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DBNs vs. DBMs

Deep Belief Network Deep Boltzmann Machine

DBNs are hybrid models:
* Inference in DBNs is problematic due to explaining away.
* Only greedy pretrainig, no joint optimization over all layers.
* Approximate inference is feed-forward: no bottom-up and top-down.



Mathematical Formulation
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Deep Boltzmann Machine 0 = {W' W= W=} model parameters

 Dependencies between hidden variables.
e All connections are undirected.

e Bottom-up and Top-down:

P(h? =1h',h3) =0 ( S Whh+ > W;fmhfn>
7 m

7 ™

Bottom-up Top-Down

Input Unlike many existing feed-forward models: ConvNet (LeCun),
HMAX (Poggio et.al.), Deep Belief Nets (Hinton et.al.)



Mathematical Formulation

P*(v) 1 Trrrl11 1T /21,2 2T 11,313
P, = = —— W-h h- W-<h h“ W-h
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Deep Boltzmann Machine
* Conditional Distributions:

P(h;:uv,h?):a(ZWigvz Z khQ)
P(h} = 1|h',h?) = (Z kh1+Zka )
P(h3 =1]h?) = (Zkah2>

* Note that exact computation of
Input P(h',h% h3|v) isintractable.



Mathematical Formulation
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Neural Network

Deep Boltzmann Machine Deep Belief Network

Input Unlike many existing feed-forward models: ConvNet (LeCun),
HMAX (Poggio), Deep Belief Nets (Hinton)



Mathematical Formulation
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Neural Network

Deep Boltzmann Machine Deep Belief Network
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HMAX (Poggio), Deep Belief Nets (Hinton)



Mathematical Formulation

P*(v) 1 [T 1.1 1T /21,2 2T 11,313
= = —— exp |[v. W h"+h" W*h*+h® W-h
Z(6) ~ Z(0) Z

PQ(V)

Deep Boltzmann Machine O = {I/Vl7 W27 W3} model parameters
 Dependencies between hidden variables.

Maximum likelihood learning:

0log Py(v)

oW1 [Vth] — Ep, [Vhl—r]

— Ep

data

Problem: Both expectations are
intractable!

Learning rule for undirected graphical models:
MRFs, CRFs, Factor graphs.



Approximate Learning

1

Py(v,h™ h® h®) = 0

exp [VTW(l)h(l) L hO ' W@OR® £ @ T ERG)

(Approximate) Maximum Likelihood:

0log Py(Vv) _E,

T T
aW]_ data [Vhl ] o EP@ [Vhl ]

* Both expectations are intractable!

5(Vv — vn) Not factorial any more!



Approximate Learning

Py(v.h® 1 n) = Zze) oxp [VTWu)h(l) ChO TR h<2>TW<3>h<3>]
h? (Approximate) Maximum Likelihood:
W?)
0log Py(v) T 1T
h2( ST — EPuatal vh' |- E [Vh ]

Wl M
Data
Pdata (V, hl) =data (V)

5(Vv — vn) Not factorial any more!




Approximate Learning

1

PQ(Vv h(l)v h(2)> h(3)> - Z(9>

exp [VTW(l)h(l) +hO @R 4 h(Q)Tw(3)h(3)]

(Approximate) Maximum Likelihood:

0log Py(v) T
oWt \ePu VR @

Variational Stochastic
Inference Approximation
| (MCMC-based)

5(Vv — vn) Not factorial any more!




Previous Work

Many approaches for learning Boltzmann machines have been
proposed over the last 20 years:

* Hinton and Sejnowski (1983),

* Peterson and Anderson (1987) . .
* Galland (1991) Real-world applications — thousands

* Kappen and Rodriguez (1998) of hidden and observed variables

* Lawrence, Bishop, and Jordan (1998) ith milli f t
« Tanaka (1998) witn miliions or paramerters.

* Welling and Hinton (2002)
* Zhu and Liu (2002)

* Welling and Teh (2003)

* Yasuda and Tanaka (2009)

Many of the previous approaches were not successful for learning
general Boltzmann machines with hidden variables.

Algorithms based on Contrastive Divergence, Score Matching, Pseudo-
Likelihood, Composite Likelihood, MCMC-MLE, Piecewise Learning, cannot
handle multiple layers of hidden variables.



New Learning Algorithm

Posterior Inference Simulate from the Model

Unconditional

Approximate Approximate the m
conditional joint distribution

Pdata(h|v) Pmodel(ha V)

(Salakhutdinov, 2008; NIPS 2009)



New Learning Algorithm

Posterior Inference Simulate from the Model

Approximate Approximate the
conditional joint distribution

Pdata(h|v) Pmodel(ha V)

T
EPdata [Vh—r] Epmodel [Vh
Data-dependent Data-independe

. J

Mgccch /

\
R\ % v

(Salakhutdinov, 2008; NIPS 2009)



New Learning Algorithm

Simulate from the Model

Markov Chain
[I\/Iean-FieId} _Monte Carlo

| ]
EPdata [Vh—r] Epmodel Vh—l_
Data-dependent Data-independeht M
(N J
Y B
Match

.I; Key Idea of Our Approach:

Data-dependent: Variational Inference, mean-field theory
Data-independent: Stochastic Approximation, MCMC based



Sampling from DBMs

Sampling from two-hidden layer DBM by running a Markov chain:

h2|h1
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7 \P (h'|v, h/,
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Sample

1+ exp(—>_, VV1 v; — Y. W2 .h?)
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P(h}, = 1|v, h?)
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Stochastic Approximation

Time t=1 t=2 t=3

h2

Update 65

) — @ )

Update 64
) — G

X1 T91 (X1 %Xo) Xo v ng (X2 %Xl) X3 v T93 (X3 %Xg)
Update 6, and x; sequentially, where x = {v,h', h?}
* Generate x; ~ Ty, (Xt <—Xt_1) by simulating from a Markov chain

that leaves Py, invariant (e.g. Gibbs or M-H sampler)

* Update 0; by replacing intractable Epet [VhT] with a point
estimate [Vth;r]

In practice we simulate several Markov chains in parallel.

Robbins and Monro, Ann. Math. Stats, 1957
L. Younes, Probability Theory 1989



Stochastic Approximation

Update rule decomposes:

Opp1 = 0; + 4 (Epdam[th] —Ep,, [VhT]) + oy (Epe [vh'] — Z v, h(m )

|\ ) A\ )
Y Y

True gradient Noise term €¢

Almost sure convergence guarantees as learning rate a; — 0

Problem: High-dimensional data: [ n13rkov Chain
the energy landscape is highly

, Monte Carlo
multimodal .

Key insight: The transition operator can be
Salakhutdinov, any valid transition operator — Tempered
ICML 2010 Transitions, Parallel/Simulated Tempering.

Connections to the theory of stochastic approximation and adaptive MCMC.



Variational Inference

Approximate intractable distribution Py(h|v) with simpler, tractable
distribution @, (h|v):
Py(h,v)

log Py(v logZPghv logZQM h|v) 0.0l
7]

Posterij ference P (h V)
> (h|v)1
/@\ 2 Qulbivlos 5 1S
Mean-Field 1
= Qu(hv)log P; (h,v) —log Z2(0) + Y _ Qu(h|v)log
h 1\ " h Qu(hfv)

E . v W'h! + h! 'W?2h? + h?' Wih? )
Y

Variational Lower Bound

— log Py(v) — KL(Q,.(b[v)|| P(h[v))

Q(z)

Pl) dz

KL(QIIP) = [ Q(a)log

Minimize KL between approximating and true
distributions with respect to variational parameters 1 .

(Salakhutdinov, 2008; Salakhutdinov & Larochelle, Al & Statistics 2010)



Variational Inference

Approximate intractable distribution P, (h|v) with simpler, tractable
distribution @, (h|v):

KL(Q|P) = / Q) log

log Pp(v) > 18g Pp(v) — KL(Qp(h|v)| \Pe(h\V)Z

Y

Posteri ference oo
/ﬁ Variational Lower Bound
R 4 . 1. . e
: Mean-Field: Choose a fully factorized distribution:
Mean-Field F
Qu(hv) = [ a(h;lv) with g(h; = 1|v) = u;
j=1

E Variational Inference: Maximize the lower bound w.r.t.
Variational parameters 1t

1
Nonlinear fixed- (Zlel Z ’““’f)

point equations: _ U(Z szkﬂgn X Z W méf?)




Variational Inference

Approximate intractable distribution P, (h|v) with simpler, tractable

distribution @, (h|v): Q(z)

KL(Q||P) = /Q(:L') log P(x)dx

log Pp(v) > 1€8§ Pp(v) — KL(Qp(h|v)| \Pe(h\V)Z

Posterior Inference L v
Variational Lower Bound Unconditional Simulation
'y .
ield o o Markov Chain
Mean-Fie 1. Variational Inference: Maximize the lower

Monte Carlo

bound w.r.t. variational parameters

2. MCMC: Apply stochastic approximation

to update model parameters

Almost sure convergence guarantees to an asymptotically
stable point.



Variational Inference

Approximate intractable distribution P, (h|v) with simpler, tractable

distribution @, (h|v): Q(z)

KL(Q||P) = /Q(x) log P(q})dw

log Pp(v) > 18g Pp(v) — KL(Qp(h|v)| \Pe(h\V)z

Y

Posterior Inference L.
Variational Lower Bound Unconditional Simulation

23
Mean-Field

1.V wer Markov Chain
b’ou[ Fast Inference J Mornte Carlo

2. . N
w{ Learning can scale to

_ millions of examples |

Almost sure convergence guarantees to an asymptotically
stable point.




Good Generative Model?

Handwritten Characters
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Handwritten Characters
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Good Generative Model?

Handwritten Characters

Simulated Real Data



Good Generative Model?

Handwritten Characters

Real Data Simulated



Good Generative Model?

Handwritten Characters
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Good Generative Model?

MNIST Handwritten Digit Dataset




Handwriting Recognition

MNIST Dataset Optical Character Recognition
60,000 examples of 10 digits 42,152 examples of 26 English letters

Learning Algorithm Error Learning Algorithm Error
Logistic regression 12.0% Logistic regression 22.14%
K-NN 3.09% K-NN 18.92%
Neural Net (platt 2005) 1.53% Neural Net 14.62%
SVM (Decoste et.al. 2002) 1.40% SVM (Larochelle et.al. 2009) 9.70%
Deep Autoencoder 1.40% Deep Autoencoder 10.05%
(Bengio et. al. 2007) (Bengio et. al. 2007)

Deep Belief Net 1.20% Deep Belief Net 9.68%
(Hinton et. al. 2006) (Larochelle et. al. 2009)

DBM 0.95% DBM 8.40%

Permutation-invariant version.



Generative Model of 3-D Objects

\ = £
%® ||
e\ |8
X [ o
<7k
AN &

24,000 examples, 5 object categories, 5 different objects within each
category, 6 lightning conditions, 9 elevations, 18 azimuths.



3-D Object Recognition

Learning Algorithm Error
Logistic regression 22.5%
K-NN (Lecun 2004) 18.92%
SVM (Bengio & LeCun 2007) 11.6%
Deep Belief Net (Nair & 9.0%
Hinton 2009)

DBM 7.2%

Permutation-invariant version.

Pattern Completion
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Learning Hierarchical Representations

Deep Boltzmann Machines:

Learning Hierarchical Structure - | roream
in Features: edges, combination il
of edges. -

* Performs well in many application domains
* Fast Inference: fraction of a second
* Learning scales to millions of examples



Learning Hierarchical Representations

Deep Boltzmann Machines:
4 N

eaming il Need more structured 7 =

in Features

of edges. | and robust models

The Shape Boltzmann Machine: a Hallucinations in Charles Bonnet
Strong Model of Object Shape Syndrome Induced by Homeostasis:
(Eslami, Heess, Winn, CVPR 2012). a Deep Boltzmann Machine Model

(Reichert, Series, Storkey, NIPS 2012)

perception loss of input

Demo DBM
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One-shot Learning

&[5
a@'é

How can we learn a novel concept — a high dimensional
statistical object — from few examples.

5t 4 g[2l2
N1 Bk S

a &
e g
X =
H 7 ¢




Supervised Learning

Motorcycle

Test:




Learning to Learn

Background Knowledge

= = = -
e N -

Learn to Transfer
/I\/Iillions of unlabeled images\ earn to franste
| - Knowledge

Learn novel concept
from one example

Test:

%




Learning to Learn

Background Knowledge

Learn to Transfer
/I\/Iillions of unlabeled images earn to franste
- - Knowledge

2

Key problem in computer vision,
speech perception, natural language
. processing, and many other domains.

Some Tabeled images

Learn novel concept
from one example

Test:

%




Hierarchical-Deep Model

One Shot Learnmg

HD Models: Integrate
hierarchical Bayesian
models with deep models.

Hierarchical Bayes:

* Learn hierarchies of categories for
sharing abstract knowledge.

Deep Models:

* Learn hierarchies of features.
* Unsupervised feature learning — no need
to rely on human-crafted input features.

(Salakhutdinov, Tenenbaum, Torralba, NIPS 2011, PAMI 2013)



Hierarchical-Deep Model

L

h? QOO0
%3 DBM Model

h'(COO0000

Higher-level class-sensitive features:

e capture distinctive perceptual
structure of a specific concept

Lower-level generic features:
* edges, combination of edges



Hierarchical-Deep Model

L

h? QOO0
%3 DBM Model

h! OO0000

Hierarchical Organization of Categories:

* express priors on the features that are
typical of different kinds of concepts

* modular data-parameter relations

Higher-level class-sensitive features:

e capture distinctive perceptual
structure of a specific concept

Lower-level generic features:
* edges, combination of edges



Hierarchical-Deep Model
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Hierarchical-Deep Model

7] [H :
Tree hierarchy of
o) Gy classes is learned

S S {4 H ”
G oL G) “vehicle 7z ~ NCRP (Nested Chinese Restaurant Process)
prior: a nonparametric prior over tree
G G G G3
2 structures
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Hierarchical-Deep Model

classes is learned

[ Tree hierarchy of }

G1) “vehicle”

truck
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7z ~ NCRP (Nested Chinese Restaurant Process)

prior: a nonparametric prior over tree
structures

h3|z ~ HDP (Hierarchical Dirichlet Process) prior:
a nonparametric prior allowing categories to
share higher-level features, or parts.



Hierarchical-Deep Model

7] [H :
Tree hierarchy of
o) Gy classes is learned

ai &) “vehicle” , _ hCRP (Nested Chinese Restaurant Process)

prior: a nonparametric prior over tree
structures

G3
éj & @ @ @ h3|z ~ HDP (Hierarchical Dirichlet Process) prior:

Q9

a nonparametric prior allowing categories to
@ share higher-level features, or parts.

() v|h® ~ DBM Deep Boltzmann Machine

horse| | cow car van truck

Enforce (approximate) global consistency

hl 000000 through many local constraints.
*+ 3
OO0000




CIFAR Object Recognition

7] [H :
Tree hierarchy of
o) Gy classes is learned

50,000 images of 100 classes

({4 H V74
animal G1 o G1) “vehicle”

Gh Gh
i G %) \ﬁ§
Higher-level class

sensitive features

horse| | cow car van

OGO

Lower-level
generic features

Inference: Markov chain
Monte Carlo

32 x 32 pixels x 3 RGB



Learning the Hierarchy

The model learns how to share the knowledge across many visual
categories.

global” Learned super-

class hierarchy
“aquatic
animal”

Basic level
class

girl  baby

Learned higher-level
class-sensitive features

Learned low-level
generic features



Learning the Hierarchy

The model learns how to share the knowledge across many visual

O

crocodile spider

. snake
lizar el _“ castle | road
§ squirre bridge
angaroo skyscraper
bus ouse
leopard . ‘ truck train
fox tiger tank
lion  wolf ‘ tractor streetcar
otter| skunk ‘
shrew .
orcupine .
‘ P P pine ‘
dolphin
P ray \ shark O_‘?Ik maple tree
whale willow tree
belarh camel ‘ turtle ‘ bottle can \ lamp
elephant
. cattle () bowl cup
chimpanzee beaver
apple
mouse| raccoon peer \ pepper man boy \ man
hamster apbit POSSUM orange

sunflower girl  woman




Sharing Features

Reconst- Learning to
Real  ructions Shape Color Learn

| | e | | ]
? OUWe W™ |

apple orange Stmf

Apple

Sunflower ROC curve
5 3 1lex’s

) Sy 1
uo 0
] =" T -
(g0}
[ 0.8r
o
© g g = !LJ--.HHH o7
GLJ %o.ef
3 ol Sos
o = e, g 0.4 :
G - ‘ Che Pixel-
(o 0.3
- space
(Vo) 0.2 .
c distance
=
o
o)
()

% 010203 04 050607 08 09 1
false alarm rate
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Learning to Learn: Learning a hierarchy for sharing parameters —
rapid learning of a novel concept.



Object Recognition

Area under ROC curve for same/different
(1 new class vs. 99 distractor classes)

') LDA DBM HDP-DBM HDP-DBM
0.95 - GIST (class conditional) (no super-classes)
0.9
0.85 — 1
+
1 3 5 1050 | | ’
# examples [Averaged over 40 test classes]

Our model outperforms standard computer vision
features (e.g. GIST).



Learning from 3 Examples

Given only 3 Examples Willow Tree Rocket

o® | &S

Generated Samples
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Handwritten Character Recognition
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Handwritten Character Recognition

Area under ROC curve for same/different
(1 new class vs. 1000 distractor classes)

1 HDP-DBM HDP-DBM
LDA DBM (no super-classes)
0.95 | (class conditional) h
0.9 Pixels 1
. h
0.85 | | N +
|
0.8 | + JrJr
0.75 +
0.7 i i
0.65 L \ | o ) “
1 3 510

# examples [Averaged over 40 test classes]



Simulating New Characters

Real data within super class

Global
uper Super
class 1 - class 2
New class

Simulated new characters




Simulating New Characters

Real data within super class

Global
uper Super
class 1 - class 2
New class

Simulated new characters




Simulating New Characters

Real data within super class

Global

uper Super
class 1 - class 2
New class

~ N nrF -

v N N o

v N ngr T

TN P

Simulated new characters D Y N s ol

- /£ N o7

S S N F oo




Simulating New Characters

Real data within super clas
Clobal =2k BEpERER K
LY B NEB &R
\\\\ Super )
- class 2

New class

uper
class 1

2
S
<
%
e
<
e

F

Simulated new characters

FFIPPFRFRA
L‘L"JFD‘-]UFD 53] [ﬁpj



Simulating New Characters

Real data within super class

q

Global <

S

(o

— — "
uper Super N
class 1 - class 2 &
b

=

q

L

New class

Simulated new characters




Simulating New Characters

Real data within super class
T ol aUoy YVosFgov sl
Fyo¢Zao oy YOS TVY QM
~ . F Y S ZE T Oy TOr v XM
\ Super oy vyuwg dvIm
- class 2 oS To T X m
T oy YU Vo vEs m

Global

uper
class 1

TCong T Y ov g m

New class

Simulated new characters




Simulating New Characters

Real data within super class

U L < I = B L O 7
1 q M4 84 HOYEH 3H 04

The same model can be applied to
| speech, text, video, or any other
khigh—dimensional data.

Global

uper
class 1 e

Y - -

Classl Class2 New class

Simulated new characters
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Sexy Walk

Motion Capture

Drunken Walk po




Motion Capture
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Face Recognition

Yale B Extended Face Dataset
4 subsets of increasing illumination variations

Subset 1

Due to extreme illumination variations, deep models
perform quite poorly on this dataset.



Deep Lambertian Model

Consider More Structured Models: undirected + directed models.

0000 (e]le]ele)
* 3 *+3 _
OOOOOO] [OOOOOO] > (—jbh Deep
3 Undirected

- S

"ErME =
J
\ l / } Directed

E Observed

Image

Combines the elegant properties of the Lambertian model with the
Gaussian DBM model.

(Tang et. Al., ICML 2012, Tang et. al. CVPR 2012)



Lambertian Reflectance Model

* A simple model of the image formation process.
I = a x |0]|8] cos(6)
7NN

Image Light Surface viewer
albedo source normal

* Albedo -- diffuse reflectivity of a surface, material /
dependent, illumination independent. ™

* Surface normal -- perpendicular to the tangent
plane at a point on the surface.

* Images with different illumination can be generated by varying light
directions



Deep Lambertian Model

[

‘el =
NS

l Image  Surface [|ight

B albedo normals source
v N\ )

Observed V\a N, € H I (Uz]az ;FZ )

Image
1E€pixels

acRP, NeRPX3 recR3



Deep Lambertian Model

Transfer Learning

Gaussian Deep

Albedo DBM:
Pretrained using
Toronto Face Database

a ~ GDBM(a)

CEINEI]

Image  Surface [|ight
albedo normals source

\l/

I(:]oasggved P(v]a,N, ?) H /\/'(vz]az (i 0), 0 )

1E€pixels
acRP, NeRPX3 recR3

Inference: Variational Inference.
Learning: Stochastic Approximation



Yale B Extended Face Dataset

» 38 subjects, ~ 45 images of varying illuminations per subject,
divided into 4 subsets of increasing illumination variations.

» 28 subjects for training, and 10 for testing.



Face Relighting

One Test Image

Inferred
Observed 3ipedo Face Relighting




Recognition Results

Recognition as function of the number of training images for

10 test subjects.

06

occlusions or structured
noise?

Ya,'e{What about dealing with\

J

—r—— 5

5 0.4

i

o

= 0.3

0.2F
OnE‘ShOt 0 | { | | 1 !
A 0 1 2 3 4 5 6 7 8

Recogn ition Number of training images



Robust Boltzmann Machines

e Build more structured models that can deal with occlusions or

structured noise. log P(v,v,s,h,g) ~

Inferred

Binary Mask
Observed
Image

(Tang et. Al., ICML 2012, Tang et. al. CVPR 2012)

Inferred
Truth




Robust Boltzmann Machines

e Build more structured models that can deal with occlusions or
structured noise.

g

h

Q0000 OO0

Observed
Image

log P(v,v,s,h,g) ~

1 v; — b;)?
= (v 2’”) +v'Wh+s'Ug
2 .= o;
P R Y,
Y Y
Gaussian RBM, modeling Binary RBM
clean faces modeling occlusions

_% Z visi(v; — ;)% — % Z G iji)Q
1Epixels / icp ixels/ g,

Binary pixel-wise
Mask

Gaussian noise model



Robust Boltzmann Machines

e Build more structured models that can deal with occlusions or
structured noise.

h 1OgP({7,V,S,h, g) ~
OOOOO (ele]elole)
: (vi —bi)® T T
U %4 — 5 2 +v Wh+s Ug
’LEplXGlS v o ,
! Y Y
S u Gaussian RBM, modeling Binary RBM
clean faces modeling occlusions

1 (=~ 7 \2

[ P(v|h, g) is a heavy-tailed distribution }

7 7
v Binary pixel-wise Gaussian noise model
Mask

Inference: Variational Inference.
Learning: Stochastic Approximation




Recognition Results on
AR Face Database

Internal states of
RoBM during

learning.

Inferred
A

30 -40 50 # of iterations



Recognition Results on
AR Face Database

999999998
RoBM during
KQQQEQQQQQ

10' 20 30 '40 50 # of iterations

Inferred
A

Inference on the test subjects

Initial 1

# of iterations



Recognition Results on
AR Face Database

9 9 9 e 9 9 9 Internal states of
RoBM during

g8

= [ | '
R RReRRe -
LFL_’ < P AR e W PR PRI IENPECY RN EETRECY RS
\. 31‘ A -.l:'.-"'-:- ¢..=’* ﬁj _‘
1 3 5 7
Learning Algorithm Sunglasses Scarf
Inference on the
"" Robust BM 84.5% | 80.7%
RBM 61.7% 32.9%
ﬂ Eigenfaces 66.9% 38.6%
Initial 1 3 5 |LDA 56.1% 27.0%

P



Speech Recognition

(Zhang, Salakhutdinov, Chang, Glass, ICASSP 2012)

61 phonetic
labels HMM decoder

OO000O
OO0O
OO00O
OO0O0O
OO00O
OO00O
OO000O
OO0O

>

25 ms windowed frames

630 speaker TIMIT corpus: 3,696
training and 944 test utterances.

Spoken Query Detection:
For each keyword, estimate utterance’s
probability of containing that keyword.

Performance: Average equal error
rate (EER).

Learning Algorithm AVG EER
GMM Unsupervised 16.4%
DBM Unsupervised 14.7%
DBM (1% labels) 13.3%
DBM (30% labels) 10.5%
DBM (100% labels) 9.7%




Talk Roadmap
* Advanced Deep Models

* Deep Boltzmann Machines
* One-Shot and Transfer Learning
* Learning Structured and Robust Deep Models

* Multimodal Learning

 Conclusions



Data — Collection of Modalities

(1 Tube' Cougle flickr
° Multlmedla Content on the Web _ .............................................

M . car,
image + text + audio.

automoblle

sunset,
pacificocean, ;
bakerbeach,
seashore, ocean

* Product recommendation
systems.

* Robotics applications. eh | Ak

amazon

Motor control
Touch sensors

" f %
ISION Audio



Shared Concept

“Modality-free” representation

4

“Modality-ful

\

(

\.

sunset, pacific ocean,

baker beach, seashore,

ocean
J/

” representation



Multi-Modal Input

Improve Classification

pentax, k10d, kangarooisland
southaustralia, sa australia ﬁ SEA / NOT SEA

australiansealion 300mm

beach, sea, surf,
strand, shore,

) ove seascape,

sand, ocean, waves

Retrieve data from one modality when queried using data from
another modality

beach, sea, surf,
strand, shore,
wave, seascape,
sand, ocean, waves




Building a Probabilistic Model

* Learn a joint density model:

P(hv;
P (ha Vimage s Vtext) . ( ‘Vlmageg VteXt)

* h: “fused” representation for
classification, retrieval.

sunset, pacific ocean
baker beach,
seashore, ocean

\.

Viext



Building a Probabilistic Model

* Learn a joint density model:

P (ha Vimagea Vtext) .

* h: “fused” representation for

classification, retrieval.

e Generate data from

conditional distributions

for

- Image Annotation

A

Vimage

P (h7 Viext ’Vimage)

Missing
Data

\

Viext



Building a Probabilistic Model

* Learn a joint density model:

P(h, v; A4
P(h, Vimage, Viext)- ( ; 1mage‘ text)

* h: “fused” representation for
classification, retrieval.

* Generate data from h
conditional distributions

for
é " N
. : : sunset, pacific ocean,
- Image Annotation Missing baker beach,
- Image Retrieval Data . seashore, ocean |

T —

Vimage Vtext



Challenges - |

Text _ _
Very different input
( ) .
sunset, pacific ocean, representatlons
baker beach, seashore,
. ocean ) * Images — real-valued, dense
ﬁ * Text — discrete, sparse
Sparse e
_p - Difficult to learn

cross-modal features
from low-level
representations.




Challenges - Il

Text

pentax, k10d,

pentaxda50200, . . .
kangarooisland, sa, Noisy and missing data

australiansealion

mickikrimmel,
mickipedia,
headshot

< ho text>

unseulpixel,
naturey, crap




Challenges - Il

Text Text generated by the model

pentax, k10d,
pentaxda50200,
kangarooisland, sa,
australiansealion

beach, sea, surf, strand,
shore, wave, seascape,
sand, ocean, waves

mickikrimmel, portrait, girl, woman, lady,
mickipedia, blonde, pretty, gorgeous,
headshot expression, model

night, notte, traffic, light,
<o text> lights, parking, darkness,

lowlight, nacht, glow
unseulpixel, fall, autumn, trees, leaves,
naturey, crap foliage, forest, woods,

branches, path




A Simple Multimodal Model

* Use a joint binary hidden layer.

* Problem: Inputs have very different statistical
properties.

e Difficult to learn cross-modal features.

h [OOO000000000000

\
4

Real-valued /00000 I8 8
OOOO0] % 8 8 1-of-K
OO0000 © O O

Vimage Viext



Multimodal DBM

h (OOO000000000000

Gaussian model
Replicated Softmax

Dense, real-valued Q0000 Q
image features OO0000

00000

Vimage VtGXt
(Srivastava & Salakhutdinov, NIPS 2012)

Word
counts

@OeeE

0000
00000




Multimodal DBM

0000000000000
h' ©OOO00) COOOOO)

Gaussian model
Replicated Softmax

Dense, real-valued Q0000

© 0O O
© O |Of Word
image features O0000 % 8 8 counts
O000O0] © O O
Vimage Viext

(Srivastava & Salakhutdinov, NIPS 2012)



Multimodal DBM

b’ (OO000000000000

/ N\

h? ©OO0000) (e]e]e]el0)e)
h' ©OO000) (o]e]e]0]0]e)

Gaussian model
Replicated Softmax

Dense, real-valued Q0000

© 0O O
© O |Of Word
image features O0000 % 8 8 counts
O000O0] © O O
Vimage Viext

(Srivastava & Salakhutdinov, NIPS 2012)



Multimodal DBM

h* (0000000000000 0

Bottom-up
+ h?

Top-down ﬁ

h

1
Gaussian model ﬁ T

Dense, real-valued OOOO0)
image features O0000O
QOOOQ0]

Vimage Viext

ﬁ Replicated Softmax

Word
counts

OO
OO0000
00000




Multimodal DBM

h®* (OO0O00000000000
P P

g’%vtﬂ# > P(h<2m>,h<2t>,h<3>)( > P(vm,h<1m>|h<2m>)) ( > P(vt,hﬂt’lh(®

h(2m) h(2t) h(3) h(1?)

h(1m)

m

1 (U?)Z U; (Im) ;. (1m) (2m) ; (1m) ; (2m)
Z(G,M)zh:e}(p (_2; 202 +%:a_iW"j h; +;le hi ™ hy

. >y

Gaussian Imagg Pathway

LS WO+ 3 WEIRIORE 4 S OO 3 gy e hgn)
i

k = Replicated Sot?t;nax Text Pathwa}: - Joint 37¢ Laye;r - ’ /
i
/looooo / SIS

Vimage VtGXt



Given

Text Generated from Images

Generated

dog, cat, pet, kitten,

puppy, ginger, tongue,
kitty, dogs, furry

sea, france, boat, mer,
beach, river, bretagne,
plage, brittany

portrait, child, kid,
ritratto, kids, children,
boy, cute, boys, italy

Given

Generated

insect, butterfly, insects,
bug, butterflies,
lepidoptera

graffiti, streetart, stencil,
sticker, urbanart, graff,
sanfrancisco

canada, nature,
sunrise, ontario, fog,
mist, bc, morning



Text Generated from Images

Generated

portrait, women, army, soldier,
mother, postcard, soldiers

obama, barackobama, election,
politics, president, hope, change,
sanfrancisco, convention, rally

water, glass, beer, bottle,
drink, wine, bubbles, splash,
drops, drop




Images from Text

Step 0

Sample drawn after
every 50 steps of
Gibbs sampling

Sample at step 0

automobile




Images from Text

Given Retrieved

water, red,
sunset

nature, flower,
red, green

blue, green,
yellow, colors

chocolate, cake




MIR-Flickr Dataset

* 1 million images along with user-assigned tags.

nikon, abigfave,
goldstaraward, d80,
nikond80

sculpture, beauty, d80

vegan
stone cgd

-—
ﬁ
anawesomeshot, nikon, green, light, white, yeII.ow, sky, ge'otagg.ed,
theperfectp'hqtographer, ohotoshop, apple, d70 abstrgct, lines, bus, reﬂechon, cn_elo,
flash, damniwishidtakenthat, graphic bilbao, reflejo

spiritofphotography
Huiskes et. al.



Data and Architecture

~ 12 Million parameters

2048

¢ \

1024 1024

@ |

1024 1024

!
=

3857

e 200 most frequent tags.

» 25K labeled subset (15K
training, 10K testing)

e Additional 1 million
unlabeled data

* 38 classes - sky, tree,
baby, car, cloud ...



Results

* Logistic regression on top-level representation.

 Multimodal Inputs Mean Average Precision
— /

Learning Algorithm (MAP ) Precision@50

Random O\lﬂ 0.124

LDA [Huiskes et. al ] 0.492 0.754 N Similar

SVM [Huiskes et. al.] 0.475 0.758 > zzaKt”res'

DBM-Labelled 0.526 0.791 y




Results

* Logistic regression on top-level representation.

Mean Average Precision

* Multimodal Inputs
_— /

Learning Algorithm (MAP ) Precision@50
Random 0.124 0.124
LDA [Huiskes et. al.] 0.492 0.754 Similar
SVM [Huiskes et. al.] 0.475 0.758 > zzaKt”res'
DBM-Labelled 0.526 0.791
DBM 0.609 0.863 -

+ 1 Million
Deep Belief Net 0.599 0.867 Unlabelled
Autoencoder 0.600 0.875




Benefits of usmg Multimodal Data

(e]e]e]e]0 0]0]0]0]0 0]0]0]0

Tra|n|ng &] % Test Phase ﬁ %

Phase ©ooooo 000000 Images Only!

i i |

KOIOIOIOIO o) {ololololo O (010101010 o)
9 @

OIOIOIOIO sisls 'I'I‘I"‘ Text
Learning Algorithm MAP Precision@50
Image-LDA [Huiskes et. al.] 0.315 -
Image-SVM [Huiskes et. al.] 0.375 -
Image-DBM 0.469 0.803
Multimodal-DBM (missing text) 0.531 0.832




Video and Audio

Cuave Dataset

OO000OQ)

|

(e]e]o]0]e]6)

- .
- W ¥a
" »



Multi-Modal Models

Text & Language

REUTERS P
AP Associated Press

Speech &

Audio Me series
data
One of Key Challenges:

Develop learning systems that come

closer to displaying human like intelligence Inference



Summary

e Efficient learning algorithms for Hierarchical Generative Models.
Learning more adaptive, robust, and structured representations.

Text & image retrieval / Dealing with missing/ Learning a Category
Object recognition occluded data Hierarchy
. A
fot REUTERS (%) 2T r3
L2 5 AP Associated Press !
WilEpiA R4
14

erms
I

Multimodal Data

sunset, pacific ocean, : :
beach, seashore

 Deep models can improve current state-of-the art in many
application domains:

> Object recognition and detection, text and image retrieval, handwritten
character and speech recognition, and others.



Thank you

Thanks to my collaborators:

Nitish Srivastava University of Toronto
Charlie Tang University of Toronto

Josh Tenenbaum MIT

Geoffrey Hinton University of Toronto
Nathan Srebro TTI, University of Chicago
Roger Grosse MIT

llya Sutskever Google

lain Murray University of Edinburgh
Andriy Mnih Gatsby Computational Neuroscience Unit, UCL
Hugo Larochelle University of Toronto
Antonio Torralba MIT

Bill Freeman MIT

John Langford Yahoo Research

Tong Zhang Rutgers

Sham Kakade University of Pennsylvania
Brenden Lake MIT

Code for learning RBMs, DBNs, and DBMs is available at:
http://www.utstat.toronto.edu/~rsalakhu/code.html



