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Inference Problem

Given a dataset D = {x1, ..., xn}:

Bayes Rule:

P (θ|D) =
P (D|θ)P (θ)

P (D)

P (D|θ) Likelihood function of θ

P (θ) Prior probability of θ

P (θ|D) Posterior distribution over θ

Computing posterior distribution is known as the inference problem.

But:

P (D) =

∫
P (D, θ)dθ

This integral can be very high-dimensional and difficult to compute.
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Prediction

P (θ|D) =
P (D|θ)P (θ)

P (D)

P (D|θ) Likelihood function of θ

P (θ) Prior probability of θ

P (θ|D) Posterior distribution over θ

Prediction: Given D, computing conditional probability of x∗ requires

computing the following integral:

P (x∗|D) =

∫
P (x∗|θ,D)P (θ|D)dθ

= EP (θ|D)[P (x∗|θ,D)]

which is sometimes called predictive distribution.

Computing predictive distribution requires posterior P (θ|D).
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Computational Challenges

• Computing marginal likelihoods often requires computing very high-

dimensional integrals.

• Computing posterior distributions (and hence predictive

distributions) is often analytically intractable.

• First, let us look at some examples.
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Bayesian PMF
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We have N users, M movies, and integer rating values from 1 to K.

Let rij be the rating of user i for movie j, and U ∈ RD×N , V ∈ RD×M
be latent user and movie feature matrices:

R ≈ U>V

Goal: Predict missing ratings.
Salakhutdinov and Mnih, NIPS 2008.
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Bayesian PMF
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αα
V U Probabilistic linear model with Gaussian

observation noise. Likelihood:

p(rij|ui, vj, σ2) = N (rij|u>i vj, σ2)

Gaussian Priors over parameters:

p(U |µU ,ΛU) =

N∏
i=1

N (ui|µu,Σu),

p(V |µV ,ΛV ) =

M∏
i=1

N (vi|µv,Σv).

Conjugate Gaussian-inverse-Wishart priors on the user and movie

hyperparameters ΘU = {µu,Σu} and ΘV = {µv,Σv}.

Hierarchical Prior.

8



Bayesian PMF

Predictive distribution: Consider predicting a rating r∗ij for user i

and query movie j:

p(r∗ij|R) =

∫∫
p(r∗ij|ui, vj)p(U, V,ΘU ,ΘV |R)︸ ︷︷ ︸

Posterior over parameters and hyperparameters

d{U, V }d{ΘU ,ΘV }

Exact evaluation of this predictive distribution is analytically

intractable.

Posterior distribution p(U, V,ΘU ,ΘV |R) is complicated and does not

have a closed form expression.

Need to approximate.
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Undirected Models
x is a binary random vector with xi ∈ {+1,−1}:

p(x) =
1

Z
exp

( ∑
(i,j)∈E

θijxixj +
∑
i∈V

θixi
)
.

where Z is known as partition function:

Z =
∑
x

exp
( ∑
(i,j)∈E

θijxixj +
∑
i∈V

θixi
)
.

If x is 100-dimensional, need to sum over 2100 terms.

The sum might decompose (e.g. junction tree). Otherwise we need

to approximate.

Remark: Compare to marginal likelihood.
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Inference

For most situations we will be interested
in evaluating the expectation:

E[f ] =

∫
f(z)p(z)dz

We will use the following notation: p(z) = p̃(z)
Z .

We can evaluate p̃(z) pointwise, but cannot evaluate Z.

• Posterior distribution: P (θ|D) = 1
P (D)P (D|θ)P (θ)

• Markov random fields: P (z) = 1
Z exp(−E(z))
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Laplace Approximation
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Consider:

p(z) =
p̃(z)

Z
(1)

Goal: Find a Gaussian approximation

q(z) which is centered on a mode

of the distribution p(z).

At a stationary point z0 the gradient 5p̃(z) vanishes. Consider a

Taylor expansion of ln p̃(z):

ln p̃(z) ≈ ln p̃(z0)−
1

2
(z− z0)

TA(z− z0)

where A is a Hessian matrix:

A = −55 ln p̃(z)|z=z0
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Laplace Approximation

−2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

Consider:

p(z) =
p̃(z)

Z
(2)

Goal: Find a Gaussian approximation

q(z) which is centered on a mode

of the distribution p(z).

Exponentiating both sides:

p̃(z) ≈ p̃(z0) exp

(
− 1

2
(z− z0)

TA(z− z0)

)
We get a multivariate Gaussian approximation:

q(z) =
|A|1/2

(2π)D/2
exp

(
− 1

2
(z− z0)

TA(z− z0)

)
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Laplace Approximation

Remember p(z) = p̃(z)
Z , where we approximate:

Z =

∫
p̃(z)dz ≈ p̃(z0)

∫
exp

(
− 1

2
(z− z0)

TA(z− z0)

)
= p̃(z0)

(2π)D/2

|A|1/2

Bayesian Inference: P (θ|D) = 1
P (D)P (D|θ)P (θ).

Identify: p̃(θ|D) = P (D|θ)P (θ) and Z = P (D):

• The posterior is approximately Gaussian around the MAP estimate θMAP

p(θ|D) ≈ |A|1/2

(2π)D/2
exp

(
− 1

2
(θ − θMAP )TA(θ − θMAP )

)
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Laplace Approximation

Remember p(z) = p̃(z)
Z , where we approximate:

Z =

∫
p̃(z)dz ≈ p̃(z0)

∫
exp

(
− 1

2
(z− z0)

TA(z− z0)

)
= p̃(z0)

(2π)D/2

|A|1/2

Bayesian Inference: P (θ|D) = 1
P (D)P (D|θ)P (θ).

Identify: p̃(θ|D) = P (D|θ)P (θ) and Z = P (D):

• Can approximate Model Evidence:

P (D) =

∫
P (D|θ)P (θ)dθ

• Using Laplace approximation

lnP (D) ≈ lnP (D|θMAP ) + lnP (θMAP ) +
D

2
ln 2π − 1

2
ln |A|︸ ︷︷ ︸

Occam factor: penalize model complexity
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Bayesian Information Criterion

BIC can be obtained from the Laplace approximation:

lnP (D) ≈ lnP (D|θMAP ) + lnP (θMAP ) +
D

2
ln 2π − 1

2
ln |A|

by taking the large sample limit (N →∞) where N is the number of

data points:

lnP (D) ≈ P (D|θMAP )− 1

2
D lnN

• Quick, easy, does not depend on the prior.

• Can use maximum likelihood estimate of θ instead of the MAP estimate

• D denotes the number of “well-determined parameters”

• Danger: Counting parameters can be tricky (e.g. infinite models)

17



Plan

1. Introduction/Notation.

2. Illustrative Examples.

3. Laplace Approximation.

4. Variational Inference / Mean-Field.

18



Variational Inference
Key Idea: Approximate intractable distribution p(θ|D) with simpler, tractable
distribution q(θ).

We can lower bound the marginal likelihood using Jensen’s inequality:

ln p(D) = ln

∫
p(D, θ)dθ = ln

∫
q(θ)

P (D, θ)
q(θ)

dθ

≥
∫
q(θ) ln

p(D, θ)
q(θ)

dθ =

∫
q(θ) ln p(D, θ)dθ +

∫
q(θ) ln

1

q(θ)
dθ︸ ︷︷ ︸

Entropy functional︸ ︷︷ ︸
Variational Lower-Bound

= ln p(D)−KL(q(θ)||p(θ|D)) = L(q)

where KL(q||p) is a Kullback–Leibler divergence – a non-symmetric measure of the

difference between two distributions q and p: KL(q||p) =
∫
q(θ) ln q(θ)

p(θ)dx.

The goal of variational inference is to maximize the variational lower-bound
w.r.t. approximate q distribution, or minimize KL(q||p).
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Mean-Field Approximation
Key Idea: Approximate intractable distribution p(θ|D) with simpler, tractable
distribution q(θ) by minimizing KL(q(θ)||p(θ|D)).

We can choose a fully factorized distribution: q(θ) =
∏D
i=1 qi(θi), also known

as a mean-field approximation.

The variational lower-bound takes form:

L(q) =

∫
q(θ) ln p(D, θ)dθ +

∫
q(θ) ln

1

q(θ)
dθ

=

∫
qj(θj)

[
ln p(D, θ)

∏
i6=j

qi(θi)dθi

]
︸ ︷︷ ︸
Ei6=j[ln p(D, θ)]

dθj +
∑
i

∫
qi(θi) ln

1

q(θi)
dθi

Suppose we keep {qi 6=j} fixed and maximize L(q) w.r.t. all possible forms for the
distribution qj(θj).
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Mean-Field Approximation
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The plot shows the original distribution (yellow),
along with the Laplace (red) and
variational (green) approximations.

By maximizing L(q) w.r.t. all possible forms for the distribution qj(θj) we obtain a
general expression:

q∗j (θj) =
exp(Ei6=j[ln p(D, θ)])∫
exp(Ei6=j[ln p(D, θ)])dθj

Iterative Procedure: Initialize all qj and then iterate through the factors replacing
each in turn with a revised estimate.

Convergence is guaranteed as the bound is convex w.r.t. each of the factors qj (see
Bishop, chapter 10).
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Other Variational Methods

Many other existing techniques:

• Loopy Belief Propagation.

• Expectation Propagation.

• Various other Message Passing algorithms.

We will see more of variational inference in tomorrow’s lecture on

Deep Networks.
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