
On the Convergence of Bound Optimization Algorithms

Ruslan Salakhutdinov
Sam Roweis

University of Toronto
6 King’s College Rd, M5S 3G4, Canada

rsalakhu,roweis@cs.toronto.edu

Zoubin Ghahramani
Gatsby Computational Neuroscience Unit

University College London
17 Queen Square, London WC1N 3AR, UK

zoubin@gatsby.ucl.ac.uk

Abstract

Many practitioners who use EM and related al-
gorithms complain that they are sometimes slow.
When does this happen, and what can be done
about it? In this paper, we study the general
class of bound optimization algorithms – includ-
ing EM, Iterative Scaling, Non-negative Matrix
Factorization, CCCP – and their relationship to
direct optimization algorithms such as gradient-
based methods for parameter learning. We de-
rive a general relationship between the updates
performed by bound optimization methods and
those of gradient and second-order methods and
identify analytic conditions under which bound
optimization algorithms exhibit quasi-Newton
behavior, and under which they possess poor,
first-order convergence. Based on this analysis,
we consider several specific algorithms, inter-
pret and analyze their convergence properties and
provide some recipes for preprocessing input to
these algorithms to yield faster convergence be-
havior. We report empirical results supporting
our analysis and showing that simple data pre-
processing can result in dramatically improved
performance of bound optimizers in practice.

1 Bound Optimization Algorithms
Many problems in machine learning and pattern recogni-
tion ultimately reduce to the optimization of a scalar valued
function L(Θ) of a free parameter vector Θ. For exam-
ple, in supervised and unsupervised probabilistic modeling
the objective function may be the (conditional) data like-
lihood or the posterior over parameters. In discriminative
learning we may use a classification or regression score; in
reinforcement learning an average discounted reward. Op-
timization may also arise during inference; for example we
may want to reduce the cross entropy between two distribu-
tions or minimize a function such as the Bethe free energy.

Bound optimization (BO) algorithms take advantage of the
fact that many objective functions arising in practice have a

special structure. We can often exploit this structure to ob-
tain a bound on the objective function and proceed by op-
timizing this bound. Ideally, we seek a bound that is valid
everywhere in parameter space, easily optimized, and equal
to the true objective function at one (or more) point(s).
A general form of a bound maximizer which iteratively
lower bounds an objective function L(Θ) is given below:

General Bound Optimizer for maximizing L(Θ):
• Assume: ∃ G(Θ, Ψ) such that for any Θ′ and Ψ′:

1. G(Θ′, Θ′) = L(Θ′) & L(Θ) ≥ G(Θ, Ψ′) ∀ Ψ′ 6= Θ
2. arg maxΘG(Θ, Ψ′) can be found easily for any Ψ′.

• Iterate: Θt+1 = arg maxΘG(Θ, Θt)
• Guarantee: L(Θt+1) = G(Θt+1, Θt+1) ≥

G(Θt+1, Θt) ≥ G(Θt, Θt) = L(Θt)

Bound optimizers do nothing more than coordinate ascent
in the functional G(Θ, Ψ), alternating between maximizing
G with respect to Ψ for fixed Θ and with respect to Θ for
fixed Ψ. These algorithms enjoy a strong guarantee; they
never worsen the objective function.

Many popular iterative algorithms are bound optimizers,
including the EM algorithm for maximum likelihood learn-
ing in latent variable models[2], iterative scaling (IS) al-
gorithms for parameter estimation in maximum entropy
models[1], non-negative matrix factorization (NMF)[3]
and the recent CCCP algorithm for minimizing the Bethe
free energy in approximate inference problems[12].

In this paper we explore two questions of theoretical and
practical interest: when will bound optimization be fast or
slow relative to other standard approaches, and what can
be done to improve convergence rates of these algorithms
when they are slow?

2 Convergence Behavior and Analysis
How large are the steps that bound optimization methods
take? Any bound optimizer implicitly defines a mapping:
M : Θ → Θ′ from parameter space to itself, so that
Θt+1 = M(Θt). If iterates Θt converge to a fixed point
Θ∗, then Θ∗ = M(Θ∗). If M(Θ) is continuous and dif-
ferentiable, we can Taylor expand it in the neighborhood of

the fixed point Θ∗:
Θt+1 − Θ∗ ≈ M ′(Θ∗)(Θt − Θ∗) (1)

where M ′(Θ∗) = ∂M
∂Θ |Θ=Θ∗ . Since M ′(Θ∗) is typically

nonzero, a bound optimizer can essentially be seen as a
linear iteration algorithm with a “convergence rate matrix”
M ′(Θ∗). Intuitively, M ′(Θ∗) can be viewed as an operator
that forms a contraction mapping around Θ∗. In general,

we would expect the Hessian ∂2L(Θ)
∂Θ2 |Θ=Θ∗ to be negative

semidefinite, or negative definite, and thus the eigenvalues
of M ′(Θ∗) to all lie in [0, 1] or [0, 1) respectively [4]. Ex-
ceptions to the convergence of the bound optimizer to a
local optimum of L(Θ) occur if M ′(Θ∗) has eigenvalues
whose magnitudes exceed unity.

Near a local optimum, this matrix is related to the curvature
of the functional G(Θ, Ψ):

lim
Θt→Θ∗

M ′(Θt) = −
[

∇2
G(Θ∗, Ψ∗)

][

∇2
G(Θ∗)

]

−1
(2)

where we define the mixed partials and Hessian as:

∇2
G(Θ∗, Ψ∗) ≡

[

∂2G(Θ,Ψ)
∂Θ∂ΨT | Θ = Θ∗

Ψ = Θ∗

]

(3)

∇2
G(Θ∗) ≡

[

∂2G(Θ,Ψ)
∂Θ∂ΘT | Θ = Θ∗

Ψ = Θ∗

]

(4)

We assume we can easily find arg maxΘ G(Θ, Ψ), and thus
∇2

G(Θ∗) is negative definite (invertible).

(Proof sketch of eq (2): By performing Taylor series expan-

sion of ∇G(Θ2, Θ1)= ∂G(Θ,Θ1)
∂Θ

|Θ=Θ2 around (Θ∗, Θ∗), we
have: ∇G(Θ2, Θ1) = ∇G(Θ∗, Θ∗) + (Θ2 − Θ∗)T∇2

G(Θ∗) +

(Θ1 − Θ∗)T∇2
G(Θ∗, Ψ∗) + Substituting Θt for Θ1,

and M(Θt) for Θ2 gives 0 = (M(Θt) − Θ∗)T∇2
G(Θ∗) +

(Θt − Θ∗)T∇2
G(Θ∗, Ψ∗) + Assuming that higher order

terms are negligible, in the limit, Θ∗ = M(Θ∗) and 0 =

(limΘt→Θ∗ M ′(Θt))∇2
G(Θ∗) + ∇2

G(Θ∗, Ψ∗).)

What directions do bound optimizers move in parame-
ter space? For most objective functions, the BO step
Θ(t+1) − Θ(t) in parameter space and true gradient vector
∇L(Θt) = ∂L(Θ)

∂Θ |Θ=Θt can be trivially related by a trans-
formation matrix P (Θt), that changes at each iteration:

Θ(t+1) − Θ(t) = P (Θt)∇L(Θt) (5)

Under certain conditions, this transformation matrix P (Θt)
is guaranteed to be positive definite with respect to any
gradient. In particular, if C1: G(Θ, Θt) is well-defined,
and differentiable everywhere in Θ; and C2: for any fixed
Θt 6= Θ(t+1), along any direction that passes through
Θt+1, G(Θ, Θt) has only a single critical point in its first
argument, located at the maximum Θt+1; then

∇>

L(Θt)P (Θt)∇L(Θt) > 0 ∀Θt (6)

The second condition may seem very strong, however, it is
satisfied in many practical cases. For example, for the EM
algorithm, it is satisfied whenever the M-step has a single
unique solution (in particular, it holds for exponential fam-
ily models due to concavity of G(Θ, Θt)); for GIS, NMF,

CCCP, and many others, it is satisfied due to concavity of
G(Θ, Θt) (although C2 does not imply concavity).

(Proof sketch of eq (6): For ∇>

G(Θt)(Θ(t+1) − Θt), we note

that ∇>

G(Θt) = ∂G(Θ,Θt)
∂Θ

|Θ=Θt is the directional derivative of
function G(Θ, Θt) in the direction of Θ(t+1) − Θt. C1 and
C2 together imply that this quantity is positive, otherwise by
the Mean Value Theorem (C1) G(Θ, Θt) would have a critical
point along some direction, located at a point other than Θt+1

(C2). By using the identity ∇L(Θt) = ∂G(Θ,Θt)
∂Θ

|Θ=Θt , we have
∇>

L(Θt)P (Θt)∇L(Θt) = ∇>

G(Θt)(Θ(t+1) − Θt) > 0.)

The important consequence of the above analysis is that
when the bound function has a unique optimum wrt its first
argument, BO has the appealing quality of always taking a
step Θ(t+1) − Θt having positive projection onto the true
gradient of the objective function L(Θt). This makes BO
similar to a first order method operating on the gradient of
a locally reshaped likelihood function.

For maximum likelihood learning of a mixture of Gaus-
sians model using the EM-algorithm, this positive definite
transformation matrix P (Θt) was first described by Xu and
Jordan[11]. We have extended their results by deriving the
explicit form of the transformation matrix for several other
latent variables models such as Factor Analysis (FA), Prob-
abilistic Principal Component Analysis (PPCA), mixture of
PPCAs, mixture of FAs, and Hidden Markov Models [8];
we have also derived the general form of P (Θt) matrix for
exponential family models in terms of natural parameters.

Here we further study the structure of the transformation
matrix P (Θt) and relate it to the convergence rate matrix
M ′. Our main result is that when the derivative is small
(M ′ has small eigenvalues), the transformation matrix
approaches the negative inverse Hessian and bound opti-
mization behaves like a second-order Newton method. In
particular, in the neighborhood of a local optimum Θ∗:

lim
Θt

→Θ∗

P (Θt) =

[

I − M ′(Θ∗)

][

− S(Θ∗)

]

−1

(7)

where S(Θ∗) = ∂2L(Θ)
∂Θ2 |Θ=Θ∗ is the Hessian of the objec-

tive function. We assume that P (Θ) and M(Θ) are differ-

entiable and that
[

− S(Θ∗)
]

−1
exists.

(Proof sketch of eq (7): Taking negative derivatives of (5) wrt Θt

yields I − M ′(Θt) = −P ′(Θt)∇L(Θt) − P (Θt)S(Θt)

where M ′

ij(Θ
t) = ∂Θt+1

i /∂Θt
j is the input-output derivative

matrix for the BO mapping and P ′(Θt) = ∂P (Θt)
∂Θ

|Θ=Θt is the
tensor derivative of P (Θt) with respect to Θt. In the limit, near
a fixed point, the first term will vanish since the gradient is going
to zero (assuming P ′(Θt) does not become infinite); the equality
(7) readily follows.)

This shows that the nature of the quasi-Newton behavior is
controlled by the convergence matrix M ′(Θ∗). When the
matrix M ′ has small eigenvalues, then near a local opti-
mum bound optimization may exhibit quasi-Newton con-

−9 −6 −3 0 3 6 9

µ
1

µ
2

−10 −5 0 5 10
−10

−5

0

5

10
GRADIENT

EM
NEWTON

9.1

8.4

8.0

8.0

7.7

−6 −5 −4 −3 −2 −1 0

0

1

2

3

4

5

6

−6 −3 0 3 6

µ
1

µ
2

−10 −5 0 5 10
−10

−5

0

5

10
GRADIENT

EM
NEWTON

9.1

8.7

8.3

8.5

9.0

8.0

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 1: Contour plots of the likelihood function L(Θ) for MoG examples using well-separated (upper panels) and not-well-separated
(lower panels) one-dimensional data sets. Axes correspond to the two means. The dashdot line shows the direction of the true gradient
∇L(Θ), the solid line shows the direction of P (Θ)∇L(Θ) and the dashed line shows the direction of (−S)−1∇L(Θ). Right panels are
blowups of dashed regions on the left. The numbers indicate the log of the l2 norm of ∇L(Θ). For the ”well-separated” case, in the
vicinity of Θ∗, vectors P (Θ)∇L(Θ) and (−S)−1∇L(Θ) become identical.

vergence behavior. This is also true in “plateau” regions
where the gradient is very small even if they are not near a
local optimum.

We can examine the structure of this matrix and its eigen-
values, or the ratio of its two top eigenvalues. In particular,
if the top eigenvalue of M ′(Θ∗) tends to zero, then BO
becomes a true Newton method, rescaling the gradient by
exactly the negative inverse Hessian.

Θt+1 = Θt − S(Θt)−1∇L(Θt) (8)

As the eigenvalues tend to unity, BO takes smaller and
smaller stepsizes, giving poor, first-order convergence.

3 Common Bound Optimizers
3.1 Expectation-Maximization (EM)
We now consider a particular bound optimizer, the popular
Expectation-Maximization (EM) algorithm, and derive
specific cases of the results above for models which use
EM to adjust their parameters. To begin, consider a
probabilistic model of observed data x which uses latent
variables y. For any value of Ψ, it can be easily verified
that the following difference of two terms is a lower bound
on the likelihood:

G(Θ, Ψ) = Q(Θ, Ψ)− H(Ψ, Ψ) =
∫

p(y|x, Ψ) ln p(x, y|Θ)dy −
∫

p(y|x, Ψ) ln p(y|x, Ψ)dy

The log likelihood function can be written as:

L(Θ) = ln p(x|Θ) =
∫

p(y|x, Θ) ln p(x|Θ)dy

= G(Θ, Θ) ≥ G(Θ, Ψ) ∀Ψ

By (2), we can establish:1

∇2
G(Θ∗) =

∂2Q(Θ, Θ∗)

∂Θ2
|Θ=Θ∗

∇2
G(Θ∗, Ψ∗) = −∂2H(Θ, Θ∗)

∂Θ2
|Θ=Θ∗

and therefore we have an expression for M ′(Θ∗):

∂M(Θ)
∂Θ |Θ=Θ∗ =

[

∂2H(Θ,Θ∗)
∂Θ2 |Θ=Θ∗

][

∂2Q(Θ,Θ∗)
∂Θ2 |Θ=Θ∗

]

−1

This can be interpreted as the ratio of missing information
to complete information near the local optimum [2, 5].
Notice that the curvature of the original bound function
appears as one of the terms in the ratio. According to (7),
in the neighborhood of a solution (for sufficiently large t):

P (Θt) ≈
[

I −
(

∂2H

∂Θ2

)(

∂2Q

∂Θ2

)

−1

|Θ=Θt

][

− S(Θt)

]

−1

The interpretation of this result is intuitive and well known:
When the missing information is small compared to the
complete information, EM exhibits quasi-Newton behavior
and enjoys fast, typically superlinear, convergence in the
neighborhood of Θ∗. If the fraction of missing information
approaches unity, the eigenvalues of the first term above
approach zero and EM will exhibit extremely slow con-
vergence. The above analysis gives a formal explanation
(applicable to any latent variable model) of this behaviour.

Figure 1 illustrates these results in the case of fitting a mix-
ture of Gaussians model to well-clustered and not-well-
clustered data. Many other models also show this same

1For further details refer to [4]

effect; for example, when Hidden Markov Models or Ag-
gregate Markov Models [9] are trained on very structured
sequences, EM exhibits quasi-Newton behavior, in particu-
lar when the state transition matrix is sparse and the output
distributions are almost deterministic at each state.

3.2 Generalized Iterative Scaling (GIS)
In this section we consider the Generalized Iterative
Scaling algorithm [1], widely used for parameter esti-
mation in maximum entropy models. Its goal is to
determine the parameters Θ∗ of an exponential family
distribution p(x|Θ) = 1

Z(Θ) exp (ΘT F (x)) such that
certain generalized marginal constraints are preserved:
∑

x p(x|Θ∗)F (x) =
∑

x p̄(x)F (x), where Z(Θ) is the
normalizing factor, p̄(x) is a given empirical distribution
and F (x) = [f1(x), ..., fd(x), 1]T is a given feature vector
on the inputs. (We include the constant, or bias feature.)
The GIS algorithm requires that fi(x) > 0 ∀i (but we will
not require

∑

i fi(x) = 1)[6]. The log-likelihood is:

L(Θ) =
∑

x p̄(x) ln p(x|Θ) =
∑

x p̄(x)ΘT F (x) − ln Z(Θ)

We note that ln Z(Θ) ≤ Z(Θ)/Z(Ψ) + ln Z(Ψ) − 1 for
any Ψ, and exp

∑

i Θifi(x) ≤ ∑

i fi(x) exp Θi +
[1 − ∑

i fi(x)], with
∑

i fi(x) ≤ 1. Defining
s = maxx

∑

i fi(x), we construct a lower bound:

L(Θ) ≥ ∑

x p̄(x)
∑

i Θifi(x) − ln Z(Ψ) +
∑

i
fi(x)

s
−

∑

x

p(x|Ψ)
∑

i

fi(x)

s
exp

[

s(Θi − Ψi)
]

= G(Θ, Ψ)

This lower bound has the useful property that its maximiza-
tion is decoupled across the parameters Θi. The GIS algo-
rithm is then given by:

Θt+1
i = Θt

i +
1

s
ln

∑

x p̄(x)fi(x)
∑

x p(x|Θt)fi(x)
Define F̄ (Θ∗) ≡ ∑

x p(x|Θ∗)F (x) to be the mean
of the feature vectors, D(Θ∗) ≡ diag

[

F̄ (Θ∗)
]

to be
the corresponding diagonal matrix, and Cov(Θ∗) to be
covariance of the feature vectors under model distribution
p(x|Θ∗). We can compute second order statistics using (2):

∇2
G(Θ∗) = −s diag

[

F̄ (Θ∗)
]

= −sD(Θ∗)

∇2
G(Θ∗, Ψ∗) = s diag

[

F̄ (Θ∗)
]

−
[

∑

x p(x|Θ∗)F (x)F (x)T −
[

F̄ (Θ∗)
][

F̄ (Θ∗)
]T

]

= sD(Θ∗) − Cov(Θ∗)

According to (7), in the neighborhood of a solution (for
sufficiently large t), the step GIS takes in parameter space
and true gradient are related by the matrix:

P (Θt) ≈
[

1

s
Cov(Θt)D(Θt)−1

][

− S(Θt)

]

−1

Due to the concavity of G(Θ, Ψ′) for any fixed Ψ′, the step
a GIS algorithm takes in parameter space always has posi-
tive projection onto the true gradient of the objective func-
tion. The convergence rate matrix M ′(Θ∗) is of the form:

∂M(Θ)

∂Θ
|Θ=Θ∗ = I − 1

s
Cov(Θ∗)D(Θ∗)−1 (9)

and depends on the covariance and the mean of the feature
vectors. We can interpret this result as follows: when fea-
ture vectors become less correlated and closer to the ori-
gin, GIS exhibits faster convergence in the neighborhood of
Θ∗. If features are highly dependent, then GIS will exhibit
extremely slow convergence.

3.3 Non-Negative Matrix Factorization (NMF)
Given a non-negative matrix V, the NMF algorithm[3]
tries to find matrices W and H, such that V ≈ WH .
Posed as an optimization problem, we are interested in
minimizing a divergence L(W, H) = D(V ||WH), subject
to (W, H) ≥ 0 elementwise:

L(W, H) =
∑

ij

(

Vij ln
Vij

(WH)ij

− Vij + (WH)ij

)

We use − ln
∑

c WicHcj ≤ −∑

c αij(c, c) ln
WicHcj

αij (c,c)

where αij(a, b) = W t
iaHt

bj/
∑

r W t
irH

t
rj , so that αij(c, c)

sum to one. Defining Θ = (W, H) and Ψ = (W t, Ht), we
can construct the upper bound on the cost function:

L(Θ) ≤
∑

ij

Vij ln Vij − Vij +
∑

ijc

WicHcj − (10)

∑

ijc

Vijαij(c, c)

[

ln
WicHcj

αij(c, c)

]

= G(Θ, Ψ)

One can now compute second order statistics using (2).
In the appendix we derive the explicit form of the conver-
gence rate matrix M ′. We also note that the convergence
matrix of NMF much resembles the convergence matrix
of GIS, since both algorithms make use of the bound that
comes from Jensen’s inequality.

3.4 Concave-Convex Procedure (CCCP)
A CCCP [12] optimizer seeks to minimize an energy
function E(Θ), which can be decomposed into a convex
Evex(Θ) and a concave Ecave(Θ) function:

E(Θ) = Evex(Θ) + Ecave(Θ) (11)

CCCP algorithm is given by:

∇Evex(Θt+1) = −∇Ecave(Θ
t)

It is easy to see that CCCP belongs to the class of bound
optimization algorithms, and therefore can be analyzed as
a first order iterative algorithm. Its bound function is:

E(Θ) ≤ Evex(Θ) + Ecave(Ψ) +

(Θ − Ψ)T∇Ecave(Ψ) = G(Θ, Ψ)

Employing (2), we have:

∇2
G(Θ∗) =

∂2Evex(Θ)

∂Θ∂ΘT
|Θ=Θ∗

∇2
G(Θ∗, Ψ∗) =

∂2Ecave(Ψ)

∂Ψ∂ΨT
|Ψ=Θ∗

The convergence rate matrix is given by:

M ′(Θ∗) = −
[

∂2Ecave(Ψ)
∂Ψ∂ΨT |Ψ=Θ∗

][

∂2Evex(Θ)
∂Θ∂ΘT |Θ=Θ∗

]

−1

which can be interpreted as a ratio of concave curvature to
convex curvature. According to (7) in the neighborhood of

a solution (for sufficiently large t) the gradient and step are
related by: P (Θt) ≈

[

I −
(

∂2Ecave

∂Θ2

)(

∂2Evex

∂Θ2

)

−1

|Θ=Θt

][

− S(Θt)

]

−1

Of course, the step CCCP takes in parameter space has pos-
itive projection onto the true gradient of the original energy
function E(Θ).

The above view of CCCP has an interesting interpreta-
tion: If the concave energy function has small curvature
compared to the convex energy term in the neighborhood
of Θ∗, CCCP will exhibit a quasi-Newton behavior and
will possess fast, typically superlinear convergence. As
the fraction of concave-convex curvature approaches one,
CCCP will exhibit extremely slow, first order convergence
behavior. Figure 4 illustrates exactly such an example.

4 Improving Convergence Rates
The above analysis helped to answer the question: when
and why will bound optimizers converge slowly? They can
also help to answer the more practical question: what can
we do to speed up convergence?

In the case of EM, it is possible to estimate the key quantity
controlling convergence (fraction of missing information)
and switch to direct (gradient-based) optimization when we
predict slow behavior of EM. We have experimented with
such a “hybrid” approach with some success[7]. For other
bound optimizers, similar hybrid algorithms are possible.

But there is another, intriguing approach to improving con-
vergence speed: modify the original input to the algorithms
based on our analysis of convergence rates. In the case
of GIS this involves transforming features, in the case of
NMF, this requires scaling and translating data vectors, and
for CCCP this comes down to designing different convex-
concave decompositions of the objective. These input mod-
ifications do not change the final results of the algorithms;
they only change the convergence properties.

Beginning with GIS, we can show that translating feature
vectors to bring them closer to the origin and decorrelat-
ing (whitening) them both speed up convergence. (Homo-
geneously rescaling all features by a single constant does
not affect convergence.) In particular, the optimal trans-
lation of features is given by Fnew(x) = F (x) − V with
Vi = minx fi(x) ∀i, and the optimal linear transformation
AFnew is that which makes ACov(Θ∗)AT equal to iden-
tity matrix, taking into account the bias term, or a feature
that is a constant. (We provide sketch proofs of both results
in the appendix.) Of course, the covariance in the second
condition cannot be evaluated until the optimal parameters
are known, but it can be approximated by using the sample
covariance of features on the training set.

For NMF, similar to GIS, we can show that translating data
vectors to bring them closer to the origin speeds up con-
vergence, whereas homogeneously rescaling all data by a
single constant does not affect convergence.

For CCCP, it is well-known that any energy function with
bounded curvature has many convex-concave decomposi-
tions but no clear principle for finding a good one has been
known. Our analysis provides guidance in this regard: we
should minimize the ratio of curvatures between the convex
and concave parts of the energy.

In the next section we illustrate that appropriate prepro-
cessing of the input to these various bound optimization
algorithms does result in a much faster rate of convergence.

5 Experimental Results
We now present empirical results to support the validity
of our analysis for several bound optimization algorithms.
We first apply EM to learning the parameters of two latent
variable models: Mixtures of Gaussians (MoG) and Hid-
den Markov Models (HMM). We then analyze and apply
Iterative Scaling (IS) to a logistic regression model. Next,
we show the effect of data translation on the convergence
properties of NMF. Finally, we finish by describing and an-
alyzing the effect of various energy function decomposi-
tions on the convergence behavior of the CCCP algorithm.
Though not shown, we confirmed that the convergence re-
sults presented below do not vary significantly for different
random initial starting points in the parameter space.

First, consider a mixture of Gaussians (MoG) model. In
this model the proportion of missing information corre-
sponds to how “well” or “not-well” the data is separated
into distinct clusters. We therefore considered two types
of data sets, a “well-separated” case and a “not-well-
separated” case in which the data overlaps in one contigu-
ous region. As predicted by our analysis, in the “well-
separated” case, in the vicinity of the local optimum Θ∗ the
directions of the vectors P (Θ)∇L(Θ) and (−S)−1∇L(Θ)
become identical (fig. 1), showing that EM will have quasi-
Newton convergence behavior. In “not-well-separated”
case, due to the large proportion of missing information,
these directions are significantly different and EM pos-
sesses poor, first-order convergence behavior.

We also applied the MoG model to cluster a set of 50,000
8 × 8 greyscale pixel image patches.2 Figure 2 displays
the convergence behavior of EM for M=5 and M=50 mix-
ture components. The experimental results reveal, that with
fewer mixture components, EM converges quickly to a lo-
cal optimum, since the components generally model the
data with fairly distinct, non-contiguous clusters. As the
number of mixtures components increases, clusters overlap
in contiguous regions, creating a relatively high proportion
of missing information. In this case the convergence of EM
slows by several orders of magnitude.

We then applied EM to training Hidden Markov Models
(HMMs). Missing information in this model is high when
the observed data do not well determine the underlying

2The data set used was the imlog data set publicly available at
ftp://hlab.phys.rug.nl/pub/samples/imlog

0 100 200 300 400 500 600

−0.06

−0.04

−0.02

0

Lo
g−

Li
ke

lih
oo

d
+

C
on

st

−2 0 2

−2

0

2

−5 −3 −1 1
0

2

4

6

EM: Mixture of Gaussians

A

A

B

B

0 50 100 150 200 250 300

−0.08

−0.06

−0.04

−0.02

0

0.02

Lo
g−

Li
ke

lih
oo

d
+

C
on

st

Unstructured
 Sequence B: CEDBCEDDAC ...

Structured
 Sequence A: AEABCDEAEABC ...

A B

 EM: Hidden Markov Models

...

0 100 200 300 400 500 600 700 800 900 1000
−4

−3

−2

−1

0

x 10
−3

Lo
g−

Li
ke

lih
oo

d
+

C
on

st

5−Component

EM: Mixture of Gaussians

50−Component

Figure 2: Learning curves of EM algorithm for two models: MoG and HMM. Different data sets are shown on the same plots for
convenience. The iteration number is shown on the horizontal axis, and log-likelihood is shown on the vertical axis with the zero-
level likelihood corresponding to the converging point of the EM algorithm. For “well-separated” and “structured” data (A), EM
possesses quasi-Newton convergence behavior. EM in this case converges in 10-15 iterations with stopping criterion: [L(Θt+1) −
L(Θt)]/abs(L(Θt+1)) < 10−15. For “overlapping”, “aliased” data (B), EM posses poor, first-order convergence. Right panel displays
convergence behavior of EM by fitting 5 component as opposed to 50 component MoG model on the same data set of gray image patches.

0 500 1000 1500 2000 2500 3000

−570

−565

−560

−555

−550

−545

−540

Iteration Number

C
on

di
tio

na
l L

og
−L

ik
el

ih
oo

d
+

C
on

st

Logistic Regression

A

B, C

0 5 10 15 20 25
0

5

10

15

20

25

Feature 1

F
ea

tu
re

 2

A

B

0 5 10 15 20 25
0

5

10

15

20

25

Feature 1

F
ea

tu
re

 2

B

C

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

−445

−440

−435

−430

−425

−420

−415

−410

Interation Number

C
on

di
tio

na
l L

og
−L

ik
el

ih
oo

d
+

C
on

st

Logistic Regression

X

Y

Z

0 5 10 15 20 25
0

5

10

15

20

25

Feature 1

F
ea

tu
re

 2

X

Y

0 5 10 15 20 25
0

5

10

15

20

25

Feature 1

F
ea

tu
re

 2

X

Z

Figure 3: Learning curves (left panels) of Iterative Scaling algorithm for logistic regression model, showing the effect that translation
and whitening of the feature vectors have on the IS convergence behavior, with letters corresponding to the respective data sets. Top
panels show an experiment with 2,000 2-dimensional feature vectors drawn from standard normal, bottom panels display an identical
experiment with 2,000 feature vectors drawn from normal with oriented covariance. Top, right panel shows that scaling feature vectors
by constant does not affect the convergence of IS.

state sequence (given the parameters). We therefore gen-
erated two synthetic data sets from a 5-state HMM, with an
alphabet size of 5 characters. The first data set (“aliased”
sequences) was generated from a HMM where output pa-
rameters were set to uniform values plus some small noise
ε ∼ N (0, 01I). The second data set (“structured se-
quences”) was generated from a HMM with sparse tran-
sition and output matrices. Figure 2 shows that for the very
structured data, EM performs well and exhibits second or-
der convergence in the vicinity of the local optimum. For
the ambiguous or aliased data, EM posses extremely slow,
first-order convergence behavior.

This analysis may also shed light on why hard-clustering
algorithms such as k-means and Viterbi style E-steps for
HMMs appear to have faster convergence than their softer
cousins: they suppress the missing information.

To confirm our analysis of GIS, we applied iterative scal-
ing algorithm to a simple 2-class logistic regression model:
p(y = ±1|x, w) = 1/(1 + exp (−ywT x)) following [6].
In our first experiment, N feature vectors of dimensionality
d were drawn from normal: x ∼ N (0, 2Id), with the true
parameter vector w∗ being randomly chosen on the surface
of the d-dimensional sphere with radius

√
2. To make fea-

tures positive, the data set was modified by adding 20 to
all feature values. Figure 3 shows that for N = 2000 and
d = 2, naive IS, that runs on the original unpreprocessed
features, takes over 2500 iterations to converge. When fea-
ture vectors are translated closer to the origin, IS converges
to exactly the same maximum likelihood solution, but beats
naive IS by a factor of almost twelve.

Our second experiment was similar, but feature vectors of
dimensionality d were drawn from a Gaussian with ori-

0 200 400 600 800 1000 1200 1400
2

4

6

8

10

12

14

16

18

20

D
iv

er
g

en
ce

A

B

NMF

A B

Iteration Number
0 20 40 60 80 100 120 140

−2

−1.99

−1.98

−1.97

−1.96

−1.95

E
n

er
g

y
F

u
n

ct
io

n
 E

(x
)

0 40 80 120
−5

15

35

55
CCCP

Vex3 +
Cave3

Vex1 +
Cave1

Vex2 +
Cave2 Iteration Number

−4 −3 −2 −1 0 1 2 3 4
−60

−40

−20

0

20

40

60

E(x)

E
cave1

(x)

E
cave2

(x)
E

cave3
(x)

E
vex1

(x)

E
vex3

(x)

E
vex2

(x)

Figure 4: Learning curves of NMF and CCCP algorithms. For NMF, we show the effect that data translation has on the convergence
behavior of NMF (in our case black pixels correspond to 0, white to 30). Applying CCCP to minimize a simple energy function
E(x) = x4 − 3x2 + 2x − 2, we display the effect that different energy decompositions (left panel) have on CCCP convergence.

ented covariance. Figure 3 shows that for N=2,000 and
d=2, translating features improves the convergence of IS by
a factor of over 4, whereas translating and whitening fea-
ture vectors results in speedup by factor of twenty. Similar
results are obtained if dimensionality of data is increased.

Next, we experimented with the NMF algorithm. Data vec-
tors were drawn from standard normal: x ∼ N (0, I16). To
make features positive, the data set was modified by adding
20 to all data values, forming non-negative matrix V . We
then applied NMF to perform non-negative factorization:
V ≈ WH . Figure 4 reveals that naive NMF, that runs on
the original unpreprocessed data (data set A), takes over
1,300 iterations to converge. Once data vectors are trans-
lated closer to the origin (data set B), NMF converges to
exactly the same value of the cost function in about 230 it-
erations, outperforming naive NMF by a factor of over five.

Finally, we experimented with the CCCP algorithm. We
considered a simple energy function E(x)=x4-3x2+2x-2,
which has many decompositions (fig.4). A decomposition
which minimizes the ratio of concave-convex curvature is:
Ecave1(x)=-3x2-2 and Evex1(x)=x4+2x. Other decompo-
sitions: Ecave2(x)=-13x2-2 and Evex2(x)=x4+10x2+2x;
Ecave3(x)=-9x4-3x2-2 and Evex3(x)=10x4+2x; clearly
increase the proportion of concave-convex curvature. In
our experiment, all runs of CCCP were started from the
same initial point in the parameter space. Figure 4 reveals
that as the proportion of the local concave-convex curva-
ture increases, the convergence rate of CCCP significantly
slows down, by several orders of magnitude.

6 Discussion
In this paper we have analyzed a large class of bound op-
timization algorithms and their relationship to direct opti-
mization algorithms such as gradient-based methods. We
determined conditions under which BO algorithms exhibit
local-gradient and fast quasi-Newton convergence behav-
iors. Based on this analysis and interpretation, we have
also provided some recommendations for how the input to
these algorithms can be preprocessed to yield faster conver-
gence. Currently, using derivation of an explicit form of the
convergence rate matrix, we are also working on identify-
ing analytic conditions under which CCCP possesses fast

or extremely slow convergence in minimizing Bethe and
Kikuchi free energies in approximate inference problems.
Similar analysis can be applied to other bound optimization
algorithms; for example Sha et. al. [10] recently introduced
a multiplicative algorithm for training SVMs and provided
a convergence analysis based on margins.

Our analysis and experiments show that in the regime
where the convergence rate matrix has large eigenvalues,
a bound optimizer is likely to perform poorly. Slow
convergence is expected when missing information is
high while learning with EM; when feature vectors are
highly dependent while estimating parameters with GIS
or NMF; or when the ratio of concave-convex curvature
is large when minimizing energy function with CCCP. In
these cases, one can either attempt to modify the basic BO
algorithms to accelerate them, or instead employ direct
optimization algorithms such as conjugate-gradient which
are likely to have far superior performance. Alongside our
analysis we have also presented a third alternative: inputs
to standard BO algorithms can sometimes be preprocessed
to speed convergence.

Acknowledgments
Funded in part by the IRIS project, Precarn Canada.
References

[1] Stephen Della Pietra, Vincent J. Della Pietra, and John D.
Lafferty. Inducing features of random fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(4):380–393, 1997.

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm (with
discussion). J. of the RS Society series B, 39:1–38, 1977.

[3] Daniel D. Lee and H. Sebastian Seung. Learning the parts
of objects by non-negative matrix factorization. Nature,
401:788–791, 1999.

[4] G. J. McLachlan and T. Krishnan. The EM Algorithm and
Extensions. Wiley, 1997.

[5] Xiao-Li Meng and Donald B. Rubin. Maximum likelihood
estimation via the ECM algorithm: A general framework.
Biometrika, 80:267–278, 1993.

[6] Tom Minka. Algorithms for maximum-likelihood logis-
tic regression. Technical Report 758, Dept. of Statistics,
Carnegie Mellon University, 2001.

[7] Ruslan Salakhutdinov, Sam Roweis, and Zoubin Ghahra-
man. Optimization with EM and Expectation-Conjugate-
Gradient. In To appear in Proc. 20th International Conf. on
Machine Learning, 2003.

[8] Ruslan Salakhutdinov, Sam Roweis, and Zoubin
Ghahramani. Relationship between gradient
and EM steps for several latent variable models.
http://www.cs.toronto.edu/∼rsalakhu/ecg.

[9] Lawrence Saul and Fernando Pereira. Aggregate and mixed-
order Markov models for statistical language processing. In
Proceedings of the Second Conference on Empirical Meth-
ods in Natural Language Processing, pages 81–89. 1997.

[10] Fei Sha, Lawrence Saul, and Daniel Lee. Multiplicative
updates for nonnegative quadratic programming in support
vector machines. In Advances in NIPS, volume 15, 2003.

[11] L. Xu and M. I. Jordan. On convergence properties of the
EM algorithm for Gaussian mixtures. Neural Computation,
8(1):129–151, 1996.

[12] Alan Yuille and Anand Rangarajan. The convex-concave
computational procedure (CCCP). In Advances in NIPS,
volume 13, 2001.

A Appendix
Claim 1: Translating feature vectors closer to the origin speeds up
convergence of GIS. The optimal translation of features is given
by Fnew(x) = F (x)−V ∀x with a vector V containing elements
Vi = minx fi(x) ∀i.

Proof sketch: Consider setting Fnew(x) = F (x) − V ∀x as
above. We have

M ′

new(Θ∗) = I −
1

snew
Cov(Θ∗)Dnew(Θ∗)−1 (12)

with Dnew(Θ∗) = D(Θ∗) − diag(V) (see eq. 9), and
snew = s −

∑

i
Vi. Let us denote Q(Θ∗) ≡ Cov(Θ∗)D(Θ∗)−1,

Qnew(Θ∗) ≡ Cov(Θ∗)Dnew(Θ∗)−1, and λmax(A) ≡
the largest eigenvalue of A. We can now show that this
translation forces the top eigenvalue of M ′(Θ∗) to de-
crease: λmax(M ′

new(Θ∗)) ≤ λmax(M ′(Θ∗)), where
we derived (9): M ′(Θ∗) = I − 1

s
Q(Θ∗). Note that:

λmax(M ′

new(Θ∗)) = 1 − λmin

(

1
snew

Qnew(Θ∗)
)

. Hence, our
task reduces to showing:

λmin

(1

snew
Qnew(Θ∗)

)

≥ λmin

(1

s
Q(Θ∗)

)

⇒ λmax

(

snewQ−1
new(Θ∗)

)

≤ λmax

(

sQ−1(Θ∗)
)

(13)

Taking into account that snew ≤ s, the above inequality is
obvious by examining:

λmax

(

snewQ−1
new(Θ∗)

)

=

snewλmax

([

D(Θ∗) − diag(V)
]

Cov−1(Θ∗)
)

≤

sλmax

(

D(Θ∗)Cov−1(Θ∗)
)

= sλmax

(

Q−1(Θ∗)
)

It is now clear that the optimal translation of features is given by
Fnew(x) = F (x) − V ∀x with Vi = minx fi(x) ∀i.

Claim 2: Decorrelating (whitening) feature vectors speeds up
convergence of GIS In particular, the optimal linear transforma-
tion Fnew(x) = AF (x) is that which makes ACov(Θ∗)AT equal
to identity matrix.

Proof sketch: Consider spectral decomposition: Cov(Θ∗) =
WHW T , with H being the diagonal matrix of the eigenvalues,
and W being the orthogonal matrix of the corresponding eigen-
vectors. Let A = WH−1/2W T . The linear transformation be-
comes Fnew(x) = AF (x)3, in which case ACov(Θ∗)AT = I .

M ′

new(Θ∗) = I −
1

snew
ACov(Θ∗)AT Dnew(Θ∗)−1

= I −
1

snew
Dnew(Θ∗)−1 (14)

with snew = maxx

∑

i

[

AF (x)
]

i
, and Dnew(Θ∗) =

diag
[

A
∑

x
p(x|Θ∗)F (x)

]

= diag
[

AF̄ (Θ∗)
]

. We now show
that, in general, λmax(M ′

new(Θ∗)) ≤ λmax(M ′(Θ∗)). This
task reduces to showing (see eq (13)): λmax

(

snewDnew(Θ∗)
)

≤

λmax

(

sQ−1(Θ∗)
)

. First note that:

λmax

(

sQ−1(Θ∗)
)

= sλmax

(

D(Θ∗)Cov−1(Θ∗)
)

= sλmax

(

D(Θ∗)AAT
)

(15)

On the other side:

snewλmax

(

Dnew(Θ∗)
)

= snew ‖ AF̄ (Θ∗) ‖∞≤

snew ‖ D(Θ∗)A ‖∞ (16)

It can also be shown that snew ≤ sλmax(A) = s ‖ A ‖2. By
using above facts, slightly more relaxed bound holds:

‖ D(Θ∗)A · snew ‖2≤‖ D(Θ∗)A · sA ‖2 (17)

Therefore in general, ”whitening” feature vectors, pushes down
the top eigenvalue of the convergence rate matrix, which accord-
ing to our analysis, results in its faster rate of convergence.

Non-Negative Matrix Factorization: We use a bound on the ob-
jective function (10) to derive the explicit form of the convergence
rate matrix M ′. Defining Θ = (W,H) and Ψ = (W t, Ht), we
employ (2):

∇2
G(Θ∗)

∂W ∗

ic∂W ∗

kp

= δikδcp

∑

j

Vij

V̄ ∗

ij

H∗

cj

W ∗

ic

∇2
G(Θ∗)

∂W ∗

ic∂H∗

pl

= δcp

∇2
G(Θ∗)

∂H∗

cj∂H∗

pl

= δcpδjl

∑

i

Vij

V̄ ∗

ij

W ∗

ic

H∗

cj

∇2
G(Θ∗)

∂H∗

cj∂W ∗

kp

= δcp

∇2
G(Θ∗, Ψ∗)

∂W ∗

ic∂W ∗

kp

= −

[

δikδcp

∑

j

Vij

V̄ ∗

ij

H∗

cj

W ∗

ic

− δik

∑

j

Vij

V̄ ∗

ij

H∗

cj

W ∗

ic

αij(c, p)

]

∇2
G(Θ∗, Ψ∗)

∂H∗

cj∂H∗

pl

= −

[

δjlδcp

∑

i

Vij

V̄ ∗

ij

W ∗

ic

H∗

cj

− δjl

∑

i

Vij

V̄ ∗

ij

W ∗

ic

H∗

cj

αij(c, p))

]

∇2
G(Θ∗, Ψ∗)

∂W ∗

ic∂H∗

pl

= −
Vij

V̄ ∗

ij

(δcp − αil(c, p))

∇2
G(Θ∗, Ψ∗)

∂H∗

cj∂W ∗

kp

= −
Vkj

V̄ ∗

kj

(δcp − αkj(c, p))

where we define V̄ ∗

ij =
∑

c
W ∗

icH
∗

cj , and δij = 1 if i = j; 0 –
otherwise. The convergence rate matrix M ′ will be of the form:

∂M(Θ)

∂Θ
|Θ=Θ∗ = −

[

∇2
G(Θ∗, Ψ∗)

][

∇2
G(Θ∗)

]

−1

3Here we are assuming that the new feature vector AF(x) has
only positive entries. If AF(x) has negative entries it might be
necessary to decorrelate and add a translation, which trades off
the advantage of Claim 1 and Claim 2.

