Two-way ANOVA

Model:

\[Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk} \]

Assumptions:

\[\epsilon_{ijk} \text{ i.i.d. } N(0, \sigma^2) \]

- all observations independent
- all groups have same variance
- data are normally distributed
Examples of interaction (or not)

Interaction plot & Response curve

\[X_1 \text{ has 2 levels} \]
\[X_2 \text{ has 2 levels} \]

No interaction
- how \(X_1 \) affects \(Y \) is same when \(X_2 = 1 \) and \(X_2 = 2 \)
- \(X_1 \) has parallel lines

With interaction:
- \(Y \) for \(X_1 = 2 \) is \(> \) \(X_1 = 1 \)
 - but opposite when \(X_2 = 2 \)
If response curves are parallel, X_1 and X_2 do not interact, relationship between Y and (X_1, X_2) is simpler.

Could fit the model:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}$$

an additive model.

If there is a statistically significant interaction, no need to test whether there is a "main effect" of X_1 or X_2. Their effects are tied up with the level of the other factor.
Tests for interactions and main effects are tested via F-tests via decomposition of total SS as in 1-way ANOVA.

Interaction plots

3 levels of X_1
2 of X_2

1 X_1, X_2 interact

1 2 3 X_1

$X_2 = 2$
$X_2 = -1$
1 2 3 X_1
(2) No interaction, X_1 has an effect,
X_2 doesn't.

![Graph showing mean of Y with X_1 for $X_2 = 1$ and $X_2 = 2$.]

(3) No interaction, X_1 and X_2 both have an affect on Y.

![Graph showing mean of Y with X_1 for $X_2 = 1$ and $X_2 = 2$.]

(4) No interaction, no effect of X_1,
X_2 affects Y.

![Graph showing mean of Y with X_1 for $X_2 = 1$ and $X_2 = 2$.]
Randomized Block Design

- Two factor analysis of variance
 - One of interest
 - Other a source of variation
 - Can control for "block"

E.g. Interests in comparing effects of fertilizers on crop yield.

- Have 6 fields
 - Fields are relatively homogeneous

- Divide fields into 3 pots and randomly assign fertilizer to plot within each field
 - Fields are blocks

- Generally not interested in block-treatment interaction.