Learning Hierarchical Generative Models

Ruslan Salakhutdinov

Department of Statistics and Computer Science
University of Toronto
Machine Learning’s Successes

• Computer Vision:
 – Image inpainting/denoising, segmentation
 – Object recognition/detection, scene understanding

• Information Retrieval / NLP:
 – Text, audio, and image retrieval
 – Parsing, machine translation, text analysis

• Speech processing:
 – Speech recognition, voice identification

• Robotics:
 – Autonomous car driving, planning, control

• Computational Biology

• Cognitive Science.
Mining for Structure

Massive increase in both computational power and the amount of data available from web, video cameras, laboratory measurements.

- Images & Video
- Text & Language
- Speech & Audio
- Relational Data/Social Network
- Gene Expression
- Climate Change
- Geological Data

Mostly Unlabeled

- Develop statistical models that can discover underlying structure, cause, or statistical correlation from data in **unsupervised** or **semi-supervised** way.
- Multiple application domains.
Mining for Structure

Massive increase in both computational power and the amount of data available from web, video cameras, laboratory measurements.

Deep Generative Models that support inferences and discover structure at multiple levels.

Mostly Unlabeled

• Develop statistical models that can discover underlying structure, cause, or statistical correlation from data in **unsupervised** or **semi-supervised** way.
• Multiple application domains.
Deep Generative Model
(Salakhutdinov, 2008; Salakhutdinov & Hinton, AI & Statistics 2009)

Deep Boltzmann Machine

h^3

h^2

h^1

12,000 Latent Variables

Model $P(\text{image})$

96 by 96 images

Stereo pair

24,000 Training Images

Gaussian-Bernoulli Markov Random Field
Deep Generative Model
(Salakhutdinov, 2008; Salakhutdinov & Hinton, AI & Statistics 2009)

Model $P(\text{image})$

25,000 characters from 50 alphabets around the world.

- 3,000 hidden variables
- 784 observed variables (28 by 28 images)
- Over 2 million parameters

Bernoulli Markov Random Field
Deep Generative Model
(Salakhutdinov, 2008; Salakhutdinov & Hinton, AI & Statistics 2009)

Conditional Simulation

P(image|partial image) Bernoulli Markov Random Field
Deep Generative Model
(Salakhutdinov, 2008; Salakhutdinov & Hinton, AI & Statistics 2009)

Why so difficult?

$2^{28 \times 28}$ possible images!

Bernoulli Markov Random Field

Conditional Simulation

$P(\text{image} | \text{partial image})$
Deep Generative Model
(Hinton & Salakhutdinov, Science 2006)

Model $P(\text{document})$

- Bag of words

Reuters dataset: 804,414 newswire stories: \textit{unsupervised}

- Interbank Markets
- European Community Monetary/Economic
- Disasters and Accidents
- Legal/Judicial
- Government Borrowings
- Energy Markets
- Leading Economic Indicators
- Accounts/Earnings

Model $P(\text{document})$ learns the underlying distribution of the bag of words, allowing for the generation of new documents that are statistically similar to the original dataset.
Talk Roadmap

Part 1: Deep Networks

- **Introduction: Graphical Models.**
- **Restricted Boltzmann Machines:** Learning low-level features.
- **Deep Belief Networks:** Learning Part-based Hierarchies.
- **Deep Boltzmann Machines.**

Part 2: Advanced Hierarchical Models

- **Learning Category Hierarchies.**
- **Transfer Learning / One-Shot Learning.**
Graphical Models: Powerful framework for representing dependency structure between random variables.

- The joint probability distribution over a set of random variables.
- The graph contains a set of nodes (vertices) that represent random variables, and a set of links (edges) that represent dependencies between those random variables.
- The joint distribution over all random variables decomposes into a product of factors, where each factor depends on a subset of the variables.

Two type of graphical models:
- **Directed** (Bayesian networks)
- **Undirected** (Markov random fields, Boltzmann machines)

Hybrid graphical models that combine directed and undirected models, such as Deep Belief Networks, Hierarchical-Deep Models.
Directed Graphical Models

Directed graphs are useful for expressing causal relationships between random variables.

- The joint distribution defined by the graph is given by the product of a conditional distribution for each node conditioned on its parents.

\[
p(x) = \prod_{k=1}^{K} p(x_k | \text{pa}_k)
\]

- For example, the joint distribution over \(x_1,..,x_7\) factorizes:

\[
p(x) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5)
\]

Directed acyclic graphs, or \(\text{DAGs}\).
Directed Graphical Models

Example: Generative model of an image:

- Object identity (discrete variable) and the position and orientation (continuous variables) have **independent prior probabilities**.
- The image has a probability distribution that depends on the object identity, position, and orientation (**likelihood function**).

The joint distribution:

\[
P(Im, Ob, Po, Or) = P(Im|Ob, Po, Or)P(Ob)P(Po)P(Or)
\]

Inference: Computing posterior:

\[
P(Ob, Po, Or|Im) = \frac{1}{P(Im)} P(Im|Ob, Po, Or)P(Ob)P(Po)P(Or)
\]

Marginal likelihood: Often difficult to compute
Popular Models

Latent Dirichlet Allocation

- One of the popular models for modeling word count vectors. We will see this model later.

Probabilistic Matrix Factorization

- One of the popular models for collaborative filtering applications. Part of the winning solution in the Netflix contest.
Undirected Graphical Models

Directed graphs are useful for expressing causal relationships between random variables, whereas undirected graphs are useful for expressing soft constraints between random variables.

• The joint distribution defined by the graph is given by the product of non-negative potential functions over the maximal cliques (connected subset of nodes).

\[
p(x) = \frac{1}{\mathcal{Z}} \prod_C \phi_C(x_C) \quad \mathcal{Z} = \sum_x \prod_C \phi_C(x_C)
\]

where the normalizing constant \(\mathcal{Z}\) is called a partition function.

• For example, the joint distribution factorizes:

\[
p(A, B, C, D) = \frac{1}{\mathcal{Z}} \phi(A, C) \phi(C, B) \phi(B, D) \phi(A, D)
\]

Often called pairwise Markov random field, as it factorizes over pairs of random variables.

Markov random fields, Boltzmann machines.
Markov Random Fields

Each potential function is a mapping from joint configurations of random variables in a clique to non-negative real numbers.

The choice of potential functions is not restricted to having specific probabilistic interpretations.

Potential functions are often represented as exponentials:

\[p(x) = \frac{1}{Z} \prod_C \phi_C(x_C) = \frac{1}{Z} \exp(-\sum_C E(x_C)) = \frac{1}{Z} \exp(-E(x)) \]

where \(E(x) \) is called an energy function. \(\text{Boltzmann distribution} \)

• Suppose \(x \) is a binary random vector with \(x_i \in \{+1, -1\} \).
• If \(x \) is 100-dimensional, we need to sum over \(2^{100} \) terms!

Computing \(Z \) is often very hard. This represents a major limitation of undirected models.
Markov Random Fields

\[p(x) = \frac{1}{\mathcal{Z}} \prod_C \phi_C(x_C) \]

- Each potential function is a mapping from joint configurations of random variables in a clique to non-negative real numbers.
- The choice of potential functions is not restricted to having specific probabilistic interpretations.

Potential functions are often represented as exponentials:

\[p(x) = \frac{1}{\mathcal{Z}} \prod_C \phi_C(x_C) = \frac{1}{\mathcal{Z}} \exp(-\sum_C E(x_C)) = \frac{1}{\mathcal{Z}} \exp(-E(x)) \]

where \(E(x) \) is called an energy function.

Boltzmann distribution

Compare to computing posterior:

\[P(\theta|\mathcal{D}) = \frac{1}{P(\mathcal{D})} P(\mathcal{D}|\theta) P(\theta) \quad \text{where} \quad P(\mathcal{D}) = \int P(\mathcal{D}, \theta) d\theta \]
Maximum Likelihood Learning

Consider binary pairwise MRF:

\[P_\theta(x) = \frac{1}{Z(\theta)} \exp \left(\sum_{i,j \in E} x_i x_j \theta_{ij} + \sum_{i \in V} x_i \theta_i \right) \]

Given a set of i.i.d. training examples \(\mathcal{D} = \{ x^{(1)}, x^{(2)}, \ldots, x^{(N)} \} \), we want to learn model parameters \(\theta \).

Maximize log-likelihood objective:

\[L(\theta) = \frac{1}{N} \sum_{n=1}^{N} \log P_\theta(x^{(n)}) \]

Derivative of the log-likelihood:

\[\frac{\partial L(\theta)}{\partial \theta_{ij}} = \frac{1}{N} \sum_n [x_i^{(n)} x_j^{(n)}] - \sum_{x} [x_i x_j P_\theta(x)] = \mathbb{E}_{P_{data}}[x_i x_j] - \mathbb{E}_\theta[x_i x_j] \]

Difficult to compute: exponentially many configurations
MRFs with Latent Variables

For many interesting real-world problems, we need to introduce hidden or latent variables.

- Our random variables will contain both visible and hidden variables $x=(v,h)$.

- Probability of observed input is given by marginalizing out the states of hidden variables:

$$p(v) = \frac{1}{\mathcal{Z}} \sum_h \exp(-E(v, h))$$

- In general computing both partition function and summation over hiddens will be intractable, except for special cases.

- Parameter learning becomes a very challenging task.

Deep Networks have to deal with this intractability.
Part 1: Deep Networks

- Introduction: Graphical Models.
- Restricted Boltzmann Machines: Learning low-level features.
- Deep Boltzmann Machines.
Restricted Boltzmann Machines

Stochastic binary visible variables \(\mathbf{v} \in \{0, 1\}^D \) are connected to stochastic binary hidden variables \(\mathbf{h} \in \{0, 1\}^F \).

The energy of the joint configuration:

\[
E(\mathbf{v}, \mathbf{h}; \theta) = -\sum_{ij} W_{ij} v_i h_j - \sum_i b_i v_i - \sum_j a_j h_j
\]

\(\theta = \{W, a, b\} \) model parameters.

Probability of the joint configuration is given by the Boltzmann distribution:

\[
P_\theta(\mathbf{v}, \mathbf{h}) = \frac{1}{\mathcal{Z}(\theta)} \exp \left(-E(\mathbf{v}, \mathbf{h}; \theta) \right) = \frac{1}{\mathcal{Z}(\theta)} \prod_{ij} e^{W_{ij} v_i h_j} \prod_i e^{b_i v_i} \prod_j e^{a_j h_j}
\]

\(\mathcal{Z}(\theta) = \sum_{\mathbf{h}, \mathbf{v}} \exp \left(-E(\mathbf{v}, \mathbf{h}; \theta) \right) \)

Markov random fields, Boltzmann machines, log-linear models.
Restricted Boltzmann Machines

The joint distribution is given by:

\[P_\theta(v, h) = \frac{1}{\mathcal{Z}(\theta)} \exp \left(\sum_{ij} W_{ij} v_i h_j + \sum_i b_i v_i + \sum_j a_j h_j \right) \]

where the undirected edges in the graphical model represent \(\{W_{ij}\} \).

Marginalizing over the states of hidden variables:

\[P_\theta(v) = \sum_h P_\theta(v, h) = \frac{1}{\mathcal{Z}(\theta)} \prod_i \exp(b_i v_i) \prod_j \left(1 + \exp(a_j + \sum_i W_{ij} v_i) \right) \]

Product of experts

Markov random fields, Boltzmann machines, log-linear models.
Restricted Boltzmann Machines

Restricted: No interaction between hidden variables

Inferring the distribution over the hidden variables is easy:

\[
P(h|v) = \prod_j P(h_j|v) \quad P(h_j = 1|v) = \frac{1}{1 + \exp(-\sum_i W_{ij}v_i - a_j)}
\]

Factorizes: Easy to compute

Similarly:

\[
P(v|h) = \prod_i P(v_i|h) \quad P(v_i = 1|h) = \frac{1}{1 + \exp(-\sum_j W_{ij}h_j - b_i)}
\]

Markov random fields, Boltzmann machines, log-linear models.
Learning Features

Observed Data
Subset of 25,000 characters

New Image:

\[p(h_7 = 1|v) = \sigma(0.99 \times \text{image}) + 0.97 \times \text{image} + 0.82 \times \text{image} + \cdots \]

\[\sigma(x) = \frac{1}{1 + \exp(-x)} \]

Logistic Function: Suitable for modeling binary images

Represent: as \[P(h|v) = [0, 0, 0.82, 0, 0, 0.99, 0, 0 \ldots] \]

Learned W: “edges”
Subset of 1000 features

Most hidden variables are off
Learning Features

Observed Data
Subset of 25,000 characters

 Learned W: “edges”
Subset of 1000 features

New Image:

\[p(h_7 = 1|v) = \sigma \left(0.99 \times \right) \]
\[p(h_{29} = 1|v) = \sigma \left(0.97 \times \right) \]
\[\sigma(x) = \frac{1}{1+\exp(-x)} \]

Logistic Function: Suitable for modeling binary images

Most hidden variables are off

Easy to compute

Represent: as \(P(h|v) = [0, 0, 0.82, 0, 0, 0.99, 0, 0 \ldots] \)
Model Learning

Given a set of \(i.i.d. \) training examples \(D = \{v^{(1)}, v^{(2)}, \ldots, v^{(N)}\} \), we want to learn model parameters \(\theta = \{W, a, b\} \).

Maximize (penalized) log-likelihood objective:

\[
L(\theta) = \frac{1}{N} \sum_{n=1}^{N} \log P_\theta(v^{(n)}) - \frac{\lambda}{N} \|W\|_F^2
\]

Derivative of the log-likelihood:

\[
\frac{\partial L(\theta)}{\partial W_{ij}} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial}{\partial W_{ij}} \log \left(\sum_h \exp \left[v^{(n)\top} \cdot W h + a^\top h + b^\top v^{(n)} \right] \right) - \frac{\partial}{\partial W_{ij}} \log Z(\theta) - \frac{2\lambda}{N} W_{ij}
\]

\[
= E_{P_{data}}[v_i h_j] - E_{P_\theta}[v_i h_j] - \frac{2\lambda}{N} W_{ij}
\]

\[
P_{data}(v, h; \theta) = P(h|v; \theta)P_{data}(v)
\]

\[
P_{data}(v) = \frac{1}{N} \sum_n \delta(v - v^{(n)})
\]

Difficult to compute: exponentially many configurations
Model Learning

\[
P_\theta(v) = \frac{1}{Z(\theta)} \sum_h \exp \left[v^T Wh + a^T h + b^T v \right]
\]

Given a set of i.i.d. training examples \(\mathcal{D} = \{ v^{(1)}, v^{(2)}, ..., v^{(N)} \} \), we want to learn model parameters \(\theta = \{ W, a, b \} \).

Maximize (penalized) log-likelihood objective:

\[
L(\theta) = \frac{1}{N} \sum_{n=1}^{N} \log P_\theta(v^{(n)}) - \frac{\lambda}{N} \|W\|_F^2
\]

Derivative of the log-likelihood:

\[
\frac{\partial L(\theta)}{\partial W_{ij}} = E_{P_{data}}[v_i h_j] - E_{P_\theta}[v_i h_j] - \frac{2\lambda}{N} W_{ij}
\]

Approximate maximum likelihood learning:

- Contrastive Divergence (Hinton 2000)
- Pseudo Likelihood (Besag 1977)
- MCMC-MLE estimator (Geyer 1991)
- Composite Likelihoods (Lindsay, 1988; Varin 2008)
- Tempered MCMC (Salakhutdinov, NIPS 2009)
- Adaptive MCMC (Salakhutdinov, ICML 2010)
Contrastive Divergence

Run Markov chain for a few steps (e.g. one step):

\[
P(h|v) = \prod_j P(h_j|v) \\
P(h_j = 1|v) = \frac{1}{1 + \exp(-\sum_i W_{ij}v_i - a_j)} \\
P(v|h) = \prod_i P(v_i|h) \\
P(v_i = 1|h) = \frac{1}{1 + \exp(-\sum_j W_{ij}h_j - b_i)}
\]

Update model parameters:

\[
\Delta W_{ij} = E_{P_{\text{data}}}[v_i h_j] - E_{P_1}[v_i h_j]
\]
RBMs for Images
(Salakhutdinov & Hinton, NIPS 2007)

Gaussian-Bernoulli RBM:

\[P_{\theta}(v, h) = \frac{1}{\mathcal{Z}(\theta)} \exp(-E(v, h; \theta)) \]

Define energy functions for various data modalities:

\[E(v, h; \theta) = \sum_i \frac{(v_i - b_i)^2}{2\sigma_i^2} - \sum_{ij} W_{ij} h_j \frac{v_i}{\sigma_i} - \sum_j a_j h_j \]

\[P(v_i = x|h) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp \left(-\frac{(x - b_i - \sigma_i \sum_j W_{ij} h_j)^2}{2\sigma_i^2} \right) \quad \text{Gaussian} \]

\[P(h_j = 1|v) = \frac{1}{1 + \exp(-\sum_i W_{ij} \frac{v_i}{\sigma_i} - a_j)} \quad \text{Bernoulli} \]
RBMs for Images and Text
(Salakhutdinov & Hinton SIGIR 2007, NIPS 2010)

Images: Gaussian-Bernoulli RBM
4 million unlabeled images

Learned features (out of 10,000)

Text: Multinomial-Bernoulli RBM

Reuters dataset:
804,414 unlabeled newswire stories

Bag-of-Words

Learned features: "topics"

russian
russia
moscow
yeltsin
soviet
clinton
house
president
bill
congress
computer
system
product
software
develop
trade
country
import
world
economy
stock
country
wall
street
point
dow
Collaborative Filtering

- Natural Images
- Text/Documents
- Collaborative Filtering/ Product Recommendation

Learned bases: "genre"

Netflix dataset:
480,189 users
17,770 movies
Over 100 million ratings

Fahrenheit 9/11
Bowling for Columbine
The People vs. Larry Flynt
Canadian Bacon
La Dolce Vita

Independence Day
The Day After Tomorrow
Con Air
Men in Black II
Men in Black

Friday the 13th
The Texas Chainsaw Massacre
Children of the Corn
Child's Play
The Return of Michael Myers

State-of-the-art performance on the Netflix dataset.

Part of the winning solution in the Netflix contest.

Relates to Probabilistic Matrix Factorization
(Salakhutdinov & Mnih, NIPS 2008)
(Salakhutdinov, Mnih, & Hinton, ICML 2007)
Multiple Application Domains

- Natural Images
- Text/Documents
- Collaborative Filtering / Matrix Factorization
 - Salakhutdinov & Mnih, NIPS 2008, ICML 2008;
 - Salakhutdinov & Srebro, NIPS 2011
 - Sutskever, Salakhutdinov, and Tenenbaum, NIPS 2010
- Video (Langford, Salakhutdinov and Zhang, ICML 2009)
- Motion Capture (Taylor et.al. NIPS 2007)
- Speech Perception (Dahl et. al. NIPS 2010, Lee et.al. NIPS 2010)

Same learning algorithm -- multiple input domains.

Limitations on the types of structure that can be represented by a single layer of low-level features!
Talk Roadmap

Part 1: Deep Networks

- Introduction: Graphical Models.
- Restricted Boltzmann Machines: Learning low-level features.
- Deep Boltzmann Machines.
Low-level features:
Edges
Built from **unlabeled** inputs.

Input: Pixels
Deep Belief Network
(Hinton et.al. Neural Computation 2006)

Input: Pixels

Low-level features: Edges

Higher-level features: Combination of edges

Internal representations capture higher-order statistical structure

Built from **unlabeled** inputs.

Unsupervised feature learning.
Deep Belief Network

The joint probability distribution factorizes:

\[P(v, h^1, h^2, h^3) = P(v|h^1)P(h^1|h^2)P(h^2, h^3) \]

Layerwise Pretraining:

- Learn and freeze 1st layer RBM
- Treat inferred values \(P(h^1|v) \) as the data for training 2nd-layer RBM.
- Learn and freeze 2nd layer RBM.
- Proceed to the next layer.

Unsupervised Feature Learning.
Deep Belief Network

The joint probability distribution factorizes:

\[P(v, h^1, h^2, h^3) = P(v|h^1)P(h^1|h^2)P(h^2, h^3) \]

Layerwise Pretraining:

- Learn and freeze 1st layer RBM
- Treat inferred values \(P(h^1|v)\) as the data for training 2nd.

Layerwise pretraining improves variational lower bound
DBNs for Classification
(Hinton and Salakhutdinov, Science 2006)

- After layer-by-layer **unsupervised pretraining**, discriminative fine-tuning by backpropagation achieves an error rate of 1.2% on MNIST. SVM’s get 1.4% and randomly initialized backprop gets 1.6%.

- Clearly unsupervised learning helps generalization. It ensures that most of the information in the weights comes from modeling the input data.
DBNs for Regression
(Salakhutdinov and Hinton, NIPS 2007)

Predicting the orientation of a face patch

Training Data: 1000 face patches of 30 training people.
Test Data: 1000 face patches of 10 new people.

Regression Task: predict orientation of a new face.

Gaussian Processes with spherical Gaussian kernel achieves a RMSE (root mean squared error) of 16.33 degree.
DBNs for Regression
(Salakhutdinov and Hinton, NIPS 2007)

- Pretrain a stack of RBMs: 784-1000-1000-1000.
- GP with fine-tuned covariance Gaussian kernel: RMSE: 6.42
- Standard GP without using DBNs: RMSE: 16.33

Additional Unlabeled Training Data: 12000 face patches from 30 training people.

- Features were extracted with no idea of the final task.

The same GP on the top-level features: RMSE: 11.22
Deep Autoencoders
(Hinton and Salakhutdinov, Science 2006)
• The Reuters Corpus Volume II contains 804,414 newswire stories (randomly split into 402,207 training and 402,207 test).

• “Bag-of-words” representation: each article is represented as a vector containing the counts of the most frequently used 2000 words in the training set.
Information Retrieval

Reuters Dataset

- Deep Generative Model
- Latent Semantic Analysis
- Latent Dirichlet Allocation

Reuters dataset: 804,414 newswire stories.

Deep generative model significantly outperforms LSA and LDA topic models.
Semantic Hashing
(Salakhutdinov and Hinton, SIGIR 2007)

• Learn to map documents into semantic 20-D binary codes.
• Retrieve similar documents stored at the nearby addresses with no search at all.
Learning Similarity Measures
(Salakhutdinov and Hinton, AI and Statistics 2007)

• Learn a nonlinear transformation of the input space.
• Optimize to make KNN perform well in the low-dimensional feature space
Compare to Other Approaches
(Salakhutdinov and Hinton, AI and Statistics 2007)

Neighborhood Component Analysis

Linear Discriminant Analysis

PCA
Talk Roadmap

Part 1: Deep Networks

- Introduction: Graphical Models.
- Restricted Boltzmann Machines: Learning low-level features.
- **Deep Boltzmann Machines.**
DBNs vs. DBMs

DBNs are hybrid models:

- Inference in DBNs is problematic due to explaining away.
- Only greedy pretraining, no joint optimization over all layers.
- Approximate inference is feed-forward: no bottom-up and top-down.

Introduce a new class of models called Deep Boltzmann Machines.
Mathematical Formulation

\[P_\theta(v) = \frac{P^*(v)}{Z(\theta)} = \frac{1}{Z(\theta)} \sum_{h^1, h^2, h^3} \exp \left[v^\top W^1 h^1 + h^1^\top W^2 h^2 + h^2^\top W^3 h^3 \right] \]

\(\theta = \{ W^1, W^2, W^3 \} \) model parameters

- Dependencies between hidden variables.
- All connections are undirected.
- Bottom-up and Top-down:

\[P(h_j^2 = 1|h^1, h^3) = \sigma \left(\sum_k W_{kj}^3 h_k^3 + \sum_m W_{mj}^2 h_m^1 \right) \]

Top-down \quad Bottom-up

Unlike many existing feed-forward models: ConvNet (LeCun), HMAX (Poggio et.al.), Deep Belief Nets (Hinton et.al.)
Mathematical Formulation

\[P_{\theta}(v) = \frac{P^*(v)}{\mathcal{Z}(\theta)} = \frac{1}{\mathcal{Z}(\theta)} \sum_{h^1, h^2, h^3} \exp \left[v^\top W^1 h^1 + h^1 \top W^2 h^2 + h^2 \top W^3 h^3 \right] \]
Mathematical Formulation

\[P_\theta(v) = \frac{P^*(v)}{Z(\theta)} = \frac{1}{Z(\theta)} \sum_{h^1, h^2, h^3} \exp \left[v^\top W^1 h^1 + h^1^\top W^2 h^2 + h^2^\top W^3 h^3 \right] \]

Unlike many existing feed-forward models: ConvNet (LeCun), HMAX (Poggio), Deep Belief Nets (Hinton)
Mathematical Formulation

\[
P_\theta(v) = \frac{P^*(v)}{Z(\theta)} = \frac{1}{Z(\theta)} \sum_{h^1, h^2, h^3} \exp \left[v^\top W^1 h^1 + h^1 \top W^2 h^2 + h^2 \top W^3 h^3 \right]
\]

\[
\theta = \{W^1, W^2, W^3\} \text{ model parameters}
\]

- Dependencies between hidden variables.

Maximum likelihood learning:

\[
\frac{\partial \log P_\theta(v)}{\partial W^1} = E_{P_{data}}[vh^1 \top] - E_{P_\theta}[vh^1 \top]
\]

Problem: Both expectations are intractable!

Learning rule for undirected graphical models: MRFs, CRFs, Factor graphs.
Previous Work

Many approaches for learning Boltzmann machines have been proposed over the last 20 years:

- Hinton and Sejnowski (1983),
- Peterson and Anderson (1987)
- Galland (1991)
- Kappen and Rodriguez (1998)
- Lawrence, Bishop, and Jordan (1998)
- Tanaka (1998)
- Welling and Hinton (2002)
- Welling and Teh (2003)
- Yasuda and Tanaka (2009)

Real-world applications – thousands of hidden and observed variables with millions of parameters.

Many of the previous approaches were not successful for learning general Boltzmann machines with hidden variables.

New Learning Algorithm
(Salakhutdinov, 2008; NIPS 2009)

Posterior Inference

Conditional

Approximate conditional

$P_{data}(h|v)$

Simulate from the Model

Approximate the joint distribution

$P_{model}(h,v)$
New Learning Algorithm
(Salakhutdinov, 2008; NIPS 2009)

Posterior Inference

Conditional

Approximate conditional

Data-dependent

Unconditional

Approximate the joint distribution

Data-independent

Simulate from the Model

Approximate

from

the

Model

$P_{data}(h|v)$

$E_{P_{data}}[vh^\top]$

$E_{P_{model}}[vh^\top]$

Match
New Learning Algorithm
(Salakhutdinov, 2008; NIPS 2009)

Key Idea of Our Approach:
Data-dependent: Variational Inference, mean-field theory
Data-independent: Stochastic Approximation, MCMC based
Stochastic Approximation

Time $t=1$

\[x_1 \sim T_{\theta_1}(x_1 \leftarrow x_0) \]

Time $t=2$

\[x_2 \sim T_{\theta_2}(x_2 \leftarrow x_1) \]

Time $t=3$

\[x_3 \sim T_{\theta_3}(x_3 \leftarrow x_2) \]

Update θ_t and x_t sequentially, where $x = \{v, h^1, h^2\}$

- Generate $x_t \sim T_{\theta_t}(x_t \leftarrow x_{t-1})$ by simulating from a Markov chain that leaves P_{θ_t} invariant (e.g. Gibbs or M-H sampler)

- Update θ_t by replacing intractable $E_{P_{\theta_t}}[vh^\top]$ with a point estimate $[v_t h_t^\top]$

In practice we simulate several Markov chains in parallel.

L. Younes, Probability Theory 1989
Stochastic Approximation

Update rule decomposes:

\[\theta_{t+1} = \theta_t + \alpha_t \left(E_{P_{data}}[v h^\top] - E_{P_{\theta_t}}[v h^\top] \right) + \alpha_t \left(E_{P_{\theta_t}}[v h^\top] - \frac{1}{M} \sum_{m=1}^{M} v_t^{(m)} h_t^{(m)\top} \right) \]

- **True gradient**
- **Noise term** \(\epsilon_t \)

Almost sure convergence guarantees as learning rate \(\alpha_t \to 0 \)

Problem: High-dimensional data: the energy landscape is highly multimodal

Key insight: The transition operator can be any valid transition operator – Tempered Transitions, Parallel/Simulated Tempering.

Connections to the theory of stochastic approximation and adaptive MCMC.
Variational Inference
(Salakhutdinov, 2008; Salakhutdinov & Larochelle, AI & Statistics 2010)

Approximate intractable distribution $P_\theta(h|v)$ with simpler, tractable
distribution $Q_\mu(h|v)$:

$$\log P_\theta(v) = \log \sum_h P_\theta(h, v) = \log \sum_h Q_\mu(h|v) \frac{P_\theta(h, v)}{Q_\mu(h|v)}$$

$$\geq \sum_h Q_\mu(h|v) \log \frac{P_\theta(h, v)}{Q_\mu(h|v)}$$

$$= \sum_h Q_\mu(h|v) \log P_\theta^*(h, v) - \log \mathcal{Z}(\theta) + \sum_h Q_\mu(h|v) \log \frac{1}{Q_\mu(h|v)}$$

$$= \log P_\theta(v) - \text{KL}(Q_\mu(h|v) || P_\theta(h|v))$$

Minimize KL between approximating and true
distributions with respect to variational parameters μ.

$$\text{KL}(Q||P) = \int Q(x) \log \frac{Q(x)}{P(x)} dx$$
Variational Inference
(Salakhutdinov, 2008; Salakhutdinov & Larochelle, AI & Statistics 2010)

Approximate intractable distribution $P_\theta(h|v)$ with simpler, tractable distribution $Q_\mu(h|v)$:

$$\log P_\theta(v) \geq \log P_\theta(v) - \text{KL}(Q_\mu(h|v) || P_\theta(h|v))$$

KL($Q||P$) = $\int Q(x) \log \frac{Q(x)}{P(x)} dx$

Mean-Field: Choose a fully factorized distribution:

$$Q_\mu(h|v) = \prod_{j=1}^{F} q(h_j|v) \text{ with } q(h_j = 1|v) = \mu_j$$

Variational Inference: Maximize the lower bound w.r.t. Variational parameters μ.

Nonlinear fixed-point equations:

$$\mu_j^{(1)} = \sigma\left(\sum_i^{} W_{ij}v_i + \sum_k^{} W_{jk}^2\mu_k^{(2)} \right)$$

$$\mu_k^{(2)} = \sigma\left(\sum_j^{} W_{jk}^2\mu_j^{(1)} + \sum_m^{} W_{km}^3\mu_m^{(3)} \right)$$

$$\mu_m^{(3)} = \sigma\left(\sum_k^{} W_{km}^3\mu_k^{(2)} \right)$$
Variational Inference

(Salakhutdinov, 2008; Salakhutdinov & Larochelle, AI & Statistics 2010)

Approximate intractable distribution $P_\theta(h|v)$ with simpler, tractable distribution $Q_\mu(h|v)$:

$$\log P_\theta(v) \geq \log P_\theta(v) - \text{KL}(Q_\mu(h|v)\|P_\theta(h|v))$$

$$\text{KL}(Q\|P) = \int Q(x) \log \frac{Q(x)}{P(x)} dx$$

1. **Variational Inference**: Maximize the lower bound w.r.t. variational parameters

2. **MCMC**: Apply stochastic approximation to update model parameters

Almost sure convergence guarantees to an asymptotically stable point.
Variational Inference
(Salakhutdinov, 2008; Salakhutdinov & Larochelle, AI & Statistics 2010)

Approximate intractable distribution $P_{\theta}(h|v)$ with simpler, tractable distribution $Q_{\mu}(h|v)$:

$$\log P_{\theta}(v) \geq \log P_{\theta}(v) - KL(Q_{\mu}(h|v)||P_{\theta}(h|v))$$

$$KL(Q||P) = \int Q(x) \log \frac{Q(x)}{P(x)} dx$$

1. Variational Inference: Maximize the lower bound w.r.t. variational parameters.
2. MCMC: Apply stochastic approximation to update model parameters. Almost sure convergence guarantees to an asymptotically stable point.

Fast Inference
Learning can scale to millions of examples
Good Generative Model?

Handwritten Characters
Good Generative Model?

Handwritten Characters
Good Generative Model?

Handwritten Characters

Simulated

Real Data
Good Generative Model?

Handwritten Characters

Real Data Simulated
Good Generative Model?

Handwritten Characters
Good Generative Model?

MNIST Handwritten Digit Dataset
Handwriting Recognition

MNIST Dataset

60,000 examples of 10 digits

<table>
<thead>
<tr>
<th>Learning Algorithm</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic regression</td>
<td>12.0%</td>
</tr>
<tr>
<td>K-NN</td>
<td>3.09%</td>
</tr>
<tr>
<td>Neural Net (Platt 2005)</td>
<td>1.53%</td>
</tr>
<tr>
<td>SVM (Decoste et.al. 2002)</td>
<td>1.40%</td>
</tr>
<tr>
<td>Deep Autoencoder (Bengio et. al. 2007)</td>
<td>1.40%</td>
</tr>
<tr>
<td>Deep Belief Net (Hinton et. al. 2006)</td>
<td>1.20%</td>
</tr>
<tr>
<td>DBM</td>
<td>0.95%</td>
</tr>
</tbody>
</table>

Optical Character Recognition

42,152 examples of 26 English letters

<table>
<thead>
<tr>
<th>Learning Algorithm</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic regression</td>
<td>22.14%</td>
</tr>
<tr>
<td>K-NN</td>
<td>18.92%</td>
</tr>
<tr>
<td>Neural Net</td>
<td>14.62%</td>
</tr>
<tr>
<td>SVM (Larochelle et.al. 2009)</td>
<td>9.70%</td>
</tr>
<tr>
<td>Deep Autoencoder (Bengio et. al. 2007)</td>
<td>10.05%</td>
</tr>
<tr>
<td>Deep Belief Net (Larochelle et. al. 2009)</td>
<td>9.68%</td>
</tr>
<tr>
<td>DBM</td>
<td>8.40%</td>
</tr>
</tbody>
</table>

Permutation-invariant version.
Generative Model of 3-D Objects

24,000 examples, 5 object categories, 5 different objects within each category, 6 lightning conditions, 9 elevations, 18 azimuths.
3-D Object Recognition

<table>
<thead>
<tr>
<th>Learning Algorithm</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic regression</td>
<td>22.5%</td>
</tr>
<tr>
<td>K-NN (LeCun 2004)</td>
<td>18.92%</td>
</tr>
<tr>
<td>SVM (Bengio & LeCun 2007)</td>
<td>11.6%</td>
</tr>
<tr>
<td>Deep Belief Net (Nair & Hinton 2009)</td>
<td>9.0%</td>
</tr>
<tr>
<td>DBM</td>
<td>7.2%</td>
</tr>
</tbody>
</table>

Pattern Completion

Permutation-invariant version.
Learning Hierarchical Representations

Deep Boltzmann Machines:

Learning Hierarchical Structure in Features: edges, combination of edges.

- Performs well in many application domains
- Combines bottom and top-down
- Fast Inference: fraction of a second
- Learning scales to millions of examples

Many examples, few categories

Next: Few examples, many categories – One-Shot Learning
Model Selection

How to choose the number of layers and the number of hidden units?
More generally, how can we choose between models?

DBM samples
Mixture of Bernoulli’s

Goal: Compare $P(v)$ on the validation $P(v) = P(v)^*/Z$

Need an estimate of Partition Function Z
Model Selection
(Salakhutdinov & Murray, ICML 2008, Salakhutdinov 2008)

We have developed an MCMC-based algorithm based on Annealed Importance Sampling to estimate partition function of a DBM model.

\[P_\theta(v; \beta) = \frac{1}{\mathcal{Z}(\beta)} P_\theta(v)^\beta \pi(v)^{1-\beta} \]

Annealing, or Tempering: \(1/\beta = \text{“temperature”} \)
Model Selection
(Salakhutdinov & Murray, ICML 2008, Salakhutdinov 2008)

MoB, test log-probability: -137.64 nats/digit
DBM, test log-probability: -85.97 nats/digit

Difference of over 50 nats is striking!
Thank you

Code for learning RBMs, DBNs, and DBMs is available at:
http://www.utstat.toronto.edu/~rsalakhu/