    0.83588    0.90    0.373 

race         0.00421    0.00228    1.85    0.072 

fire         0.05102    0.00845    6.04  3.8e–07

log(income) !0.36238    0.31916   !1.14    0.263

Residual standard error: 0.309 on 41 degrees of freedom

Multiple R-Squared: 0.786, Adjusted R-squared: 0.77

F-statistic: 50.1 on 3 and 41 DF, p-value: 8.87e–14

In this model, we see that race is not statistically significant. The previous model did fit
slightly better, but it is important that there exists a reasonable model in which race is not
significant since, although the evidence seems fairly strong in favor of a race effect, it is
not entirely conclusive. Interestingly enough, if log (income) is now dropped:

> galt < - lm (involact ˜ race+fire, chredlin, subset= !c (6, 24)) 

> summary (galt)

Coefficients:

            Estimate Std. Error t value Pr(>|t|)

(Intercept) !0.19132    0.08152   !2.35   0.0237 

race         0.00571    0.00186    3.08   0.0037 

fire         0.05466    0.00784    6.97  1.6e–08

Residual standard error: 0.31 on 42 degrees of freedom

Multiple R-Squared: 0.779, Adjusted R-squared: 0.769

F-statistic: 74.1 on 2 and 42 DF, p-value: 1.70e–14

we find  race  again  becomes  significant,  which  raises  again  the  question  of  whether
income should be adjusted for since it makes all the difference here.

We now return to the two left-out cases. Observe the difference in the fit when the two
are reincluded on the best model. The quantities may change but the qualitative message
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Insurance Redlining—A Complete Example 171

is the same. It is better to include all points if possible, especially in a legal case like this, 
where excluding points might lead to criticism and suspicion of the results:

> g < - lm (involact ˜ race + fire + theft + age, chredlin) 

> summary (g)

Coefficients:

            Estimate Std. Error t value Pr(>|t|) 

(Intercept) !0.24312    0.14505   !1.68  0.10116 

race         0.00810    0.00189    4.30  0.00010 

fire         0.03665    0.00792    4.63  3.5e–05 

theft       !0.00959    0.00269   !3.57  0.00092 

age          0.00721    0.00241    2.99  0.00460 

Residual standard error: 0.334 on 42 degrees of freedom 

Multiple R-Squared: 0.747, Adjusted R-squared: 0.723 

F-statistic: 31 on 4 and 42 DF, p-value: 4.8e–12

The main message of the data is not changed. On checking the diagnostics, I found no 
trouble.  So it  looks like  there  is  moderately  good evidence that  zip  codes  with  high 
minority  populations  are  being  “redlined.”  While  there  is  evidence  that  some of  the 
relationship between race and involact can be explained by the fire rate, there is still a 
component that cannot be attributed to the other variables.

11.5 Discussion

There is some ambiguity in the conclusion here. These reservations have several sources.
There is some doubt because the response is not a perfect measure of people being 

denied  insurance.  It  is  an  aggregate  measure  that  raises  the  problem  of  ecological 
correlations.  We have  implicitly  assumed that  the  probability  a  minority  homeowner 
would obtain a FAIR plan after adjusting for the effect of the other covariates is constant 
across zip codes. This is unlikely to be true. If the truth is simply a variation about some 
constant, then our conclusions will still be reasonable, but if this probability varies in a 
systematic way, then our conclusions may be off the mark. It would be a very good idea 
to obtain some individual level data.

Another  point  to  be  considered  is  the  size  of  the  effect.  The  largest  value  of  the 
response is only 2.2% and most other values are much smaller. Even assuming the worst, 
the number of people affected is small.

There is also the problem of a potential latent variable that might be the true cause of 
the observed relationship. Someone with firsthand knowledge of the insurance business 
might propose one. This possibility always casts a shadow of doubt on our conclusions.

Another  issue  that  arises  in  cases  of  this  nature  is  how much  the  data  should  be 
aggregated. For example, suppose we fit separate models to the two halves of the city. Fit 
the model to the south of Chicago:

> g < - lm (involact ˜ race+fire+theft+age, subset=(side == "s"),

  chredlin) 

> summary (g)
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172 Linear Models with R

Coefficients:

            Estimate Std. Error t value Pr(>|t|) 

(Intercept) !0.23441    0.23774   !0.99    0.338 

race         0.00595    0.00328    1.81    0.087 

fire         0.04839    0.01689    2.87    0.011 

theft       !0.00664    0.00844   !0.79    0.442 

age          0.00501    0.00505    0.99    0.335

Residual standard error: 0.351 on 17 degrees of freedom 

Multiple R-Squared: 0.743, Adjusted R-squared: 0.683

F-statistic: 12.3 on 4 and 17 DF, p-value: 6.97e–05

and now to the north:

> g < - lm (involact ˜ race+fire+theft+age, subset=(side == "n"),

chredlin) 

> summary (g)

Coefficients:

            Estimate Std. Error t value Pr(>|t|) 

(Intercept) !0.31857    0.22702   !1.40    0.176 

race         0.01256    0.00448    2.81    0.011 

fire         0.02313    0.01398    1.65    0.114 

theft       !0.00758    0.00366   !2.07    0.052 

age          0.00820    0.00346    2.37    0.028

Residual standard error: 0.343 on 20 degrees of freedom 

Multiple R-Squared: 0.756, Adjusted R-squared: 0.707

F-statistic: 15.5 on 4 and 20 DF, p-value: 6.52e-06

We see that race is significant in the north, but not in the south. By dividing the data into
smaller and smaller subsets it is possible to dilute the significance of any predictor. On
the other hand, it is important not to aggregate all data without regard to whether it is
reasonable. Clearly a judgment has to be made and this can be a point of contention in
legal cases.

There  are  some  special  difficulties  in  presenting  this  during  a  court  case.  With
scientific inquiries, there is always room for uncertainty and subtlety in presenting the
results, particularly if the subject matter is not contentious. In an adversarial proceeding,
it is difficult to present statistical evidence when the outcome is not clearcut, as in this
example.  There  are  particular  difficulties  in  explaining  such  evidence  to
nonmathematically trained people.

After all this analysis, the reader may be feeling somewhat dissatisfied. It seems we are
unable to come to any truly definite conclusions and everything we say has been hedged
with “ifs” and “buts.” Winston Churchill once said:

Indeed, it has been said that democracy is the worst form of Government except
all those other forms that have been tried from time to time.

We might say the same about statistics with respect to how it helps us reason in the face
of uncertainty. It is not entirely satisfying but the alternatives are worse.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
] 

at
 1

6:
20

 2
3 

M
ay

 2
01

4 



CHAPTER 12 
Missing Data

Missing data occur when some values of some cases are missing. This is not uncommon. 
Dealing with missing data is time consuming. Fixing up problems caused by missing data 
sometimes takes longer than the analysis.

What can be done? Obviously, finding the missing values is the best option, but this is 
not always possible. Next, ask why the data are missing. If the reason an observation is 
missing is noninformative, then a fix is easier. For example, if a data point is missed 
because it was large in value, then this could cause some bias and a simple fix is not 
possible. Patients may drop out of a drug study, because they believe their treatment is 
not working—this would cause bias.

Here  are  several  fix-up methods  to  use  when data  are  missing for  noninformative 
reasons:

1. Delete the case with missing observations. This is OK if this only causes the loss of a 
relatively small number of cases. This is the simplest solution.

2. Fill in or impute the missing values. Use the rest of the data to predict the missing 
values. Simply replacing the missing value of a predictor with the average value of 
that predictor is one easy method. Using regression on the other predictors is another 
possibility.  It  is  not  clear how much the diagnostics and inference on the filled-in 
dataset are affected. Some additional uncertainty is caused by the imputation, which 
needs  to  be  taken  into  account.  Multiple  imputation  can  capture  some  of  this 
uncertainty.

3. Consider just (x
i
, y

i
) pairs with some observations missing. The means and SDs of x 

and y  can be used in the estimate even when a member of  a  pair  is  missing.  An 
analogous  method is  available  for  regression  problems.  This  is  called  the  missing 
value correlation method.

4. Maximum likelihood methods can be used assuming the multivariate normality of the 
data. The EM algorithm is often used here. We will not explain the details, but the idea 
is essentially to treat missing values as nuisance parameters.

Suppose some of the values in the Chicago Insurance dataset were missing. I randomly 
declared some of the observations missing in this modified dataset. Read it in and take a 
look:

> data (chmiss) 

> chmiss

      race fire theft  age involact income 

60626 10.0  6.2    29 60.4      NA  11.744 

60640 22.2  9.5    44 76.5      0.1  9.323 

60613 19.6 10.5    36   NA      1.2  9.948 

60657 17.3 7.7 37 NA 0.5 10.656 

…etc… 

60645  3.1 4.9 27 NA 0.0 13.731
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174 Linear Models with R

There are 20 missing observations denoted by NA here. It is important to know what the
missing value code is for the data and/or software you are using. See what happens if we
try to fit the model:

> g < - lm (involact ˜ .,chmiss)

> summary (g)

Coefficients:

            Estimate Std. Error t value Pr(>|t|)

(Intercept) !1.11648    0.60576   !1.84  0.07947 

race         0.01049    0.00313    3.35  0.00302 

fire         0.04388    0.01032    4.25  0.00036 

theft       !0.01722    0.00590   !2.92  0.00822 

age          0.00938    0.00349    2.68  0.01390

income       0.06870    0.04216    1.63  0.11808

Residual standard error: 0.338 on 21 degrees of freedom

Multiple R-Squared: 0.791, Adjusted R-squared: 0.741

F-statistic: 15.91 on 5 and 21 DF, p-value: 1.594e–06

Any  case  with  at  least  one  missing  value  is  omitted  from  the  regression.  Different
statistical packages have different ways of handling missing observations. For example,
the default behavior in S-plus would refuse to fit the model at all. You can see there are
now only 21 degrees of freedom—almost half the data is lost. We can fill in the missing
values by their variable means as in:

> cmeans < - apply (chmiss, 2, mean, na.rm=T)

> cmeans

    race fire theft age involact income

35.60930 11.42444 32.65116 59.96905 0.64773 10.73587 

> mchm < - chmiss 

> for (i in c (1, 2, 3, 4, 6) ) mchm [is.na(chmiss[,i]),i]

< - cmeans [i]

We do not fill in missing values in the response because this is the variable we are trying
to model. Now refit:

> g < - lm (involact ˜ ., mchm)

> summary (g)

Coefficients:

             Value Std . Error t value Pr(>|t|)

(Intercept) 0.0707      0.5094  0.1387   0.8904

      race  0.0071      0.0027  2.6307   0.0122

      fire  0.0287      0.0094  3.0623   0.0040

     theft !0.0031      0.0027 !1.1139   0.2723

       age  0.0061      0.0032  1.8954   0.0657

    income !0.0271      0.0317 !0.8550   0.3979

Residual standard error: 0.3841 on 38 degrees of freedom

Multiple R-Squared: 0.6819, Adjusted R-squared: 0.6401

F-statistic: 16.3 on 5 and 38 DF, p-value: 1.409e–08
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Missing Data 175

are significant in the first fit, but not in the second. Also, the regression coefficients are 
now all closer to zero. The situation is analogous to the errors in variables case. The bias 
introduced by the fill-in method can be substantial and may not be compensated by the 
attendant reduction in variance.

We can also use regression methods to predict the missing values of the covariates. 
Let’s try to fill in the missing race values:

> gr < - lm (race ˜ fire+theft+age+income, chmiss) 

> chmiss [is.na (chmiss$race) , ]

      race  fire theft  age involact income 

60646   NA   5.7    11 27.9      0.0 16.250 

60651   NA 15.1 30 89.8 0.8 10.510 

60616   NA 12.2 46 48.0 0.6 8.212 

60617   NA 10.8 34 58.0 0.9 11.156 

> predict(gr,chmiss[is.na(chmiss$race),])

  60646   60651  60616  60617 

–17.847 26.360 70.394 32.620

Notice that the first prediction is negative. Obviously, we need to put more work into the 
regression models used to fill in the missing values. One trick that can be applied when 
the response is bounded between zero and one is the logit transformation:

y → log(y/(l-y))  

This transformation maps to the whole real line. We define the logit  function and its 
inverse:

> logit < - function (x) log (x/(l-x)) 

> ilogit < - function (x) exp (x)/(1+exp (x))

We now fit  the model with a logit-transformed response and then back transform the 
predicted values remembering to convert our percentages to proportions and vice versa at 
the appropriate times:

> gr < - lm (logit (race/100) ˜ fire+theft+age

+income,chmiss) 

>  ilogit  (predict  (gr,  chmiss  [is.na  (chmiss$race),  ] ))*100

  60646    60651    60616    60617

0.41909 14.73202 84.26540 21.31213

We can see how our predicted values compare to the actual values:

> data (chredlin) 

> chredlin$race [is.na (chmiss$race)]

[1] 1.0 13.4 62.3 36.4

So our first two predictions are good, but the other two are somewhat wide of the mark.

There are some important differences between these two fits. For example, theft and age
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176 Linear Models with R

Like the mean fill-in method, the regression fill-in method will also introduce a 
bias towards zero in the coefficients while tending to reduce the variance. The success of
the regression method depends somewhat on the collinearity of the predictors—the filled-
in values will be more accurate the more collinear the predictors are.

For situations where there is a substantial proportion of missing data, I recommend that
you investigate more sophisticated methods, likely using the EM algorithm or multiple
imputation. The fill-in methods described in this chapter will be fine when only a few
cases need to be filled, but will become less reliable as the proportion of missing cases
increases. See Little and Rubin (2002) and Schafer (1997) for more.
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CHAPTER 13
Analysis of Covariance

Predictors that are qualitative in nature, for example, eye color, are sometimes described 
as  categorical  or  called  factors.  We  wish  to  incorporate  these  predictors  into  the 
regression analysis.  Analysis  of  covariance (ANCOVA) refers  to  regression problems 
where there is a mixture of quantitative and qualitative predictors.

Suppose we are interested in the effect of a medication on cholesterol level. We might 
have two groups; one receives the medication and the other, the default treatment. We 
could not treat this as a simple two-sample problem if  we knew that the two groups 
differed with respect to age, as this would affect the cholesterol level. See Figure 13.1 for 
a simulated example. For the patients who received the medication, the mean reduction in 
cholesterol level was 0% while for those who did not, the mean reduction was 10%. So 
superficially it would seem that it would be better not to be treated. However, the treated 
group ranged in age from 50 to 70 while  those who were not  treated ranged in  age 
between  30  and  50.  We can  see  that  once  age  is  taken  into  account,  the  difference 
between treatment and control is again 10%, but this time in favor of the treatment.

Figure 13.1 Simulated example showing the confounding effect of a covariate.
The patients  who took the medication are marked with a solid  
dot while those who did not are marked with an empty dot.

ANCOVA adjusts the groups for the age difference and then presents the effect of the medica-
tion. It can also be used when there are more than two groups and more than one covariate.

Our strategy is to incorporate the qualitative predictors within the y=X!+" framework. 
We can then use the estimation, inferential and diagnostic techniques that we have 
already learned. This avoids having to learn a different set of formulae for each new type 
of qualitative predictor configuration. To put qualitative predictors into the y=X!+" form
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178 Linear Models with R

we need to code the qualitative predictors. We consider a specific example where 3; is the
change in cholesterol level, x is the age and:

 

d is called a dummy variable. A variety of linear models may be considered here:

1. The same regression line for both groups: y=!
0
+!

1
x+" or is written in R as y ˜ x.

2. Separate regression lines for each group with the same slope: y=!
0
+!

1
x+!

2
d + " or is

written in R as y ˜ x + d. In this case !
2
=represents the vertical distance between the

regression lines (i.e., the effect of the drug).

0 1

!
2
d+!

3
x.d+"  or  is  written  in  R as  y  ˜  x  + d  d:  x  or  y  ˜  x*d.  To form the  slope

interaction term d: x in the X-matrix, multiply x by d elementwise. Any interpretation 
of the effect of the drug will now also depend on age.

Estimation and testing work just as they did before. Interpretation is much easier
if we can eliminate the slope interaction term.

Other codings of d are possible, for instance:

 

is  used by some. This coding enables !
2
 and !

3
 to  be viewed as differences from a

response  averaged  over  the  two  groups.  Any  other  coding  that  assigned  a  different 
number to the two groups would also work, but interpretation of the estimated parameters
would be more difficult.

13.1 A Two-Level Example

The data for this example come from a study of the effects of childhood sexual abuse on
adult  females  reported in  Rodriguez et  al.  (1997):45 women treated at  a  clinic,  who
reported childhood sexual abuse (csa), were measured for post-traumatic stress disorder
(ptsd) and childhood physical abuse (cpa) both on standardized scales. 31 women treated
at the same clinic, who did not report childhood sexual abuse, were also measured. The
full study was more complex than reported here and so readers interested in the subject
matter should refer to the original article.

We take a look at the data and produce a summary subsetted by csa:

> data (sexab)

> sexab

       cpa    ptsd    csa

1  2.04786 9.71365 Abused

3.  Separate  regression  lines  for  each  group  with  the  different  slopes:  y=! +! +
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Analysis of Covariance 179

2  0.83895 6.16933 Abused 

….. 

75 2.85253 6.84304 NotAbused

76 0.81138 7.12918 NotAbused 

> by (sexab,sexab$csa,summary)

sexab$csa: Abused

      Cpa           ptsd            csa

Min.   : !1.11 Min.   :  5.98  Abused   :45 

1st Qu.:  1.41 1st Qu.:  9.37  NotAbused: 0 

Median :  2.63 Median : 11.31 

Mean   :  3.08 Mean   : 11.94 

3rd Qu.:  4.32 3rd Qu.: 14.90 

Max.   :  8.65 Max.   : 18.99 

sexab$csa: NotAbused

     Cpa            ptsd           csa

Min.   : !3.12 Min.   : !3.35  Abused   : 0 

1st Qu.: !0.23 1st Qu.:  3.54  NotAbused:31 

Median :  1.32 Median :  5.79 

Mean   :  1.31 Mean   :  4.70 

3rd Qu.:  2.83 3rd Qu.:  6.84 

Max.   :  5.05 Max.   :  10.91

Now plot the data—see Figure 13.2:

> plot (ptsd ˜ csa, sexab) 

> plot (ptsd ˜ cpa, pch=as.character (csa), sexab)

We see that those in the abused group have higher levels of PTSD than those in the 
nonabused in the left panel of Figure 13.2. We can test this difference:

> t.test(sexab$ptsd[l:45],sexab$ptsd[46:76])

          Welch Two Sample t-test 

data: sexab$ptsd[1:45] and sexab$ptsd[46:76] 

t = 8.9006, df = 63.675, p-value = 8.803e-13 

alt. hypothesis: true difference in means is not equal to 0 

95 percent confidence interval:

5.6189 8.8716 

sample estimates: 

mean of x mean of y

  11.9411    4.6959

and find that it is clearly significant. However, in the right panel of Figure 13.2 we see 
that there is positive correlation between PTSD and childhood physical abuse and in the 
numerical summary we see that those in the abused group suffered higher levels (3.08 vs.
1.31)  of  cpa  than those  in  the  nonabused group.  This  suggests  physical  abuse  as  an 
alternative explanation of higher PTSD in the sexually abused group.
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180 Linear Models with R

Figure 13.2 PTSD comparison of abused and nonabused subjects on
the left. A=Abused and N=NotAbused on the right.

ANCOVA allows us to disentangle these two competing explanations. We fit the separate
regression lines model. ptsd ˜ cpa*csa is an equivalent model formula:

> g < - lm (ptsd cpa+csa+cpa:csa, sexab)

> summary (g)

Coefficients:

               Estimate Std. Error t value Pr(>|t|)

(Intercept)      10.557      0.806   13.09  < 2e–16

cpa               0.450      0.208    2.16    0.034

csaNotAbused     !6.861      1.075   !6.38  1.5e–08

cpa:csaNotAbused  0.314      0.368    0.85    0.397

Residual standard error: 3.28 on 72 degrees of freedom

Multiple R-Squared: 0.583, Adjusted R-squared: 0.565

F-statistic: 33.5 on 3 and 72 DF, p-value: 1.13e–13

Because csa is nonnumeric, R automatically treats it as a qualitative variable and sets up a
coding. We can discover the coding by examining the X-matrix:

> model.matrix (g) 

(Intercept)     cpa csaNotAbused cpa: csaNotAbused

1          1 2.04786            0           0.00000

2          1 0.83895            0           0.00000

…… 

75         1 2.85253            1           2.85253

76         1 0.81138            1           0.81138

We see that “Abused” is coded as zero and “NotAbused” is coded as one. The default
choice is made alphabetically. This means that “Abused” is the reference level here and
that  the  parameters  represent  the  difference between “NotAbused” and this  reference
level. In this case, it would be slightly more convenient if the coding was reversed. The
interaction term cpa: csaNotAbused is represented in the fourth column of the matrix as
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Analysis of Covariance 181

the product of the second and third columns which represents the terms from which the 
interaction is formed.

We see that the model can be simplified because the interaction term is not significant. 
We reduce to this model:

> g < - lm (ptsd ˜ cpa+csa,sexab) 

> summary (g)

Coefficients:

            Estimate  Std. Errort  t value  Pr(>|t|) 

(Intercept)   10.248        0.719   14.26    <2e–16 

cpa            0.551        0.172    3.21     0.002 

csaNotAbused  !6.273        0.822   !7.63  6.9 e–11 

Residual standard error: 3.27 on 73 degrees of freedom 

Multiple R-Squared: 0.579, Adjusted R-squared: 0.567 

F-statistic: 50.1 on 2 and 73 DF, p-value: 2e–14

No further simplification is  possible because the remaining predictors are statistically 
significant.

Put the two parallel regression lines on the plot, as seen in the left panel of Figure 13.3.

> plot (ptsd ˜ cpa, pch=as.character (csa), sexab) 

> abline (10.248, 0.551) 

> abline (10.248–6.273, 0.551, lty=2)

Figure 13.3 Model fit shown on the left and fitted vs. residuals plot on the right.
A=Abused and N=NotAbused.

The  slope  of  both  lines  is  0.551,  but  the  “Abused”  line  is  6.273  higher  than  the 
“NonAbused.” From the t-test above, the estimated effect of childhood sexual abuse is
11.9411&4.6959=7.2452. So after adjusting for the effect of childhood physical abuse, 
our estimate of the effect of childhood sexual abuse on PTSD is mildly reduced.

We can also compare confidence intervals for the effect of csa:
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182 Linear Models with R

> confint (g) [3,]

  2.5 %    97.5 % 

!7.9108   !4.6347

compared to the (5.6189, 8.8716) found for the unadjusted difference. In this particular
case,  the  confidence  intervals  are  about  the  same  width.  In  other  cases,  particularly
designed experiments, adjusting for a covariate can increase the precision of the estimate
of an effect.

The usual diagnostics should be checked. It is worth checking whether there is some
difference related to the categorical variable as we do here:

> plot  (fitted  (g),  residuals  (g),  pch=as.character 

(sexab$csa), xlab="Fitted",
 
ylab="Residuals")

We see in the right panel of Figure 13.3 that there are no signs of heteroscedasticity.
Furthermore,  because  the  two  groups  happen  to  separate,  we  can  also  see  that  the
variation in the two groups is about the same. If this were not so, we would need to make
some adjustments to the analysis, possibly using weights.

For convenience, you can change the reference level:

> sexab$csa < - relevel (sexab$csa, ref="NotAbused")

> g < - lm (ptsd ˜ cpa+csa,sexab) 

> summary (g)

Coefficients:

            Estimate Std. Error t value Pr(>|t|)

(Intercept)    3.975      0.629    6.32  1.9e–08 

cpa            0.551      0.172    3.21    0.002

csaAbused      6.273      0.822    7.63  6.9e–11

Residual standard error: 3.27 on 73 degrees of freedom

Multiple R-Squared: 0.579, Adjusted R-squared: 0.567

F-statistic: 50.1 on 2 and 73 DF, p-value: 2e–14

Although some of the coefficients have different numerical values, this coding leads to
the same conclusion as before.

Finally, we should point out that childhood physical abuse might not be the only factor
that is relevent to assessing the effects of childhood sexual abuse. It is quite possible that
the two groups differ according to other variables such as socioeconomic status and age.
Issues such as these were addressed in Rodriguez et al. (1997).

13.2 Coding Qualitative Predictors

A more extensive use of  dummy variables is  needed for  factors  with more than two
levels. Let B be an n!k dummy variable matrix where Bij=1 if case i falls in class j and is 
zero otherwise. We might use B to form part of the model matrix. However, the row sums
of B are all one. Since an intercept term would also be represented by a column of ones,
all the parameters would not be identifiable.
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Analysis of Covariance 183

Removing the intercept term is one solution, but this will not work well if there is more 
than one factor. A more general solution is to reduce the rank of the dummy variable 
matrix.  Simply deleting one column would do,  but  any solution that  avoids collinear 
dummy variables will work. The choice should be based on convenience of interpretation 
and numerical stability.

The coding is determined by a contrast matrix C which has dimension k"(k#l). Some 
examples of C are given below. The contribution to the model matrix is then given by 
BC. Other columns of the model matrix might include a column of ones for the intercept 
and perhaps other predictors.

Treatment coding
Consider a four-level factor that will be coded using three dummy variables. This contrast 
matrix describes the coding, where the columns represent the dummy variables and the 
rows represent the levels:

> contr.treatment (4)

  2 3 4 

1 0 0 0 

2 1 0 0 

3 0 1 0 

4 0 0 1

This treats level one as the standard level to which all other levels are compared so a 
control group, if one exists, would be appropriate for this level. The parameter for the 
dummy variable then represents the difference between the given level and the first level. 
R assigns levels to a factor in alphabetical  order by default.  Treatment coding is  the 
default choice for R.

Helmert coding

The coding here is: 

> contr.helmert (4)

  [,1] [,2] [,3] 

1   !1   !1   !1 

2    1   !1   !1 

3    0    2   !1 

4    0    0    3

If there are equal numbers of observations in each level (a balanced design) then the 
dummy variables will be orthogonal to each other and to the intercept. This coding is not 
as nice for interpretation except in some special cases. It is the default choice in S-plus.

There are other choices of coding—anything that spans the k–1 dimensional space will 

work. The choice of coding does not affect the R2, and overall F-statistic. It does affect

the  and you do need to know what the coding is before making conclusions about .
When  there  is  an  interaction  between  two  terms  represented  by  model  matrix 

components X
1
 and X

2
, we compute the element-wise product of every column of X

1
 with 

every column of X
2
 to get the representation of the interaction in the model matrix.
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184 Linear Models with R

13.3 A Multilevel Factor Example

The data for this example come from a study on the sexual activity and the life span of
male fruitflies by Partridge and Farquhar (1981):125 fruitflies were divided randomly
into five groups of 25 each. The response was the longevity of the fruitfly in days. One
group was kept solitary, while another was kept individually with a virgin female each
day. Another group was given eight virgin females per day. As an additional control, the
fourth and fifth groups were kept with one or eight pregnant females per day. Pregnant
fruitflies will not mate. The thorax length of each male was measured as this was known
to  affect  longevity.  The  five  groups  are  labeled  many,  isolated,  one,  low  and  high
respectively. The purpose of the analysis is to determine the difference between the five
groups if any. We start with a plot of the data, as seen in Figure 13.4. 

> data (fruitfly) 

> plot (longevity ̃  thorax, fruitfly, pch=unclass (activity))

> legend (0.63, 100, levels (fruitfly$activity), pch=1:5)

Figure 13.4 Plot of longevity in days and thorax length in mm of 
fruitflies divided  into  five  treatment  groups.  Longevity  
for  the  high  sexual activity group appears to be lower.

We fit and summarize the most general linear model: 

> g < - Im (longevity ˜ thorax*activity, fruitfly) 

> summary (g)

Coefficients:

                Estimate Std. Error t value Pr(>|t|)

(Intercept)       !50.242     21.801   !2.30    0.023

thorax            136.127     25.952    5.25  7.3e–07

activityisolated    6.517     33.871    0.19    0.848

activityone        !7.750     33.969   !0.23    0.820

activitylow        !1.139     32.530   !0.04    0.972
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Analysis of Covariance 185

activityhigh            !11.038    31.287    !0.35    0.725 

thorax:activityisolated  !4.677    40.652    !0.12    0.909 

thorax:activityone        0.874    40.425     0.02    0.983 

thorax:activitylow        6.548    39.360     0.17    0.868 

thorax:activityhigh     !11.127    38.120    !0.29    0.771 

Residual standard error: 10.7 on 114 degrees of freedom 

Multiple R-Squared: 0.653, Adjusted R-squared: 0.626

F-statistic: 23.9 on 9 and 114 DF, p-value: < 2e–16

Since  “many”  is  the  reference  level,  the  fitted  regression  line  within  this  group  is 
longevity=&50.2+136.1*thorax.  For  “isolated,”  it  is  longevity=(&50.2+  6.5)  + 
(136.1–4.7)* t thorax. Similar calculations can be made for the other groups. Examine:

> model.matrix (g)

to see how the coding is done. Some diagnostics should be examined by:

> plot (g)

There is perhaps some mild heteroscedasticity, but we will let this be until later for ease 
of presentation. Now see whether the model can be simplified:

> anova (g)

Analysis of Variance Table Response: longevity

               Df Sum Sq Mean Sq F value  Pr(>F) 

thorax          1  15003   15003  130.73 < 2e–16 

activity        4   9635    2409   20.99 5.5e–13 

thorax:activity 4     24       6    0.05       1 

Residuals     114  13083     115

This is a sequential analysis of variance (ANOVA) table. Starting from a null model, 
terms are added and sequentially tested. The models representing the null and alternatives 
are  listed  in  Table  13.1.  In ANCOVA, we wish to successively simplify the full model 

Null Alternative

y ˜ l y ˜ thorax

y ˜ thorax y ˜ thorax+activity

y ˜ thorax+activity y ˜ thorax+activity+thorax:activity

Table 13.1 Models compared in the sequential ANOVA.

and then interpret the result. The interaction term thorax: act ivity is not significant indicat-
ing that we can fit the same slope within each group. No further simplification is possible.

We notice that the F-statistic for the test of the interaction term is very small and so the 
p-value is not exactly one (due to the rounding), but is very close:
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186 Linear Models with R

> 1–pf (0.05, 4, 114)

[1] 0.99525

For these data, the fitted regression lines to the five groups happen to be very close to
parallel. This can, of course, just happen by chance. In some other cases, unusually large
p-values have been used as evidence that data have been tampered with or “cleaned” to
improve the fit. Most famously, Ronald Fisher suspected Gregor Mendel of fixing the
data in some genetics experiments because the data seemed too good to be true. See
Fisher (1936).

We now refit without the interaction term:

> gb < - lm (longevity ˜ thorax+activity, fruitfly)

Do we need both thorax and activity? We could use the output above which suggests both
terms are significant. However, thorax is tested by itself and then activity is tested once
thorax is entered into the model. We might prefer to check whether each predictor is
significant once the other has been taken into account. We can do this using:

> dropl (gb, test="F")

Single term deletions

Model: 

longevity ˜ thorax + activity

        Df Sum of Sq   RSS AIC F value  Pr (F)

<none>               13107 590 

thorax   1     12368 25476 670   111.3 < 2e–16

activity 4      9635 22742 650    21.7 2.0e–13

The drop1 ( ) command tests each term relative to the full model. This shows that both
terms are significant even after allowing for the effect of the other. Now examine the
model coefficients:

> summary (gb)

Coefficients:

             Estimate Std. Error t value Pr(>t|)

(Intercept)    !48.75      10.85   !4.49  1.6e–05

thorax         134.34      12.73   10.55  < 2e–16

activityisolated 2.64       2.98    0.88    0.379

activityone     !7.01       2.98   !2.35    0.020

activitylow      4.14       3.03    1.37    0.174

activityhigh   !20.00       3.02   !6.63   1.0e–09

Residual standard error: 10.5 on 118 degrees of freedom

Multiple R-Squared: 0.653, Adjusted R-squared: 0.638

F-statistic: 44.4 on 5 and 118 DF, p-value: < 2e–16

“Many” is the reference level. We see that the intercepts of “isolated” and “low” are not
significantly different from many. We also see that the low sexual activity group, “one,”
survives  about  seven  days  less.  The  p-value  is  0.02  and  is  enough  for  statistical
significance if only one comparison is made. However, we are making more than one
comparison, and so, as with outliers, a Bonferroni-type adjustment might be considered.
This would erase the statistical significance of the difference.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
] 

at
 1

6:
20

 2
3 

M
ay

 2
01

4 



Analysis of Covariance 187

However, the high sexual activity group, "many," has a life span 20 days less than the 
reference group and this is strongly significant.

Returning to the diagnostics:

> plot (residuals (gb) ˜ fitted (gb), 

pch=unclass (fruitfly$activity))

is seen in the first panel of Figure 13.5. We have some nonconstant variance although it 
does not appear to be related to the five groups. A log transformation can remove the 
heteroscedasticity:

> gt < - lm (log (longevity) ˜ thorax+activity, fruitfly) 

> plot (residuals (gt) ˜ fitted (gt), 

pch=unclass (fruitfly$activity))

as seen in the second panel of Figure 13.5. One disadvantage of transformation is

Figure  13.5  Diagnostic  plots  for  the  fruitfly  data  before  and  
after  log transformation of the response.

that it can make interpretation of the model more difficult. Let’s examine the model fit:

> summary (gt)

Coefficients:

            Estimate Std.   Error t   value  Pr(>|t|) 

(Intercept)      1.8442     0.1988    9.28   1.0e–1 

thorax           2.7215     0.2333   11.67   < 2e–1 

activityisolated 0.0517     0.0547    0.95     0.34 

activityone     !0.1239     0.0546   !2.27     0.02 

activitylow      0.0879     0.0555    1.59    0.116
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188 Linear Models with R

activityhigh    !0.4193     0.0553   !7.59   8.4e–1

Residual standard error: 0.193 on 118 degrees of freedom

Multiple R-Squared: 0.702, Adjusted R-squared: 0.69

F-statistic: 55.7 on 5 and 118 DF, p-value: < 2e–16

Notice that the R2 is higher for this model, but the p-values are similar. Because of the log
transformation, we can interpret the coefficients as having a multiplicative effect:

> exp (coef (gt) [3:6]) 

activityisolated activityone activitylow activityhigh

         1.05311     0.88350     1.09189      0.65754

Compared to the reference level, we see that the high sexual activity group has 0.66 times
the life span (i.e, 34% less).

Why did we include thorax in  the  model?  Its  effect  on longevity  was known,  but
because of the random assignment of the flies to the groups, this variable will not bias the
estimates of the effects of the activities. We can verify that thorax is unrelated to the
activities:

> gh < - lm (thorax ˜ activity, fruitfly)

> anova (gh)

Analysis of Variance Table 

Response: thorax

           Df     Sum Sq    Mean Sq  F value Pr(>F)

activity    4      0.026      0.006     1.11   0.36

Residuals 119      0.685      0.006

However, look what happens if we omit thorax from the model for longevity:

> gu < - lm (log (longevity) ˜ activity, fruitfly)

> summary (gu)

Coefficients:

               Estimate Std. Error t value Pr(>|t|)

(Intercept)       4.1193     0.0564   72.99 < 2e–16

activityisolated  0.0234     0.0798    0.29    0.77

activityone      !0.1195     0.0798   !1.50    0.14

activitylow       0.0240     0.0806    0.30    0.77

activityhigh     !0.5172     0.0798   !6.48  2.2e–09

Residual standard error: 0.282 on 119 degrees of freedom

Multiple R-Squared: 0.359, Adjusted R-squared: 0.338

F-statistic: 16.7 on 4 and 119 DF
,
 p-value: 6.96e–11

The  magnitude of  the  effects do  not  change  that much  but  the  standard  errors  are
substantially  larger.  The  value  of  including  thorax  in  this  model  is  to  increase  the
precision of the estimates.

Exercises

1. Using the teengamb data, model gamble as the response and the other variables as
predictors. Take care to investigate the possibility of interactions between sex and
the other predictors. Interpret your final model.
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Analysis of Covariance 189

2. Using the inf mort data, find a simple model for the infant mortality in terms of the 
other variables. Be alert for transformations and unusual points. Interpret your model 
by explaining what the regression parameter estimates mean.

3. Plot the ToothGrowth data with len as the response. Fit a linear model to the data and 
check for possible simplification. Display the fitted regression lines on top of the data.

4. Investigate whether the side variable can be used in a model for all the chredlin data 
rather than as a subsetting variable as in the analysis in the text.

5. Find a good model for the uswages data with wages as the response and all the other 
variables as predictors.
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CHAPTER 14
One-Way Analysis of Variance

In an analysis of variance (ANOVA), the idea is to partition the overall variance in the 
response into that due to each of the factors and the error. The traditional approach is to 
directly estimate these components. However, we take a regression-based approach by 
putting  the  model  into  the  y=X!+"  and  then  using  the  inferential  methods  we  have 
learned earlier in this book.

The terminology used in ANOVA-type problems is sometimes different. Predictors are 
now all  qualitative and are now typically called factors,  which have some number of 
levels.  The regression parameters are now often called effects.  We shall consider only 
models where the parameters are considered fixed,  but  unknown—called fixed-effects 
models.  Random-effects  models  are  used  where  parameters  are  taken  to  be  random 
variables and are not covered in this text.

14.1 The Model

Suppose we have a factor % occurring at i=1,…, I levels, with j=1,…, J
i
 observations per 

level. We use the model:

y
ij
=!+%

i
+"

ij 
 

Not all the parameters are identifiable. For example, we could add some constant to ! and 
subtract  the  same constant  from each  %

i
 and  the  model  would  be  unchanged.  Some 

restriction is necessary. Here are some possibilities:

1. Set !=0 and then use I different dummy variables to estimate %
i
 for i=1,…, I.

2. Set %
1
 = 0, then ! represents the expected mean response for the first level and %

i
 for 

i&1 represents the difference between level i and level one. Level one is then called the 
reference level or baseline level. This corresponds to the use of treatment contrasts as 
discussed in the previous chapter.

3. Set 'i%i=0, now ! represents the mean response over all levels and %i, the difference

from that mean. Because  we do not need to estimate %
1
 directly 

because it can be determined from the other estimates. This approach requires the use 
of sum contrasts.

Some preliminary graphical analysis is appropriate before fitting. A side-by-side boxplot 
is  often  recommended,  although  strip  plots  are  better  for  smaller  datasets.  Look  for 
equality of variance, the need for transformation of the response and outliers. It is not 
worth considering diagnostics for influence, as the leverages depend explicitly on J

i
. If

there is only one observation for a given level, that is J
i
=1, then the estimate of the effect
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192 Linear Models with R

for that level will be based on that single point. That point is clearly influential without
further investigation.

The  choice  of  constraint  from those  listed  above  or  otherwise  will  determine  the
coding used to generate the X-matrix. Once that is done, the parameters (effects) can be
estimated in the usual way along with standard errors. No matter which constraint and
coding choice is made, the fitted values and residuals will be the same.

Once the effects are estimated, the natural first step is to test for differences in the
levels of the factor. An explicit statement of the null and alternative hypotheses would
depend on the coding used. If we use the treatment coding with a reference level, then the
null hypothesis would require that %

2
=…=%

I
=0. For other codings, the statement would

differ. It is simpler to state the hypotheses in terms of models:

H
0
: y

ij
=!+"

ij

H
1
: y

ij
=!+%

i
+"

ij

 

We compute the residual sum of squares and degrees of freedom for the two models and
then use the same F-test as we have used for regression. The outcome of this test will be
the same no matter what coding/restriction we use. If we do not reject the null, we are
almost  done—we must  still  check  for  a  possible  transformation  of  the  response  and
outliers. If we reject the null, we must investigate which levels differ.

14.2 An Example

Our example dataset comes from a study of blood coagulation times: 24 animals were
randomly assigned to four different diets and the samples were taken in a random order.
These data come from Box, Hunter, and Hunter (1978):

> data (coagulation)

> coagulation

   coag diet

1    62    A

2    60    A

…etc… 

23  63     D

24  59     D

The first step is to plot the data. We compare boxplots and strip plots:

> plot (coag ˜ diet, coagulation, ylab="coagulation time")

> with (coagulation, stripchart(coag ˜ diet, vertical=TRUE, 

method="stack", xlab="diet" , ylab="coagulation time") )

See Figure 14.1. The strip plot is preferred here because the boxplot displays poorly when
there are few datapoints. For larger datasets, the boxplot might be better. We see no
outliers, skewness or unequal variance. Some judgment is required because when there
are very few datapoints, even when the variances truly are equal in the groups, we can
expect some noticeable variability. In this case, there are no obvious problems. 
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One-Way Analysis of Variance 193

Now let’s fit the model using the default treatment coding:

> g < - lm (coag ˜ diet, coagulation)

Figure 14.1 A boxplot and a strip plot of blood coagulation data.

> summary (g)

Coefficients :

            Estimate Std. Error t value   Pr(>|t|) 

(Intercept) 6.10e+01   1.18e+00   51.55   < 2e–16 

dietB       5.00e+00   1.53e+00    3.27   0.00380 

dietC       7.00e+00   1.53e+00    4.58   0.00018 

dietD       1.07e–14   1.45e+00 !7.4e–15  1.00000 

Residual standard error: 2.37 on 20 degrees of freedom 

Multiple R-Squared: 0.671, Adjusted R-squared: 0.621 

F-statistic: 13.6 on 3 and 20 DF, p-value: 4.66e–05

We conclude  from the  small  p-value  for  the  F-statistic  that  there  is  some difference 
between the groups. Group A is the reference level and has a mean of 61, groups B, C 
and D are 5, 7 and 0 seconds larger, respectively, on average. Examine the design matrix 
to understand the coding:

> model.matrix (g)

We can fit the model without an intercept term as in:

> gi < - lm (coag diet !1, coagulation) > 

summary (gi)

Coefficients:

      Estimate Std. Error t value Pr(>|t|) 

dietA   61.000      1.183    51.5  < 2e–16 

dietB   66.000      0.966    68.3  < 2e–16 

dietC   68.000      0.966    70.4  < 2e–16
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194 Linear Models with R

dietD   61.000      0.837    72.9  < 2e–16 

Residual standard error: 2.37 on 20 degrees of freedom

Multiple R-Squared: 0.999, Adjusted R-squared: 0.999

F-statistic: 4.4e + 03 on 4 and 20 DF,   p-value:   0

We can directly read the level means. The R2 is not correctly calculated because of the ab-
sence of an intercept. The F-test corresponds to a null hypothesis that the expected mean
response is zero. This is not an interesting test. To generate the usual test that the means
of the levels are equal, we would need to fit the null model and compare using an F-test:

> gnull < - lm (coag 015˜ 1, coagulation)

> anova (gnull, gi)

Analysis of Variance Table 

Model 1: coag ˜ 1 

Model 2: coag ˜ diet !1

  Res.Df RSS Df Sum of Sq    F  Pr(>F)

1     23 340 

2     20 112  3       228 13.6 4.7e–05

We get the same F-statistic and p-value as in the first coding. 
We can also use a sum coding:

> options(contrasts=c("contr.sum","contr.poly"))

> gs < - lm (coag ˜ diet , coagulation) 

> summary (gs)

Coefficients:

            Estimate Std. Error t value Pr(>|t|)

(Intercept)   64.000      0.498  128.54  < 2e–16

diet1         !3.000      0.974   !3.08  0.00589

diet2          2.000      0.845    2.37  0.02819

diet3          4.000      0.845    4.73  0.00013

Residual standard error: 2.37 on 20 degrees of freedom

Multiple R-Squared: 0.671, Adjusted R-squared: 0.621

F-statistic: 13.6 on 3 and 20 DF, p-value: 4.66e–05

So the estimated overall mean response is 64 while the estimated mean response for A is
three less than the overall mean, that is 61. Similarly, the mean for C and D are 66 and 68,
respectively.  Since  we  are  using  the  sum  constraint,  we  compute

so  the  mean  for  D is  64&3=61.  Notice  that   and  the
F-statistic are the same as before.

So we can use any of these three methods and obtain essentially the same results. The
constraint !=0 is least convenient since an extra step is needed to generate the F-test.
Furthermore, the approach would not extend well to experiments with more than one
factor, as additional constraints would be needed. The other two methods can be used
according to taste. The treatment coding is most appropriate when the reference level is
set to a possible control group. I will use the treatment coding for the rest of this book.
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One-Way Analysis of Variance 195

14.3 Diagnostics

There are fewer diagnostics to do for ANOVA models, but it is still important to plot the 
residuals and fitted values and to make the Q–Q plot of the residuals. It makes no sense to 
transform  the  predictor,  but  it  is  reasonable  to  consider  transforming  the  response. 
Diagnostics are shown in Figure 14.2:

> qqnorm (residuals (g)) 

> plot (jitter (fitted(g)), residuals (g), 

xlab="Fitted", ylab="Residuals")

Figure 14.2 Diagnostics for the blood coagulation model.

Because the data are integers and the fitted values turn out to be integers also, some 
discreteness is  obvious in the Q–Q plot.  Of course,  discrete data cannot be normally 
distributed. However, here it is approximately normal and so we can go ahead with the 
inference without much concern. The discreteness in the residuals and fitted values shows 
up in the residual-fitted plot. We have jittered the points so that they can seen separately.

The assumption of homogeneity of the error variance can be examined using Levene’s 
test. It computes the absolute values of the residuals and uses these as the response in a 
new one-way ANOVA. To reduce the possible influence of outliers, group medians rather 
than means should be used. A significant difference would indicate nonconstant variance.

There are other tests, but this one is quite insensitive to nonnormality and is simple to 
execute.  Most  tests  and  confidence  intervals  (CIs)  are  relatively  insensitive  to 
nonconstant  variance  so  there  is  no  need  to  take  action  unless  the  Levene  test  is 
significant at the 1% level. Applying this to the diet data, we find:

> med < - with (coagulation, tapply (coag, diet, median))

> ar < - with (coagulation, abs (coag –med [diet] ) ) 

> anova (lm(ar ˜ diet, coagulation))

Analysis of Variance Table 

Response: ar

          Df Sum Sq Mean Sq F value Pr(>F)
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196 Linear Models with R

diet       3    4.3     1.4    0.65   0.59

Residuals 20   44.5     2.2

Since  the  p-value  is  large,  we  conclude  that  there  is  no  evidence  of  a  nonconstant
variance.

14.4 Pairwise Comparisons

After detecting some difference in the levels of the factor, interest centers on which levels
or combinations of levels are different. It does not make sense to ask whether a particular
level is significant since this begs the question of “significantly different from what?”
Any meaningful test must involve a comparison of some kind.

A pairwise comparison of level i and j can be made using a CI for %
i
–%

j
 using:

 

where  and  df=n—I  in  this  case.  A  test  for  %
i
=%

j

amounts to seeing whether zero lies in this interval or not. For example, a 95% CI for the
B–A difference above is:

> qt(0.975,20)

[1] 2.0860 

> c (5!2. 086*1.53, 5+2. 086*1.53)

[1] 1.8084 8.1916

Since zero is not in the interval, the difference is significant. This is fine for just one test,
but  we are  likely  to  be  interested  in  more  than  one  comparison.  Suppose  we do  all
possible pairwise tests when %=5% and the null hypothesis is in fact true. In the blood
coagulation data, there are four levels and so six possible pairwise comparisons. Even if
there was no difference between the four levels, there is still about a 20% chance that at
least one significant difference will be found.

For experiments with more levels, the true type I error gets even higher. Using the
t-based  CIs  for  multiple  comparisons  is  called  the  least  significant  difference  (LSD)
method, but it can hardly be recommended. Now one might be tempted to argue that we
could choose which comparisons are interesting and so reduce the amount of testing and
thus  the  magnitude  of  the  problem.  If  we  only  did  a  few tests,  then  the  Bonferroni
adjustment (see Section 4.2.2) could be used to make a simple correction. However, the
determination of which comparisons are “interesting” is usually made after seeing the
fitted model. This means that all other comparisons are implicitly made even if they are
not explicitly computed. On the other hand, if it can be argued that the comparisons were
decided before seeing the fit, then we could make the case for the simple adjustment.
However, this is rarely the case and furthermore it might be difficult to convince others
that this really was your intention. We must usually find a way to adjust for all pairwise
comparisons.
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One-Way Analysis of Variance 197

There are many ways to make the adjustment, but Tukey’s honest significant difference 
(HSD) is the easiest to understand. It depends on the studentized range distribution which 

arises as follows. Let X
1
,…, X

n
 be i.i.d. N (!, #2) and let R=max

i
X

i
– min

i
X

i
 be the range.

Then  has the studentized range distribution q
n,v

 where v is the number of degrees of 

 

When  the  sample  sizes  J
i 
 are  very  unequal,  Tukey’s  HSD  test  may  become  too 

conservative. We compute the Tukey HSD bands for the diet data. First, we need the 
critical value from the studentized range distribution:

> qtukey(0.95, 4, 20)/sqrt(2)

[1] 2.7989

and then the interval for the B–A difference is:

> c (5–2. 8*1. 53, 5+2. 8*1.53)

[1] 0.716 9.284

A convenient way to obtain all the intervals is:

> TukeyHSD (aov (coag ˜ diet, coagulation)) 

Tukey multiple comparisons of means 

95% family-wise confidence level

$diet

           diff      lwr      upr 

A–B !5.0000e+00  !9.2754 !0.72455 

C–B  2.0000e+00  !1.8241  5.82407 

D–B !5.0000e+00  !8.5771 !1.42291 

C–A  7.0000e+00   2.7246 11.27545 

D–A !1.42116-14  !4.0560  4.05604 

D–C !7.0000e+00 !10.5771 !3.42291

We find that only the A–D and B–C differences are not significant as the corresponding 
intervals contain zero. The Bonferroni-based bands would have been just slightly wider:

> qt (1!.05/12,20)

[1] 2.9271

We divide by 12 here because there are six possible pairwise differences and we want a 
two-sided CI.

The Tukey method assumes the worst by focusing on the largest difference. There are 
other  competitors  like  the  Newman-Keuls,  Duncan’s  multiple  range  and  the  Waller-
Duncan procedure, which are less pessimistic or do not consider all possible pairwise 
comparisons.  For  a  detailed  description  of  the  many  available  alternatives  see  Hsu 
(1996). Some other pairwise comparison tests may be found in the R package multcomp.

freedom used in estimating #. 

The Tukey CIs are:
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198 Linear Models with R

A contrast among the effects %
1
,…, %

I
 is a linear combination '

i
c

i
%

i 
where the c

i
 are

known and '
i
c

i
=0. For example:

1. %
1
&%

2
 is a contrast with c

1
=1, c

2
= –1 and the other c

i
=0. All pairwise differences are

contrasts.
2. %

1
&(%

2
+(%

3
++

4
)/3 with c

1
=1 and c

2
=c

3
=c

4
= &1/3 and the other c

i
=0. This contrast

might  be  interesting  if  level  one  were  the  control  and  two,  three  and  four  were 
alternative treatments.

The need for contrasts arises much less often than pairwise comparisons and the Scheffé
method must be used.

Exercises

1.  Using  the  pulp  data,  determine  whether  there  are  any  differences  between  the
operators. What is the nature of these differences?

2.  Determine whether there are differences in the weights of chickens according to their
feed in the chickwts data. Perform all necessary model diagnostics.

3. Using the PlantGrowth data, determine whether there are any differences between the
groups.  What is  the nature of these differences? Test  for a difference between the
average of the two treatments and the control.

4. Using the inf mort data, perform a one-way ANOVA with income as the response and
region as the predictor. Which pairs of regions are different? Now check for a good
transformation on the response and repeat the comparison.
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CHAPTER 15 
Factorial Designs

A factorial design has some number of factors occurring at some number of levels. In a full 
factorial design, all possible combinations of the levels of the factors occur at least once. We 
start with experiments involving two factors and then look at designs with more than two 
factors.

15.1 Two-Way ANOVA

Suppose we have two factors, % at I levels and ! at J levels. Let n
ij
 be the number of

observations at level i of % and level j of ! and let those observations be y
ij1

, y
ij2

,…etc. A

complete layout has n
ij
 $ 1 for all i, j. A balanced layout requires that n

ij
=n. 

The most general model that may be considered is:

 

As in the one-way layout, not all the parameters are identifiable. The interaction effect

is interpreted as that part of the mean response not attributable to the additive 
effect of %

i
 and !

j
. For example, you may enjoy strawberries and cream individually, but 

the combination is far superior. In contrast,  you may like fish and ice cream, but not 
together.

If the main effects % and ! generate design matrices X% and X&, then the design matrix 
for the interaction is given by collecting the element-wise products of all columns of 
X
%
 with all columns of X

&
 to form a matrix with (I–1)(J–1) columns.

A significant interaction makes the model hard to interpret, as  cannot be studied

independent of . A comparison of the levels of % will depend on the level of !. Consider 

the following two layouts of in a 2!2 example:

 Male Female Male Female

Drug1 3 5 2 1

Drug 2 1 2 1 2

The response is a measure of performance. In the case on the left, we can say that drug 1 
is  better  than  drug  2  although the  interaction  means  that  its  superiority  over  drug  2 
depends on the gender. In the case on the right, which drug is best depends on the gender. 
We plot this in Figure 15.1. We see that in both cases the lines are not parallel, indicating 
interaction.  The  superiority  of  drug  1  is  clear  in  the  first  plot  and  an  ambiguous
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200 Linear Models with R

conclusion is seen in the second. Make plots like this when you want to understand an
interaction effect.

When the interaction is significant, the main effects cannot be defined in an obvious
and universal way. For example, we could define the gender effect as the effect for females,

Figure 15.1 Two 2!2 tables with the response plotted by the factors, sex on the
horizontal axis and drug 1 as the solid line and drug 2 as the dotted 
line.

the effect for males, the effect for the average of males and females or something else. If
there was no interaction effect, the gender effect could be defined unambiguously.

When you have a significant interaction, an interaction plot of the fitted values can make
it easier to describe the nature and impact of the effect. Alternatively, you can fit a model:

y
ijk

=!
ijk

+"
ijk 

 

and then treat the data as a one-way ANOVA with IJ levels. Obviously this makes for
more complex comparisons, but this is unavoidable when interactions exist.

15.2 Two-Way ANOVA with One Observation per Cell

Mazumdar and Hoa (1995) report an experiment to test the strength of a thermoplastic
composite depending on the power of a laser and the speed of a tape:

> data(composite) 

> summary(composite)

   strength  laser    tape

Min.   :20.6 40W:3  slow :3

1st Qu.:28.0 50W:3 medium:3

Median :29.8 60W:3  fast :3

Mean   :31.0
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Factorial Designs 201

3rd Qu.:35.7

Max.   :39.6

We can fit a model with just the main effects as:

> g < - lm (strength ˜ laser + tape, composite)

However, if we tried to add an interaction term, we would have as many observations as 
parameters.  The  parameters  could  be  estimated,  but  no  further  inference  would  be 
possible. Nevertheless, the possibility of an important interaction exists. There are two 
ways we can check for this.

The interaction can be checked graphically using an interaction plot. We plot the cell 
means on the vertical axis and the factor % on the horizontal. We join the points with 
same level of !. The role of % and ! can be reversed. Parallel lines on the plot are a sign 
of a lack of interaction as seen in the plots in Figure 15.2:

> with (composite, interaction.plot (laser, tape, strength, legend=F)) 

> with (composite, interaction.plot (tape, laser, strength, legend=F))

Figure 15.2 Interaction plots for the composite data.

Because of random variation, we cannot expect the lines to be exactly parallel. Allowing 
for a certain amount of noise, these lines are approximately parallel, so we conclude there 
is no substantial interaction between the factors.

Tukey’s nonadditivity test provides another way of investigating an interaction. The 
model:

 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
] 

at
 1

6:
20

 2
3 

M
ay

 2
01

4 



202 Linear Models with R

the  product  of  parameters,   Furthermore,  it  makes  the  assumption  that  the
interaction effect is multiplicative in form. We have no particular reason to believe it
takes this form and so the alternative hypothesis may not be appropriate. We execute the
test:

> coef (g) 

(Intercept) laser50W laser60W tapemedium tapefast

   23.9178    6.5733  12.2133     4.0367  !1.4800 

> lasercoefs < - rep(c(0,6.5733, 12.2133),3) 

> tapecoefs < - rep(c(0,4.0367,!1.4800), each=3) 

> h < - update (g, . ˜ . + I (lasercoefs*tapecoefs)

> anova (h)

Analysis of Variance Table 

Response: strength

                          Df Sum Sq Mean Sq F value Pr(>F)

laser                      2  224.2   112.1   36.82 0.0077

tape                       2   48.9    24.5    8.03 0.0624

I (lasercoefs * tapecoefs) 1    1.4     1.4    0.45 0.5503

Residuals                  3    9.1     3.0

The p-value of  0.55 indicates  a  nonsignificant  interaction.  So for  these data,  we can

reasonably assume . We can now test the main effects:

> anova (g)

Analysis of Variance Table

Response: strength

         Df Sum Sq Mean Sq F value Pr( >F)

laser     2  224.2   112.1   42.69   0.002

tape      2   48.9    24.5    9.32   0.031

Residuals 4   10.5     2.6

We see that both factors are significant. Examining the coefficients above, we see that the
strength increases with the laser power but the strength is largest for medium tape speed
but less for slow or fast tape speeds.

The treatment coding does not take advantage of the ordered nature of both factors. We
can declare both to be ordered factors and refit:

> coraposite$laser < - as.ordered(composite$laser)

> composite$tape < - as.ordered(composite$tape) 

> g < - lm (strength ˜ laser + tape, composite) 

> summary (g)

Coefficients:

            Estimate Std. Error t value Pr(>|t|)

(Intercept)   31.032      0.540   57.45  5.5e–07

laser.L        8.636      0.936    9.23  0.00077

laser.Q       !0.381      0.936   !0.41  0.70466

tape.L        !1.047      0.936   !1.12  0.32594

tape.Q        !3.900      0.936   !4.17  0.01404

Residual standard error: 1.62 on 4 degrees of freedom

is fit to the data and then we test if . This is a nonlinear model because it involves
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Factorial Designs 203

Multiple R-Squared: 0.963, Adjusted R-squared: 0.926

F-statistic: 26 on 4 and 4 DF, p-value: 0.00401

Instead of a coding with respect to a reference level, we have linear and quadratic terms 
for each factor. The coding is:

> contr.poly (3)

              .L       .Q

[1,] !7.0711e–01  0.40825

[2,] !9.0733e–17 !0.81650

[3,]  7.0711e–01  0.40825

We see the linear term is proportional to (&1, 0, 1) representing a linear trend across the 
levels while the quadratic term is proportional to (1, &2, 1) representing a quadratic trend.

We see  that  the  quadratic  term for  laser  power  is  not  significant  while  there  is  a 
quadratic effect  for tape speed. One of the drawbacks of a model with factors is  the 
difficulty of extrapolating to new conditions. The information gained from the ordered 
factors suggests a model with numerical predictors corresponding to the level values:

> composite$Ntape < - rep (c (6.42,13,27), each=3)

> composite$Nlaser < - rep (c(40, 50, 60), 3)

>  gl  <  -  lm  (strength  ˜  Nlaser  +  poly(log(Ntape),2), composite)

> summary (gl)

Coefficients:

                  Estimate Std. Error t value Pr(>|t|)

(Intercept)         0.4989     3.0592    0.16  0.87684

Nlaser              0.6107     0.0604   10.11  0.00016

polydog (Ntape),2)1 !1.8814     1.4791   !1.27  0.25933

polydog (Ntape),2)2 !6.7364     1.4791   !4.55  0.00609

Residual standard error: 1.48 on 5 degrees of freedom

Multiple R-Squared: 0.961, Adjusted R-squared: 0.938

F-statistic: 41.5 on 3 and 5 DF, p-value: 0.000587

We use the log of tape speed, as this results in roughly evenly spaced levels. This model 
fits about as well as the two-factor model but has the advantage that we make predictions 
for values of tape speed and laser power that were not used in the experiment. The earlier 
analysis with just factors helped us discover this model, which we may not otherwise 
have found.

15.3 Two-Way ANOVA with More than One Observation per Cell

Consider the case when the number of observations per cell is the same and greater than 
one, so that n

ij
=n > 1 for all i, j. Such a design is orthogonal. Orthogonality can also occur 

if the row/column cell numbers are proportional.
With more than one observation per cell, we are now free to fit and test the model:
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204 Linear Models with R

 

The interaction effect may be tested by comparison to the model:

y
ijk

=!+%
i
+!

j
+"

ijk 
 

and computing the usual F-test. If the interaction effect is found to be significant, do not
test the main effects even if they appear not to be significant. The estimation of the main
effects and their significance is coding dependent when interactions are included in the
model.

If the interaction effect is found to be insignificant, then test the main effects, but use
RSS/df from the full model in the denominator of the F-tests—this has been shown to
maintain the type I error better. So the F-statistic used is:

 

In  an  experiment  to  study  factors  affecting  the  production  of  the  plastic  polyvinyl
chloride  (PVC),  three  operators  used  eight  different  devices  called  resin  railcars  to
produce  PVC.  For  each  of  the  24  combinations,  two  samples  were  produced.  The
response is the particle size of the product. The experiment is described in Morris and
Watson (1998).

We make some plots, as seen in Figure 15.3:

> data (pvc) 

> attach (pvc) 

> stripchart (psize ̃  resin, xlab="Particle size", ylab="Resin railcar")

> stripchart (psize ̃   operator
,  

xlab="Particle  size", ylab="0perator")

Figure 15.3 PVC data plotted by resin railcars on the left and by
operators on the right.
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Factorial Designs 205

Is  there  an  interaction  between  operators  and  resin  railcars?  We  first  look  at  this 
graphically with interaction plots, as seen in Figure 15.4:

> interaction.plot (operator, resin, psize)

> interaction.plot (resin, operator, psize)

These are approximately parallel. The trouble with interaction plots is that we always 
expect there to be some random variation so it is sometimes difficult to distinguish true 
interaction  from just  noise.  Fortunately,  in  this  case,  we  have  replication  so  we  can 
directly test for an interaction effect.

Now fit the full model and see the significance of the factors:

g < - lm (psize operator*resin)

anova (g)

Figure 15.4 Interaction plots for the PVC data.

Analysis of Variance Table

Response: psize

               Df Sum Sq Mean Sq F value  Pr(>F)

operator        2   20.7    10.4    7.01   0.004

resin           7  283.9    40.6   27.44 5.7e–10

operator:resin 14   14.3     1.0    0.69   0.760

Residuals      24   35.5     1.5

We see that the interaction effect is not significant, but the main effects are. If you re-
move the interaction and then retest the main effects, you get a somewhat different result.  
As  discussed  earlier,  the  former  test  is  preferred  (although  in  this  particular 
example, it does not affect the conclusion):
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206 Linear Models with R

> qqnorm (residuals (g)) 

> qqline (residuals (g)) 

>  plot  (fitted  (g),  residuals  (g),  xlab="FittedII,

ylab="Residuals")

We see some evidence of outliers. The symmetry in the residuals vs. fitted plot is
because, for each combination of the factors, the mean of the two replicates is the fitted
value.  The two residuals for that cell will be mirror images. If we exclude the two largest

Figure 15.5 Diagnostics plots for the full model for the PVC data.

outliers, then the interaction is still insignificant. An examination of the main effects
model reveals that case 45 is the outlier, which we now exclude:

> g < - lm (psize ˜ operator+resin,subset=!45)

> summary (g)

Coefficients:

            Estimate Std. Error t value  Pr(>|t|)

(Intercept)   36.337      0.430   84.60  < 2e–16

operator2     –0.263      0.332   –0.79    0.435

operator3     –1.797      0.339   –5.30  5.5e–06

resin2        –1.033      0.543   –1.90    0.065

resin3        –5.800      0.543  –10.69  7.2e–13

resin4        –6.183      0.543  –11.40  1.2e–13

resin.5       –4.800      0.543   –8.85  1.2e–10

> anova(lm(psize ˜ operator + resin, pvc))

Analysis of Variance Table 

Response: psize

          Df Sum Sq Mean Sq F value Pr(>F)

operator   2   20.7    10.4     7.9 0.0014

resin      7  283.9    40.6    30.9 8.1e–14

Residuals 38   49.8     1.3

We check the diagnostics, as seen in Figure 15.5:
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Factorial Designs 207

resin6        –5.450      0.543   –10.04  4.1e–12 

resin7        –3.692      0.570    –6.47  1.4e–07 

resin8        –0.183      0.543    –0.34    0.737 

Residual standard error: 0.94 on 37 degrees of freedom 

Multiple R-Squared: 0.905, Adjusted R-squared: 0.882

F-statistic: 39.2 on 9 and 37 DF, p-value: 3.00e–16

The diagnostics for this model are satisfactory. We see that operator 1 and resin car 1 
produce the largest particle size while operator 3 and resin car 4 produce the smallest.

We can construct pairwise confidence intervals for the treatment factor using the Tukey 
method:

> Tukey HSD (aov (psize ˜ operator+resin,subset=!45))

Tukey multiple comparisons of means 

95% family-wise confidence level 

$operator

        diff     lwr      upr 

2–1  !0.2625 !1.0737  0.54872 

3–1  !1.7771 !2.6017 !0.95246  

3–2  !1.5146 !2.3392 !0.68996

$resin

        diff       lwr      upr 

2–1 !1.03333 !2.775204  0.70854 

3–1 !5.80000 !7.541871 !4.05813

etc

We see that operators 1 and 2 are not significantly different but operator 3 is different 
from both. There are more differences in the resin cars.

The analysis above is appropriate for the investigation of specific operators and resin 
cars. These factors are being treated as fixed effects. If the operators and resin cars were 
randomly selected from larger populations of those available, they should be analyzed as 
random effects.  This  would  require  a  somewhat  different  analysis  not  covered  here. 
However, we can at least see from the analysis above that the variation between resin cars 
is greater than that between operators.

It is important that the observations taken in each cell are genuine replications. If this is 
not true, then the observations will be correlated and the analysis will need to be adjusted. 
It is a common scientific practice to repeat measurements and take the average to reduce 
measurement errors. These repeat measurements are not independent observations. Data 
where the replicates are correlated can be handled with repeated measures models. For 
example,  in  this  experiment  we  would  need  to  take  some  care  to  separate  the  two 
measurements for each operator and resin car. Some knowledge of the engineering might 
be necessary to achieve this.

15.4 Larger Factorial Experiments

Suppose we have factors %, !, *,…at levels l
%
, l
&
, l
'
,…. A full factorial experiment has at 

least one run for each combination of the levels. The number of combinations is l
%
l
&
l
'
…,
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208 Linear Models with R

which could  easily  be  very  large.  The biggest  model  for  a  full  factorial  contains  all
possible interaction terms, which range from second-order, or two-way, as encountered
earlier in this chapter, to high-order interactions involving several factors. For this reason,
full factorials are rarely executed for more than three or four factors.

There are some advantages to factorial designs. If no interactions are significant, we
get  several  one-way  experiments  for  the  price  of  one.  Compare  this  with  doing  a
sequence  of  one-way  experiments.  Also  factorial  experiments  are  efficient  with
experimental resources. It is often better to use replication for investigating another factor
instead. For example, instead of doing a two-factor experiment with replication, it is often
better to use that replication to investigate another factor.

The analysis of full factorial experiments is an extension of that used for the twoway
ANOVA. Typically,  there is  no replication due to cost  concerns so it  is  necessary to
assume that some higher order interactions are zero in order to free up degrees of freedom
for testing the lower order effects. Not many phenomena require a precise combination of
several factors so this is not unreasonable.

Fractional factorials
Fractional  factorials  use  only  a  fraction  of  the  number  of  runs  in  a  full  factorial
experiment. This is done to save the cost of the full experiment or to make only a few
runs because the experimental  material  is  limited.  It  is  often possible to estimate the
lower order effects with just a fraction. Consider an experiment with seven factors, each
at two levels:

Effect mean main 2-way 3-way 4 5 7 7

Number of parameters 1 7 21 35 35 21 7 1

Table 15.1 Number of parameters in a two-level, seven-factor experiment.

If we are going to assume that higher order interactions are negligible then we do not really
need 27=128 runs to estimate the remaining parameters. We could perform only eight  runs
and still  be  able  to  estimate  the  seven main  effects,  though none of  the interactions. In
this particular example, it is hard to find a design to estimate all the two-way interactions
uniquely, without a large number of runs. The construction of good designs is a complex task.
For example, see Hamada and Wu (2000) for more on this. A Latin square (see Section 
16.2) where all predictors are considered as factors is another example of a fractional factorial.

In fractional factorial experiments, we try to estimate many parameters with as few data 
points as possible. This means there are often not many degrees of freedom left. We require
that #2 be small; otherwise there will be little chance of distinguishing significant effects.
Fractional factorials are popular in engineering applications where the experiment and materials
can be tightly controlled. Fractional factorials are popular in product design because they allow
for the screening of a large number of factors. Factors identified in a screening experiment can
then be more closely investigated. In the social sciences and medicine,  the  experimental 
materials,  often  human  or  animal,  are  much  less homogeneous and less controllable,
so #2  tends to be relatively larger.  In such cases, fractional factorials are of no value.
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Factorial Designs 209

Let’s look at an example. Speedometer cables can be noisy because of shrinkage in the 
plastic casing material. An experiment was conducted to find out what caused shrinkage 
by screening a large number of factors. The engineers started with 15 different factors: 
liner outside diameter, liner die, liner material, liner line speed, wire braid type, braiding 
tension, wire diameter, liner tension, liner temperature, coating material, coating die type, 
melt temperature, screen pack, cooling method and line speed, labeled a through o. 
Response is percentage of shrinkage per specimen. There were two levels of each factor. 
The “+” indicates the high level of a factor and the “–” indicates the low level.

A full factorial would take 215 runs, which is highly impractical, thus a design with 
only 16 runs was used where the particular runs have been chosen specially so as to 
estimate the mean and the 15 main effects. We assume that there is no interaction effect 
of any kind. The data come from Box, Bisgaard, and Fung (1988).

Read in and check the data:

> data (speedo) 

> speedo

  h d l b j f n a i e m c k g o      y 

1 ! ! + ! + + ! ! + + ! + ! ! + 0.4850 

2 + ! ! ! ! + + ! ! + + + + ! ! 0.5750 

…… 

16 + + + + + + + + + + + + + + + 0.5825

Fit and examine a main effects only model:

> g < - lm (y ˜ ., speedo) 

> summary (g)

Residuals: 

ALL 16 residuals are 0: no residual degrees of freedom! 

Coefficients:

             Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.5825000         NA      NA      NA 

h–         !0.0621875         NA      NA      NA 

d–         !0.0609375         NA      NA      NA 

1–         !0.0271875         NA      NA      NA 

b–          0.0559375         NA      NA      NA 

j–          0.0009375         NA      NA      NA 

f–         !0.0740625         NA      NA      NA 

n–         !0.0065625         NA      NA      NA 

a–         !0.0678125         NA      NA      NA 

i–         !0.0428125         NA      NA      NA 

e–         !0.2453125         NA      NA      NA 

m–         !0.0278125         NA      NA      NA 

c–         !0.0896875         NA      NA      NA 

k–         !0.0684375         NA      NA      NA 

g–          0.1403125         NA      NA      NA 

o–         !0.0059375         NA      NA      NA

Residual standard error: NaN on 0 degrees of freedom 

Multiple R-Squared: 1, Adjusted R-squared: NaN

F-statistic: NaN on 15 and 0 DF, p-value: NA
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210 Linear Models with R

There are no degrees of freedom, because there are as many parameters as cases. We cannot do
any of the usual tests. It is important to understand the coding here, so look at the X-matrix:

> model.matrix (g) 

(Intercept) h d l b j f n a i e m c k g o

1         1 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

…etc…

We see that “+” is coded as zero and “&” is coded as one. This unnatural ordering is
because of the order of “+” and “&” in the ASCII alphabet.

We do not have any degrees of freedom so we can not make the usual F-tests. We need
a different method to determine significance. Suppose there were no significant effects
and the errors were normally distributed. The estimated effects would then just be linear
combinations of the errors and hence normal. We now make a normal quantile plot of the
main effects with the idea that outliers represent significant effects:

> qqnorm (coef (g) [!1] , pch=names (coef (g) [!1] ) )

Figure 15.6 Q–Q plots of effects for speedometer cable analysis.

See Figure 15.6. Notice that “e” and possibly “g” are extreme. Since the “e” effect is
negative,  the “+” level of “e” increases the response. Since shrinkage is a bad thing,
increasing  the  response  is  not  good  so  we  would  prefer  whatever  “wire  braid”  type
corresponds to the “&” level of “e”. The same reasoning for “g” leads us to expect that a
larger (assuming that is “+”) would decrease shrinkage.

A half-normal plot is better for detecting extreme points:

> halfnorm (coef (g) [!1] ,labs=names(coef(g) [!1] ) )

We might now conduct another experiment focusing on the effect of “e” and “g.”
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Factorial Designs 211

Exercises

1. Analyze warpbreaks data as a two-way ANOVA. Which factors are significant? Now
check for a good transformation on the response and see whether the model may be
simplified. Now form a six-level factor from all combinations of the wool and tension
factors. Which combinations are significantly different?

2. The barley data may be found in the lattice package. Perform a three-way ANOVA
with yield as the response. Check the diagnostics—you will find that two points stick
out, which correspond to the same variety and site, but for different years. There is
reason  to  suspect  that  the  response  values  for  these  cases  have  been  transposed.
Investigate the effect of transposing these cases on the analysis.

3. Determine the important factors in the sono dataset where the Intensityis the response
and the other variables are predictors.

4. Using the rats data, model the survival time in terms of the poison and treatment. Use
the Box-Cox  method  to  determine  an  appropriate  transformation  on  the  response.
Which treatments and which poisons are significantly different?

5. The peanut data come from a fractional factorial experiment to investigate factors that
affect  an  industrial  process  using  carbon  dioxide  to  extract  oil  from  peanuts.
Determine which factors are important remembering to consider twoway interactions.
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CHAPTER 16 
Block Designs

In  a  completely  randomized  design  (CRD),  the  treatments  are  assigned  to  the 
experimental units at random. This is appropriate when the units are homogeneous, as has 
been  assumed in  the  designs  leading  to  the  one-  and  two-way analysis  of  variances 
(ANOVAs). Sometimes, we may suspect that the units are heterogeneous, but we can not 
describe  the  form the  difference  takes—for  example,  we  may know that  a  group  of 
patients are not identical, but we may have no further information about them. In this 
case, it is still appropriate to use a CRD. Of course, the randomization will tend to spread 
the heterogeneity around to reduce bias, but the real justification lies in the randomization 
test discussed in Section 3.3. Under the null hypothesis, there is no link between a factor 
and the response. In other words, the responses have been assigned to the units in a way 
that is unlinked to the factor. This corresponds to the randomization used in assigning the 
levels of the factor to the units. This is why the randomization is crucial because it allows 
us to make this argument. Now if the difference in the response between levels of the 
factor seems too unlikely to have occurred by chance, we can reject the null hypothesis. 
The normal-based inference is approximately equivalent to the permutation-based test. 
Since the normal-based inference is much quicker, we might prefer to use that.

When the experimental units are heterogeneous in a known way and can be arranged 
into  blocks  where  the  within  block variation  is  ideally  small,  but  the  between block 
variation is large, a block design can be more efficient than a CRD. We prefer to have a 
block size equal to the number of treatments. If this cannot be done, an incomplete block 
design must be used.

Sometimes the blocks are determined by the experimenter. For example, suppose we 
want to compare four treatments and have 20 patients available. We might divide the 
patients into five blocks of four patients each where the patients in each block have some 
relevant  similarity.  We  might  decide  this  subjectively  in  the  absence  of  specific 
information. In other cases, the blocks are predetermined by the nature of the experiment. 
For example, suppose we want to test three crop varieties on five fields. Restrictions on 
planting, harvesting and irrigation equipment might allow us only to divide the fields into 
three strips.

In a randomized block design, the treatment levels are assigned randomly within a 
block. This means the randomization is restricted relative to the full randomization used 
in  the  CRD.  This  has  consequences  for  the  inference.  There  are  fewer  possible 
permutations for the random assignment of the treatments, therefore, the computation of 
the significance of a statistic based on the permutation test would need to be modified. 
Similarly,  a  block effect  must  be included in the model  used for  inference about  the 
treatments, even if the block effect is not significant.

16.1 Randomized Block Design

We have one treatment factor, 0 at t levels and one blocking factor, ! at r levels. The
model is:
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214 Linear Models with R

y
ij
=!+0

i
+!

j
+"

ij 
 

where 0
i
 is the treatment effect and /

j
 is the blocking effect. There is one observation on

each  treatment  in  each  block.  This  is  called  a  randomized  complete  block  design 
(RCBD). The analysis is then very similar to the two-way ANOVA with one observation
per cell. We can check for an interaction and check for a treatment effect. We can also
check the block effect, but this is only useful for future reference. Blocking is a feature of
the experimental units and restricts the randomized assignment of the treatments. This
means that we cannot regain the degrees of freedom devoted to blocking even if  the
blocking effect is not significant. The randomization test-based argument means that we
must  judge the magnitude of  the treatment  effect  within the context  of  the restricted
randomization that has been used.

We illustrate this with an experiment to compare eight varieties of oats. The growing
area was heterogeneous and so was grouped into five blocks. Each variety was sown once
within each block and the yield in grams per 16-ft row was recorded. The data come from
Anderson and Bancroft (1952).

We start with a look at the data: 

> data (oatvar) 

> attach (oatvar) 

> xtabs (yield ˜ variety + block) 

block 

variety I   II  III IV  V

      1 296 357 340 331 348

      2 402 390 431 340 320

      3 437 334 426 320 296

      4 303 319 310 260 242

      5 469 405 442 487 394

      6 345 342 358 300 308

      7 324 339 357 352 220

      8 488 374 401 338 320 

> stripchart (yield ˜  variety,  xlab="yield", ylab="variety")

> stripchart (yield ˜ block, xlab="yield",
 
ylab="block")

See Figure 16.1. There is no indication of outliers, skewness or nonconstant variance.
Now check for interactions, as seen in Figure 16.2: 

> interaction.plot (variety, block, yield) 

> interaction.plot (block, variety, yield)

There is no clear evidence of interaction: 

> g < - lm (yield ˜ block+variety) > 

anova (g)

Analysis of Variance Table
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Block Designs 215

Response: yield

          Df Sum Sq Mean Sq F value Pr ( >F)

Figure 16.1 Strip plots of oat variety data.

Figure 16.2 Interaction plots for oat variety data.

block      4 33396  8349 6.24   0.001

variety    7 77524 11075 8.28 1.8e–05

Residuals 28 37433  1337

Both effects are significant.  The ANOVA table corresponds to a sequential  testing of
models, here corresponding to the sequence:

y ˜ 1 

y ˜ block 

y ˜ block+variety
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216 Linear Models with R

So here the p-value 0.001 corresponds to a comparison of the first two models in this list,
while the p-value of  1.8e–05 corresponds to the test  comparing the second two.  The
denominator in both F-tests is  the mean square from the full  model,  here 1337. This
means that a test of the block effect that leaves out the variety effect is not the same:

> anova (lm (yield ˜ block))

Analysis of Variance Table

Response: yield

          Df Sum Sq Mean Sq F value Pr(>F)

block      4  33396    8349    2.54  0.057

Residuals 35 114957    3284

There is a difference in significance in this case. This latter test is incorrect for testing the
blocking effect.

Notice that if we change the order of the terms in the ANOVA, it makes no difference
because of the orthogonal design:

> anova (lm (yield ˜ variety+block))

Analysis of Variance Table

Response: yield

          Df Sum Sq Mean Sq F value  Pr(>F)

variety    7  77524   11075    8.28 1.8e–05

block      4  33396    8349    6.24   0.001

Residuals 28  37433    1337

By  way  of  comparison,  see  what  happens  if  we  omit  the  first  observation  in  the
dataset—this might happen in practice if this run is lost:

> anova (1m(yield ˜ block+variety,subset=!l))

Analysis of Variance Table 

Response: yield

          Df Sum Sq Mean Sq F value  Pr(>F)

block      4  38581    9645    8.41 0.00015

variety    7  75339   10763    9.38 7.3e–06

Residuals 27  30968    1147 

> anova(lm(yield ˜ variety+block, subset=!l))

Analysis of Variance Table 

Response: yield

          Df Sum Sq Mean Sq F value  Pr(>F)

variety    7  75902   10843    9.45 6.8e–06

block      4  38018    9504    8.29 0.00017

Residuals 27  30968    1147

As there is one missing observation, the design is no longer orthogonal and the order does
matter, although it would not change the general conclusions. If we want to test for a
treatment effect, we would prefer the first of these two tables since in that version the
blocking factor is already included when we test the treatment factor. Since the blocking
factor is an unalterable feature of the chosen design, this is as it should be. A convenient
way to test all terms relative to the full model is:
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Block Designs 217

> drop1 (lm (yield ˜ variety+block, subset=!l), test="F")

Single term deletions 

Model: 

yield ˜ variety + block

       Df Sum of Sq    RSS AIC F value   Pr(F)

<none>               30968 284 

variety 7     75339 106307 319    9.38 7.3e–06

block   4     38018  68986 308    8.29 0.00017

Check the diagnostics, as seen in Figure 16.3:

> plot (fitted (g), residuals (g), xlab="Fitted", ylab="Residuals"]

> abline (h=0) 

> qqnorm (residuals (g)) 

> qqline (residuals (g))

Figure 16.3 Diagnostic plots for the oat variety data.

An examination of which varieties give the highest yields and which are significantly
better than others can now follow.

We did assume that the interactions were not significant. We looked at the interaction
plots, but we can also execute the Tukey nonadditivity test:

> varcoefs < - c (0, coef (g) [6:12]) 

> blockcoefs < - c (0, coef (g) [2:5]) 

> ab < - rep (varcoefs,each=5)*rep(blockcoefs,8)

> h < - update (g, .˜.+ab) 

> anova (h)

Analysis of Variance Table 

Response : yield

          Df Sum Sq Mean Sq F value  Pr(>F)

block      4  33396    8349    6.06  0.0013

variety    7  77524   11075    8.03 2.8e–05
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218 Linear Models with R

ab         1    213     213    0.15  0.6974

Residuals 27  37220    1379

Because the p-value of the treatment times block effect is 0.6974, we accept the null
hypothesis of no interaction. Of course, the interaction may be of a nonmultiplicative
form, but there is little we can do about that.

Relative advantage of RCBD over CRD
We can measure precision by considering  or equivalently . We should compare

the   for  designs  with  the  same  sample  size.  We  define  relative  efficiency  as

 where the quantities can be computed by fitting models with and without
the blocking effect. For the example above:

> gcrd < - lm (yield ˜ variety)

> summary (gcrd) $sig

[1] 47.047 

> summary (g) $sig

[1] 33.867 

> (47.047/33.867)ˆ2

[1] 1.9298

So a CRD would require 93% more observations to obtain the same level of precision as
an RCBD.

The efficiency is not guaranteed to be greater than one. Only use blocking where there
is some heterogeneity in the experimental units.  The decision to block is a matter of
judgment prior to the experiment. There is no guarantee that it will increase precision.

16.2 Latin Squares

Latin squares are useful when there are two blocking variables. For example, in a field
used for agricultural experiments, the level of moisture may vary across the field in one
direction and the fertility, in another. In an industrial experiment, suppose we wish to
compare four production methods (the treatments)—A, B, C and D. We have available
four machines 1, 2, 3 and 4, and four operators, I, II, III and IV. A Latin square design is
shown in Table 16.1.
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Block Designs 219

 1 2 3 4

I A B C D

II B D A C

III C A D B

IV D C B A

Table 16.1 Latin square showing the treatment (A to D) used for different
combinations of two factors.

Each  treatment  is  assigned  to  each  block  once  and  only  once.  We  should  choose
randomly from all the possible Latin square layouts.

Let 0 be the treatment factor and ! and * be the two blocking factors; then the model is:

y
ijk

=!+0
i
+!

j
+*

k
+"

ijk 
i, j, k=1,…, t  

All combinations of i, j and k do not appear. To test for a treatment effect simply fit a
Vmodel without the treatment effect and compare using the F-test. The Tukey pairwise
CIs are:

 

The Latin square can be even more efficient than the RCBD provided that the blocking
effects are sizable. There are some variations on the Latin square. The Latin square can
be replicated if more runs are available. We need to have both block sizes to be equal to
the number of treatments. This may be difficult to achieve. Latin rectangle designs are
possible  by  adjoining  Latin  squares.  When  there  are  three  blocking  variables,  a
Graeco-Latin square may be used but these rarely arise in practice.

The Latin square can also be used for comparing three treatment factors. Only t2 runs

are required compared to the t3 required if all combinations were run. (The downside is
that you can not estimate the interactions if they exist.) This is an example of a fractional
factorial.

In an experiment reported by Davies (1954), four materials, A, B, C and D, were fed
into a wear-testing machine. The response is the loss of weight in 0.1 mm over the testing
period. The machine could process four samples at a time and past experience indicated
that there were some differences due to the position of these four samples.

Also some differences were suspected from run to run. Four runs were made:

> data(abrasion)

> abrasion

   run position material wear

1   1        1        C  235
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220 Linear Models with R

2   1        2        D  236

..etc.. 

1   4        4        D  225

We can check the Latin square structure:

> matrix(abrasion$material, 4, 4) 

[,1] [,2] [,3] [,4]

[1,] "C" "A" "D" "B"

[2,] "D" "B" "C" "A"

[3,] "B" "D" "A" "C"

[4,] "A" "C" "B" "D"

Plot the data:

> with (abrasion, stripchart (wear material,

xlab="Material",vert=T)) 

> with (abrasion, stripchart (wear run, xlab="Run",vert=T))

> with (abrasion, stripchart (wear position, 

xlab="Position", vert=T))

Figure 16.4 Amount of wear depending on material, run and position.

Examine the plots in Figure 16.4. There appear to be differences in all  variables. No
outliers, skewness or unequal variance is apparent.

Now fit the Latin square model and test each variable relative to the full model:

> g < - lm (wear ~ material+run+position, abrasion)

> drop1 (g, test="F")

Single term deletions 

Model: wear ˜ material + run + position

        Df Sum of Sq  RSS AIC F value   Pr(F)

<none>                368  70 

material 3      4621 4989 106   25.15 0.00085

run      3       986 1354  85    5.37 0.03901

position 3      1468 1836  90    7.99 0.01617
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Block Designs 221

the  materials.  We  checked  the  diagnostics  on  the  model,  which  showed  nothing 
remarkable. We examine the coefficients:

> summary (g)

Coefficients:

            Estimate  Std. Error  t value Pr(>|t|)

(Intercept)   254.75        6.19    41.17  14e–08

materia1B     !45.75        5.53    !8.27 0.00017

materialC     !24.00        5.53    !4.34 0.00489

materialD     !35.25        5.53    !6.37 0.00070 

run2           !2.25        5.53    !0.41 0.69842 

run3           12.50        5.53     2.26 0.06466 

run4           !9.25        5.53    !1.67 0.14566

position2      26.25        5.53     4.74 0.00318

position3       8.50        5.53     1.54 0.17545

position4       8.25        5.53     1.49 0.18661

Residual standard error: 7.83 on 6 degrees of freedom

Multiple R-Squared: 0.951,   Adjusted R-squared: 0.877

F-statistic: 12.8 on 9 and 6 DF, p-value: 0.00283

We see that material B looks best (in terms of least wear) followed by material D. Is the
difference significant though? Which materials in general are significantly better than
others? We need the Tukey pairwise intervals to help determine this. The width of the
band is calculated in the usual manner:

> qtukey (0.95, 4, 6)*5.53/sqrt(2)

[1] 19.143

The width of the interval is 19.1. We can make a table of the material differences:

> scoefs < - c (0, coef (g) [2:4])

> outer (scoefs, scoefs,"–")

                 materia1B materialC materialD

            0.00     45.75     24.00     35.25

materia1B !45.75      0.00–21.75    !10.50

materialC !24.00     21.75      0.00     11.25

materialD !35.25     10.50    !11.25      0.00

We see that the (B, D) and (D, C) differences are not significant at the 5% level, but that 
all the other differences are significant.

If maximizing resistance to wear is our aim, we would pick material B but if material 
D offered a better price, we might have some cause to consider switching to D. The 
decision would need to be made with cost-quality trade-offs in mind.

Now we compute how efficient the Latin square is compared to other designs. We 
compare to the completely randomized design:

> gr < - lm (wear ˜ material, abrasion) 

> (summary (gr) $sig/summary (g) $sig) ˜ 2

[1] 3.8401

We see that all variables are statistically significant. There are clear differences between
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222 Linear Models with R

We see  that  the  Latin  square  is  3.84  times  more  efficient  than  the  CRD.  This  is  a
substantial gain in efficiency. The Latin square may also be combined to designs where
we block on only one of the variables. The efficiency relative to these designs is less
impressive, but still worthwhile.

16.3 Balanced Incomplete Block Design

In a complete block design, the block size is equal to the number of treatments. When the
block size is less than the number of treatments, an incomplete block design must be
used. For example, in the oat example, suppose six oat varieties were to be compared, but
each field had space for only four plots.

In an incomplete block design, the treatments and blocks are not  orthogonal. Some
treatment  contrasts  will  not  be  identifiable  from  certain  block  contrasts.  This  is  an
example of confounding. This means that those treatment contrasts effectively cannot be
examined. In a balanced incomplete block (BIB) design, all the pairwise differences are
identifiable and have the same standard error. Pairwise differences are more likely to be
interesting than other contrasts, so the design is constructed to facilitate this.

Suppose, we have four treatments (t=4) A, B, C, D and the block size, k=3 and there
are b=4 blocks. Therefore, each treatment appears r=3 times in the design. One possible
BIB design is:

Block 1 A B C

Block 2 A B D

Block 3 A C D

Block 4 B C D

Table 16.2 BIB design for four treatments with four blocks of size three.

Each pair of treatments appears in the same block $=2 times—this feature means simpler
pairwise comparison is possible. For a BIB design, we require:

b # t > k 
rt = bk = n
$(t–1) = r(k–1)

 

This last relation holds because the number of pairs in a block is k (k#1)/2 so the total
number of pairs must be bk (k&1)/2. On the other hand, the number of treatment pairs is t
(t&1 )/2. The ratio of these two quantities must be $.

Since $ has to be an integer, a BIB design is not always possible even when the first
two conditions are satisfied.  For example,  consider r=4,  t=3,  b=6,  k=2 and then $=2
which is OK, but if r=4, t=4, b=8, k=2, then $=4/3 so no BIB is possible. (Something
called a partially balanced incomplete block design can then be used.)  BIBs are also
useful for competitions where not all contestants can fit in the same race.
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Block Designs 223

The model we fit is the same as for the RCBD:

y
ij
=!+0

i
+!

j
+"

ij 
 

In our example, a nutritionist studied the effects of six diets, “a” through “f,” on weight 
gain of domestic rabbits. From past experience with sizes of litters, it was felt that only 
three uniform rabbits could be selected from each available litter. There were ten litters 
available forming blocks of size three. The data come from Lentner and Bishop (1986). 
Examine the data:

> data(rabbit) 

> xtabs (gain ˜ treat+block, rabbit) 

block 

treat  b1   b10  b2   b3   b4   b5   b6   b7   b8   b9

    a  0.0 37.3 40.1  0.0 44.9  0.0 45.2 44.0  0.0

    b 32.6  0.0 38.1  0.0  0.0  0.0 37.3 40.6  0.0 30.6

    c 35.2  0.0 40.9 34.6 43.9 40.9  0.0  0.0  0.0  0.0

    d  0.0 42.3  0.0 37.5  0.0 37.3  0.0 37.9  0.0 27.5

    e  0.0  0.0  0.0  0.0 40.8 32.0 40.5  0.0 38.5 20.6

    f 42.2 41.7  0.0 34.3  0.0  0.0 42.8  0.0 51.9  0.0

The zero values correspond to no observation. The BIB structure is apparent—each pair 
of diets appear in the same block exactly twice. Now plot the data, as seen in Figure 16.5:

> attach(rabbit) 

> stripchart (gain ˜ block, xlab="weight gain",ylab="block") 

> stripchart (gain  ˜  treat,  xlab="weight  gain", ylab="treat")

Figure 16.5 Strip plots of rabbit diet data.

We fit the model taking care to put the blocking factor first:
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224 Linear Models with R

> g < - lm (gain ˜ block+treat,rabbit) >

anova (g)

Analysis of Variance Table 

Response: gain

      Df Sum Sq Mean Sq F value Pr( >F)

block      9    730   81       8.07 0.00025

treat      5    159   32       3.16 0.03817

Residuals 15    151   10

Changing the order of treatment and block:

Analysis of Variance Table 

> anova (lm(gain ˜ treat+block, rabbit))

Response: gain

          Df Sum Sq Mean Sq F value  Pr(>F)

treat      5    293      59    5.84 0.00345

block      9    596      66    6.59 0.00076

Residuals 15    151      10

does  make  a  difference  because  the  design  is  not  orthogonal  because  of  the
incompleteness. We prefer the first table, because we want to test for a treatment effect
after the blocking effect has been considered.

Now check the diagnostics:

> plot (fitted (g), residuals (g), xlab="Fittedn, ylab="Residuals") 

> abline (h=0) 

> qqnorm (residuals (g), main="") 

> qqline (residuals (g))

The plots are not shown, as they show nothing of interest.
Now we check which treatments differ. The Tukey pairwise CIs need to be directly

constructed because this is not a complete layout. We extract the information about he
treatment effects and the standard error:

> coef (summary (g))

        Estimate Std. Error   t value Pr(>|t|)

treatb !1.741667     2.2418 !0.776898 0.449298

treatc  0.400000     2.2418  0.178426 0.860776

treatd  0.066667     2.2418  0.029738 0.976668

treate !5.225000     2.2418 !2.330695 0.034134

treatf  3.300000     2.2418  1.472018 0.161686

We see that the standard error for the pairwise comparison is 2.24. Notice that all the
treatment standard errors are equal because of the BIB. Now compute the Tukey critical
value:

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
] 

at
 1

6:
20

 2
3 

M
ay

 2
01

4 



Block Designs 225

> qtukey(0.95, 6, 15)

[1] 4.5947

So the intervals have width:

> 4.59*2.24/sqrt (2)

[1] 7.2702

We check which pairs are significantly different:

> tcoefs < - c (0, coef (g) [11:15]) 

> abs (outer (tcoefs, tcoefs,"–")) > 7.27

      treatb treatc treatd treate treatf 

       FALSE  FALSE  FALSE  FALSE  FALSE  FALSE

treatb FALSE  FALSE  FALSE  FALSE  FALSE  FALSE 

treatc FALSE  FALSE  FALSE  FALSE  FALSE  FALSE

treatd FALSE  FALSE  FALSE  FALSE  FALSE  FALSE 

treate FALSE  FALSE  FALSE  FALSE  FALSE   TRUE 

treatf FALSE  FALSE  FALSE  FALSE   TRUE  FALSE

Only the e–f difference is significant.
Now let’s see how much better this blocked design is than the CRD. We compute the 

relative efficiency:

> gr < - lm (gain ˜ treat,rabbit) 

> (summary (gr) $sig/summary (g) $sig)ˆ2

[1] 3.0945

Blocking was well worthwhile here.

Exercises

1. The alf alf a data arise from a Latin square design where the treatment factor is inocu-
lum and the blocking factors are shade and irrigation. Test the significance of the ef-
fects and determine which levels of the treatment factor are significantly different.

2. The  eggprod  comes  from  a  randomized  block  experiment  to  determine  factors 
affecting egg production. Is there a difference in the treatments? What is the nature of 
the difference? What efficiency was gained by the blocked design?

3. The morley data can be viewed as a randomized block experiment with Run as the 
treatment factor and Expt as the blocking factor. Is there a difference between runs and 
what efficiency is gained by blocking?

4. The OrchardSprays data arise from a Latin square design. Which factors show a 
difference?  What  pairs  of  treatments  are  different?  Can  the  treatment  factor  be 
replaced with a linear term? What efficiency is gained by this design?

5. The resceram data arise from an experiment to test the effects of resistor shape on current 
noise. The resistors are mounted on plates and only three resistors will fit on a plate although 
there are four different shapes to be tested. Identify the design and analyze. Which shapes are 
different?
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APPENDIX A
R Installation, Functions and Data

R may be obtained from the R project Web site at www.r-project.org.
This book uses some functions and data that are not part of base R. You may wish to 

download these extras from the R Web site. The additional packages used are:

MASS, nlme, splines, leaps, quantreg, Imtest, pls.pcr,

ellipse, faraway

MASS, splines and nlme are part of the “recommended” R installation; you will have 
these already unless you choose a nonstandard installation. Use the command:

> library( )

within  R  to  see  what  packages  you  have.  Under  Windows,  to  install  the  additional 
packages,  choose the “Install  packages from CRAN” menu option.  You must  have a 
network connection for this to work—if you are working offline, you may use the “Install 
packages  from  local  zip  file”  menu  option  provided  you  have  already  obtained  the 
necessary packages.  Under other  operating systems,  such as Macintosh or  Linux,  the 
installation procedure differs. Consult the R Web site for details.

I have packaged the data and functions that I have used in this book as an R package 
called  f  araway  that  you  may  obtain  from  CRAN  or  the  book  Web  site  at 
www.stat.lsa.umich.edu/˜faraway/LMR. The functions defined are:

hal fnorm Half normal plot

qqnorml Case-labeled Q–Q plot

vif Variance Inflation factors

prplot Partial residual plot

In addition the following datasets are used as examples in the text:

abrasion Wear test experiment with Latin square design

chredlin Chicago insurance redlining

chmiss Chicago data with some missing values

coagulation Blood coagulation times by diet

composite 
factors

corrosion Corrosion loss in Cu-Ni alloys

eco Ecological regression example

fpe 1981 French presidential election

fruitfly Longevity of fruitflies depending on sexual activity

gala Species diversity on the Galapagos Islands

Strength of a thermoplastic composite depending on
 two
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228 Appendix A: R Installation, Functions and Data

meatspec Meat spectrometry to determine fat content

oatvar Yields of oat varieties grown in blocks

odor Odor of chemical by production settings

pima Diabetes survey on Pima Indians

pvc Production of PVC by operator and resin railcar

rabbit Rabbit weight gain by diet and litter

savings Savings rates in 50 countries

seatpos Car seat position depending driver size

sexab Post traumatic stress disorder in abused women

speedo Speedometer cable shrinkage

star Star light intensities and temperatures

stat500 Scores for students in Stat500 class

Some additional datasets are provided for the exercises.
Where add-on packages are needed in the text, you will find the appropriate library ( ) 

command. However, I have assumed that the faraway library is always loaded. You can 
add a line reading library (faraway) to your Rprofile file if you expect to use this package 
in every session. Otherwise, you will need to remember to type it each time.

I set the following options to achieve the output seen in this book:

> options (digits=5, show.signif.stars=FALSE)

The digits=5 reduces the number of digits shown when printing numbers from the default 
of  seven.  Note that  this  does not  reduce the precision with which these numbers are 
internally  stored.  One  might  take  this  further—anything  more  than  two  or  three 
significant  digits  in  a  displayed  table  is  usually  unnecessary  and  more  importantly, 
distracting. I have also edited the output in the text to remove extraneous output or to 
improve the formatting.

The code and output shown in this book were generated under R version 1.9.0. R is 
regularly updated and improved so more recent versions may show some differences in 
the output.
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APPENDIX B 
Quick Introduction to R

This is just a brief introduction to R. See the preface for recommendations about how to 
learn more about R.

B.1 Reading the Data In

The first step is to read the data in. You can use the read. table ( ) or scan ( ) functions to 
read data in from outside R. You can also use the data ( ) function to access data already 
available within R:

> data (stackloss) 

> stackloss

  Air.Flow Water.Temp Acid.Conc. stack.loss 

1       80         27         89         42 

2       80         27         88         37 

…stuff deleted… 

21      70         20         91         15

Type:

> help (stackloss)

to see more information about the data. We can check the dimension of the data:

> dim (stackloss)

[1] 21 4

There are 21 rows and four columns.

B.2 Numerical Summaries

One easy way to get the basic numerical summaries is:

> summary (stackloss)

   Air.Flow    Water.Temp   Acid.Conc.   stack.loss 

Min.   :50.0 Min.   :17.0 Min.   :72.0 Min.   : 7.0 

1st Qu.:56.0 1st Qu.:18.0 1st Qu.:82.0 1st Qu.:11.0 

Median :58.0 Median :20.0 Median :87.0 Median :15.0 

Mean   :60.4 Mean   :21.1 Mean   :86.3 Mean   :17.5 

3rd Qu.:62.0 3rd Qu.:24.0 3rd Qu.:89.0 3rd Qu.:19.0 

Max.   :80.0 Max.   :27.0 Max.   :93.0 Max.   :42.0
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230 Appendix B: Quick Introduction to R

> stackloss$Air.Flow

[1] 80 80 75 62 62 62 62 62 58 58 58 58 58 58 50 50 50 50 50 56

[21] 70 

> mean (stackloss$Ai)

[1] 60.429 

> median(stackloss$Ai)

[1] 58 

> range (stackloss$Ai)

[1] 50 80 

> quantile (stackloss$Ai)

  0%  25%  50%  75%  100%

  50   56   58   62    80

We can get the variance and standard deviation:

> var (stackloss$Ai)

[1] 84.057 

> sd (stackloss$Ai)

[1] 9.1683

We might also want the correlations:

> cor (stackloss)

          Air.Flow Water.Temp Acid.Conc. stack.loss 

Air.Flow   1.00000    0.78185    0.50014    0.91966 

Water.Temp 0.78185    1.00000    0.39094    0.87550 

Acid.Conc. 0.50014    0.39094    1.00000    0.39983 

stack.loss 0.91966    0.87550    0.39983    1.00000

B.3 Graphical Summaries

We can make histograms and boxplots and specify the labels:

> hist (stackloss$Ai) 

> hist (stackloss$Ai, main="Histogram of Air Flow",

  xlab="Flow of cooling air") 

> boxplot (stackloss$Ai)

Scatterplots are also easily constructed:

> plot (stackloss$Ai, stackloss$W) 

> plot (Water.Temp ˜ Air.Flow, stackloss, xlab="Air Flow"

  ylab="Water Temperature")

We can make a scatterplot matrix:

> plot (stackloss)

We can also compute these numbers separately:
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Appendix B: Quick Introduction to R 231

We can put several plots in one display:

> par(mfrow=c (2, 2)) 

> boxplot (stackloss$Ai) 

> boxplot (stackloss$Wa) 

> boxplot(stackloss$Ac) 

> boxplot (stackloss$s) 

> par(mfrow=c(1, 1))

where the final command causes a return to one plot per display.

B.4 Selecting Subsets of the Data

The second row:

> stackloss [2,]

  
Air.Flow Water.Temp Acid.Conc. stack.loss 

2       80         27         88         37

The third column:

> stackloss [,3]

[1] 89 88 90 87 87 87 93 93 87 80 89 88 82 93 89 86 72 79 80 82

[21] 91

The (2, 3) element:

> stackloss [2, 3]

[1] 88

c ( ) is a function for making vectors—for example:

> c (1, 2, 4)

[1] 124

Select the first, second and fourth rows:

> stackloss [0 (1, 2, 4),]

Air.Flow Water.Temp Acid.Conc. stack.loss 

1      80         27         89         42 

2      80         27         88         37 

4      62         24         87         28
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232 Appendix B: Quick Introduction to R

> 3:11

[1] 3 4 5 6 7 8 9 10 11

We can select the third through sixth rows:

> stackloss [3:6,]

Air.Flow Water.Temp Acid.Conc. stack.loss 

3      75         25         90         37 

4      62         24         87         28 

5      62         22         87         18 

6      62         23         87         18

We can use “&” to indicate “everything but”—that is all the data except the first two 
columns:

> stackloss[,–c (1, 2)]

  Acid.Conc. stack.loss 

1         89         42 

2         88         37 

… 

21        91         15

We may also want to select the subsets on the basis of some criterion—for example, those 
cases which have an air flow greater than 72:

> stackloss[stackloss$Ai > 72,]

Air.Flow Water.Temp Acid.Conc. stack.loss 

1      80         27         89         42 

2      80         27         88         37 

3      75         25         90         37

B.5 Learning More about R

While running R you can get help about a particular command, for example, if you want 
help about the boxplot ( ) command, just type help (boxplot). If you do not know what 
the name of the command is that you want to use, then type:

help.start ( )

and then browse. You will be able to pick up the language from the examples in the text 
and from the help pages.

The: operator is good for making sequences—for example:
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Index

added variable plot, 72 

adjusted R2, 127
AIC, see Akaike Information Criterion 
Akaike Information Criterion, 126 
analysis of covariance, 7, 167 
analysis of variance, 7, 181 
ANCOVA, see analysis of covariance 
ANOVA, see analysis of variance

B-splines, 116 
back transformation, 109 
backward elimination, 122 
balanced incomplete block design, 212 
bias, 78 
BIC, 126 
blocking, 203 
BLUE, 15 
Bonferroni correction, 67, 176, 187 
bootstrap, 102 
Box-Cox method, 110 
boxplot, 182 
breakdown point, 101 
broken stick regression, 112

Cauchy distribution, 59 
causation, 46 
centering, 82 
central composite design, 41 
Choleski decomposition, 89 
coefficient of determination, 17 
collinearity, 83–87 
completely randomized design, 203 
condition number, 83 
confidence interval, 36 
confidence intervals, 34 
confidence region, 34 
contrast matrix, 173 
contrasts, 188 
Cook statistics, 69, 156 
correlated errors, 61–63 
C

p,
 127

crossvalidation, 139
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238 Index

abrasion, 209 
airquality, 61 
cars, 79 
chmiss, 163 
chredlin, 153 
coagulation, 182 
composite, 190 
corrosion, 96 
eco, 152 
f pe, 93 
f ruitfly, 174 
gala, 18, 57, 100, 111 
longley, 90 
meatspec, 135 
oatvar, 204 
odor, 40 
pima, 2 
pvc, 194 
rabbit, 213 
savings, 28, 54, 81, 110 
seatpos, 84 
sexab, 168 
speedo, 199 
stackloss, 219 
star, 68, 105 
stat500, 7 
state, 123 

degrees of freedom, 14 
dependent, 6 
designed experiment, 39–43, 78 
diagnostics, 53–75 
dummy variable, 168 
Durbin-Watson test, 61

ecological correlation, 151 
eigenvalues, 83, 134 
Einstein, 1, 47 
ellipse, 34–35 
EM algorithm, 163 
estimable function, 15 
explanatory, 6 
extrapolation, 38, 48

F-test, 26 
factor, 167 
factorial, 197 
fitted values, 14 
fixed effects, 181 
forward selection, 123 
fractional factorial, 198

datasets

future observation, 37
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Gauss-Markov theorem, 15–16 
generalized least squares, 63, 89 
genetic algorithm, 101

half-normal plot, 64, 70 
hat-matrix, 14, 53, 64 
Helmert coding, 173 
heteroscedasticity, 53 
hierarchical models, 121 
histogram, 58 
history, 7–9 hockey-stick 
function, 113 Huber esti-
mate, 99 hypothesis 
testing, 26

identifiability, 21–23 
imputation, 163 
incomplete blocks, 203 
indicator variable, see dummy variable 
influence, 69–71 
initial data analysis, 2-6, 153 
input, 6 
interaction, 122, 168, 173, 189 interac-
tion plot, 191, 204 
intercept, 11 
iteratively reweighted least squares, 94

jackknife residuals, 66 
jittering, 185

knotpoint, 113

lack of fittest, 94
Latin square, 198, 208 
leaps and bounds, 127 
least absolute deviation, 99 
least squares, 13–14 
least trimmed squares, 101 
level, 181 
Levene’s test, 185 leverage, 
64 
likelihood ratio test, 25, 110 
linear dependence, 21 lin-
ear model, 11 
logistic regression, 7 
logit, 165 
lognormal distribution, 59
lurking variable, 43
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M-estimates, 99
Mahalanobis distance, 64, 87 
Mallow’s C

p
, see C

p 
mean square error, 127 
measurement error, 77 
missing values, 4, 61, 163 model 
multiplicity, 148 
model uncertainty, 147 
multicollinearity, see collinearity 
multiple regression, 6 
multiplicative errors, 109

neural networks, 118 
nonconstant variance, 54 
nonrandom sample, 48 
normal equation, 13

observational data, 43–47 
Occam’s Razor, 121 
offset, 31 
ordered factor, 192 orthog-
onal polynomials, 115 
orthogonal projection, 13 
orthogonality, 40, 133 
outlier, 59, 66-69, 156 
output, 6 
overfitting, 97

p-value, 27, 34, 50 
pairwise comparisons, 186 
parameters, 11 
partial correlation, 82 
partial least squares, 140 partial 
regression, 72 
partial residual plot, 72 permu-
tation test, 32–33, 48 piecewise 
linear regression, 112 PLS, see
partial least squares Poisson 
distribution, 38 polynomial 
regression, 114, 121 predicted 
values, 14 prediction, 36, 47 
predictor, 6 
principal components, 133 
projection, 14 
publication bias, 49 
pure error, 95
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Index 241

Q#Q plot, 58
quadratic model, 95, 114

random effects, 181, 197
randomization, 42
randomized block design, 204
rank, 15, 27
reference level, 170
regression splines, 116
relative efficiency, 208, 211
replication, 95
representative sample, 48
resampling, 103
residual sum of squares, 14
residuals, 13, 14
response, 6
response surface, 116
ridge regression, 87, 143
robust regression, 59, 98-106
rounding error, 21

R2, 16

sample of convenience, 48
sampling, 48
saturated model, 21
scalechange, 81
scree plot, 137
segmented regression, 114
serial correlation, 62, 107
Shapiro-Wilk test, 60
shrinkage, 137
SIMEX, 79
simple regression, 6
simulation, 102
singular, 21, 83
splines, 116
statistical significance, 50
stepwise regression, 123
strip plot, 182
studentized residuals, 65
subspace, 30

t-statistic, 29
t-test, 29, 169
testing sample, 135
training sample, 135
transformation, 56, 109-119, 158
treatment coding, 173
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Tukey HSD, 187, 196
Tukey’s nonadditivity test, 191, 208

uniform distribution, 59

validation sample, 139
variable selection, 121–130, 158
variance stabilization, 57
variance inflation factor, 83

weighted least squares, 92, 99
weights, 92, 172
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