Sample of 9 components:
average temperature of 41.08°C
Assume temperatures follow a Normal distribution with S.D. 1.5°C
Test: $H_0: \mu = 40$
$H_a: \mu > 40$
Calculation:

$Z_{obs} = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$

$\bar{X}_{obs} = 41.08 - 40 = 1.08$

$Z_{calc} = \frac{1.08}{1.5 / \sqrt{9}} = 2.16$

If the true test statistic has $N(0,1)$ distribution

p-value = $P(Z > 2.16)$

p-value = 0.0154

We have some evidence against H_0 (not strong)

Assuming H_0 is true, chance of seeing what we got or even more extreme difference from H_0

is only 3%
as so we saw something fairly rare.

Interpreting p-values

p-value > 0.1
large p-value, no evidence against H_0

0.01 < p-value < 0.1
weak evidence against H_0

p-value > 0.01
some evidence against H_0

p-value < 0.01
strong evidence against H_0

When H_0 is not rejected: (could be a Type II error)

maybe test was not powerful enough to find a difference between observed average and mean when claimed in H_0

Power = 1 - β
prob. of Type II error

Consider upper - tailed test
$H_0: \mu = \mu_0, H_a: \mu > \mu_0$

with significance level α

Reject H_0 if

$Z_{calc} = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} > Z_{\alpha}$

So won't reject if $\bar{X} \leq \mu_0$

Suppose μ' is a value for μ that exceeds μ_0

would reject H_0 if true mean is μ'
\[\beta(\mu^*) = \Phi \left(\frac{\bar{X} - \mu^*}{\sigma/\sqrt{n}} \right) \]

If \(\mu = \mu^* \), then \(\bar{X} \sim N(\mu^*, \sigma^2/n) \)

\[\beta(\mu^*) = \Phi \left(\frac{\bar{X} - \mu^*}{\sigma/\sqrt{n}} \right) \]

\[\text{Power} (\mu^*) = 1 - \Phi \left(\frac{\bar{X} - \mu^*}{\sigma/\sqrt{n}} \right) \]

To increase power:

- Increase \(\alpha \)
- Decrease \(\sigma \)
- Increase \(n \)
- \(\mu^* \) further away from \(\mu_0 \)

If the alternative was \(H_0: \mu \leq \mu_0 \)

\[\mu^* \text{ value less than } \mu_0 \]

\[\beta(\mu^*) = 1 - \Phi \left(-\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \right) \]

Power (\(\mu^* \)) = \[\Phi \left(\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \right) \]

To increase power:

- Increase \(\sigma \)
- Decrease \(n \)

Case I: Large Sample Tests

When \(\sigma^2 \) is known, still testing \(\mu \)

\[Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \]

\[s = \sqrt{\frac{1}{n-1} \sum (X_i - \bar{X})^2} \]

Has approx a standard normal distribution under \(H_0 \) (\(\mu = \mu_0 \)) for large \(n \)

(see \(n \approx 40 \))

Case III: Suitable for any \(n \)

Use distribution of \(\bar{X} \) approx normal

Test statistic

\[T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \]

\(S \) has approx. a t-distribution with \(n-1 \) df.

Proceed as previous except replace \(Z \) with \(t_{(n-1)} \) or \(t_{(n-1)} \) with \(t_{(n-1)} \).
Example: Marks data
- Assume sample of size 20 from a large population of students.
 Do we evidence that the mean mark is more than a passing grade?
 \[H_0: \mu \leq 50 \]
 \[H_a: \mu > 50 \]

 Test statistic:
 \[
t_{obs} = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}
 \]
 \[
 t_{obs} = \frac{54.95 - 50}{14.1 / \sqrt{20}} = 1.57
 \]

 Under \(H_0 \), \(t \approx t_{19} \)

 From tables
 \[t_{19} \text{ at } 0.05 < p \text{ value } < 0.1 \]

 We have weak evidence that the mean mark is 55.

Example: Test of proportion
- 46.7% of 500 Canadians surveyed support gay marriage. Would a referendum pass?

 Let \(p \) be the proportion of Canadians who support gay marriage.

 \[p = 0.47 \]

 If \(X \) is the number of supporters in sample of size 500

 \[X \sim \text{Binomial}(500, p) \]

 \[E(X) = np \]
 \[\text{Var}(X) = np(1-p) \]

 \[\hat{p} = \frac{X}{500} \]
 \[\text{Var} \hat{p} = \frac{p(1-p)}{500} \]

 By CLT, \(\hat{p} \) has approx. a normal distribution.

 Test:
 \[H_0: p \leq 0.5 \]
 \[H_a: p > 0.5 \]