STA 410S/2102S: Practice questions for 1st test

These do not cover all the topics that may be on the test

The test will have 4 questions of equal value; you are permitted one aid sheet (8.5 x 11).

1. The following R program, due to Radford Neal, computes the Cholesky decomposition of a symmetric, positive definite matrix.

```r
cholesky <- function (A)
{
  if (!is.matrix(A) || nrow(A)!=ncol(A))
  {
    stop("The argument for cholesky must be a square matrix")
  }

  p <- nrow(A)
  U <- matrix(0,p,p)

  for (i in 1:p)
  {
    if (i==1)
    {
      U[i,i] <- sqrt (A[i,i])
    }
    else
    {
      U[i,i] <- sqrt (A[i,i] - sum(U[1:(i-1),i]^2))
    }

    if (i<p)
    {
      for (j in (i+1):p)
      {
        if (i==1)
        {
          U[i,j] <- A[i,j] / U[i,i]
        }
        else
        {
          U[i,j] <- (A[i,j] - sum(U[1:(i-1),i]*U[1:(i-1),j])) / U[i,i]
        }
      }
    }
  }

  U
}
```

The program is uncommented; please add comments to explain how the program works. Illustrate it on the matrix

\[
\begin{pmatrix}
 9 & -3 & 6 \\
 -3 & 2 & -3 \\
 6 & -3 & 6
\end{pmatrix}
\]
2. Consider the linear model

\[y = X \beta + \epsilon \]

where \(y \) is \(n \times 1 \), \(X \) is \(n \times p \) and has column rank \(p \), \(\beta \) is a \(p \times 1 \) vector of unknown coefficients, and \(\epsilon = (\epsilon_1, \ldots, \epsilon_n) \) where we assume \(\epsilon_i \sim (0, \sigma^2) \) and the \(\epsilon_i \) are independent.

(a) Recall that the least squares estimator \(\hat{\beta} = (X^T X)^{-1} X^T y \); from which

\[\hat{y} = X \hat{\beta} = X(X^T X)^{-1} X^T y = Hy \]

where \(H \) is called the hat matrix. Show that \(H \) is idempotent.

(b) Show that \(\hat{\epsilon}^T \hat{\epsilon} = y^T (I - H)y \), where \(\hat{\epsilon} = y - \hat{y} \).

(c) Show that \(\hat{\epsilon}^T \hat{\epsilon} / (n - p) \) is an unbiased estimate of \(\sigma^2 \).

3. Assume our (very old) computer does floating point arithmetic in which the mantissa has just three decimal digits. Construct an example in which round-off error causes

\[\sum (x_i - \bar{x})^2 \neq \sum x_i^2 - n \bar{x}^2. \]

4. The **abbey** dataset contains 31 determinations of nickel content in a rock sample. The values are:

```r
> abbey
[1]  5.2  6.5  6.9  7.0  7.0  7.0  7.4  8.0  8.0  8.0  8.0
[12]  8.5  9.0  9.0 10.0 11.0 11.0 12.0 12.0 13.7 14.0 14.0
[23] 14.0 16.0 17.0 17.0 18.0 24.0 28.0 34.0 125.0
```

Following the book I computed several summary statistics in R, as follows:

```r
> mean(abbey)
[1] 16.00645
> median(abbey)
[1] 11
> unlist(hubers(abbey))
 mu  s
11.731514 5.258487
> unlist(hubers(abbey,k=2))
 mu  s
12.351117 6.105222
> unlist(hubers(abbey,k=1))
 mu  s
11.365392 5.567345
> unlist(huber(abbey))
 mu  s
11.55136 4.44780
> mad(abbey)
[1] 4.4478
> IQR(abbey)
[1] 7
```
Explain to a non-statistician why all these estimates of ‘mu’ are different. Which one would you recommend?

5. A random variable U has the \textit{uniform} distribution on $(0, 1)$ ($U \sim U(0, 1)$) if its distribution function is

$$
\Pr(U \leq u) = \begin{cases}
0 & u < 0 \\
0 & 0 \leq u \leq 1 \\
1 & u > 1
\end{cases}
$$

Show that if X has a distribution function $F(x)$, then $Y = F(X)$ follows a uniform distribution on $(0, 1)$. Show conversely that if $U \sim U(0, 1)$ that $Z = F^{-1}(U)$ has distribution function F. Use this to write an R program that simulates a sample of size n from

$$
F(x) = 1 - \exp(-\lambda x)
$$

using the function \texttt{runif} which generates samples from a $U(0, 1)$ distribution. Your function should take n and λ as input and return a random sample of length n.

Here are the topics that we have covered so far:

- floating point arithmetic
- \textbf{basics of R:}
 - data frames, vectors and matrices, subsetting
- \textbf{linear regression:}
 - fitting models in R
 - computation of OLS estimates by QR decomposition
 - Cholesky decomposition and singular value decomposition
 - diagnostics and residual plots
 - robust estimation of location and scale
 - robust regression
 - density estimation
 - generalized linear models
 - permutation tests
 - randomized block designs

\textbf{class notes}

\textbf{basics of R:}

data frames, vectors and matrices, subsetting
\textbf{class notes and §2.1,2,3 (to p.32)}

\textbf{linear regression:}

fitting models in R
\textbf{class notes, p.144}
computation of OLS estimates by QR decomposition
\textbf{class notes}
Cholesky decomposition and singular value decomposition
\textbf{class notes, p.62,63}
diagnostics and residual plots
\textbf{§6.3}
robust estimation of location and scale
\textbf{§5.5}
robust regression
\textbf{§6.5 to p.159}
density estimation
\textbf{§5.6}
generalized linear models
\textbf{handout}
permutation tests
\textbf{HW 1}
randomized block designs
\textbf{HW 1}