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Mining for Structure

Massive increase in both computational power and the amount of

data available from web, video cameras, laboratory measurements
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* Develop statistical models that can discover underlying structure, cause, or

statistical correlation from data in unsupervised or semi-supervised way
* Multiple application domains



Mining for Structure

Massive increase in both computational power and the amount of
data available from web, video cameras, laboratory measurements.
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o  D€ep Generative Models that
Recom  support inferences and discover

m structure at multiple levels.
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* Develop statistical models that can discover underlying structure, cause, or
statistical correlation from data in unsupervised or semi-supervised way.
* Multiple application domains.




Deep Generative Model

Deep Boltzmann Machine Gaussian-Bernoulli Markov
Random Field

> 12,000 Latent
Variables

Model P(image)

96 by 96
images

24,000 Training Images
Stereo pair 'ning 5

(Salakhutdinov, 2008; Salakhutdinov & Hinton, Al & Statistics 2009)



Deep Generative Model

(Salakhutdinov, 2008; Salakhutdinov & Hinton, Al & Statistics 2009)

Sanskrit Model P(image)
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25,000 characters from 50
alphabets around the world.

* 3,000 hidden variables

e 784 observed variables
(28 by 28 images)

* Over 2 million parameters

Bernoulli Markov Random Field



Deep Generative Model

(Salakhutdinov, 2008; Salakhutdinov & Hinton, Al & Statistics 2009)

Conditional
Simulation

P(image | partial image) g o411 Markov Random Field



Deep Generative Model

(Salakhutdinov, 2008; Salakhutdinov & Hinton, Al & Statistics 2009)

Conditional
Simulation

Why so difficult?
28

28
228><28

possible images!

>> number of particles in the
universe

P(image | partial image) g o411 Markov Random Field



Deep Generative Model

Model P(document) Reuters dataset: 804,414
hewswire stories: unsupervised
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Convolutinal Deep Models
for Image Recognition

C1 Layer C2 Layer

Input Image X P2 Layer Output Labels

W

Convolutions Max Pooling Convolutions Max Pooling

S~ -
—

Feature Extraction ®(x)

P1 Layer

 Learning multiple layers of representation.

(LeCun, 1992)



Convolutinal Deep Models
for Image Recognition

mite

container shi motor scooter
mite container ship motor scooter leopard
black widow lifeboat go-kart jaguar
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grille mushroom cherry Madagascar cat
~_convertible agaric dalmatian squirrel monkey
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(Krizhevsky et. al., NIPS 2012)



Predicting Roads from

(Mnih and Hinton, ICML 2012)




Predicting Roads from
Satellite Images

]
>

(Mnih and Hinton, ICML 2012)




Talk Roadmap
Part 1: Deep Networks

* Introduction, Sparse Coding, Autoencoders.
* Introduction to Graphical models

* Restricted Boltzmann Machines: Learning low-
level features.

* Deep Belief Networks: Learning Part-based
Hierarchies.

Part 2: Advanced Deep Models.

* Deep Boltzmann Machines
* Multimodal Learning



Learning Feature Representations
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Learning Feature Representations

Handle
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How is computer perception done?

Input Data =) Low-level =) Learning

features Algorithm
Object -
Image Low-level

vision features

Audio I»” - 4 =3 :
classification i | S

Audio Low-level Speaker
audio features identification

Slide Credit: Honglak Lee




Computer vision features

Normalized patch Spin image
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Audio features
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Audio features

HEAREFT wav
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Unsupervised Feature Learning:

Can we learn meaningful

features from unlabeled data?

Flux

ZCR

Rolloff




Sparse Coding

* Sparse coding (Olshausen & Field, 1996). Originally developed
to explain early visual processing in the brain (edge detection).

* Objective: Given a set of input data vectors {x1, X2, ..., Xy },
learn a dictionary of bases {¢{, @, ..., ®x }, such that:

K

Xn = E :ank(blm
k=1 \

Sparse: mostly zeros

* Each data vector is represented as a sparse linear combination
of bases.



Sparse Coding

Natural Images Learned bases: “Edges”

New example

= 0.8 * ¢36 +03% @y  HTO5*F gy

[0,0,..0.8, ..,0.3, .. 0.5, ..] = coefficients (feature representation)

Slide Credit: Honglak Lee



Sparse Coding: Training

* Input image patches: x1, X9, ..., XNy € RP
e Learn dictionary of bases: ¢, @, ..., » € RY

K
min X, — E An ks Py
k=1

Reconstruction error Sparsity penalty

* Alternating Optimization:

1. Fix dictionary of bases ¢, ¢, ..., ¢, and solve for
activations a (a standard Lasso problem).

2. Fix activations a, optimize the dictionary of bases (convex
QP problem).



Sparse Coding: Testing Time

* Input: a new image patch x* , and K learned bases ¢, ®,, ..., o5
e Qutput: sparse representation a of an image patch x*.

a

K
min | |x* — E ap Q.
k=1

2 K
+ )\Z ]ak]
2 k=1

X* =08% gy *03% @y TO5SEF s

0,0,..0.8,..,0.3, .. 0.5, ..] = coefficients (feature representation)



Image Classification

Evaluated on Caltech101 object category dataset.

Input Image bases

Classification
Algorithm
(SVM)

9K images, 101 classes

Algorithm Accuracy
Baseline (Fei-Fei et al., 2004) 16%
PCA 37%
Sparse Coding 47%
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Lee et al., NIPS 2006



Interpreting Sparse Coding

2

N K N K
rgliqlgl Xn = > ankdy|| FAD D lanl
T n=1 k=1 2 n=1 k=1
a Sparse features a
OOOOOOO0) OO000000)
8w Do RO
[OOOOO] Decoding [OOOOO] encoding

* Sparse, over-complete representation a.
* Encoding a = f(x) is implicit and nonlinear function of x.

e Reconstruction (or decoding) x’ = g(a) is linear and explicit.



Autoencoder

Feature Representation

Feed-back,
generative,
top-down

U
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Decoder
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Feed-forward,
bottom-up

|

Input Vector

1

e Details of what goes insider the encoder and decoder matter!

e Need constraints to avoid learning an identity.



Autoencoder

[ Binary Features z 1
Decoder @ ﬁ Encoder
filtersD [~ A 4 N filters W.
Linea_r Dz z=0(Wx) Sigmoid
function Y, . _/ function

1
@ ﬁ o(r) = 1 4 exp(—2x)

[ Input Vector x 1




Autoencoder

[ Binary Features z ]  An autoencoder with D inputs,
@ ﬁ D outputs, and K hidden units,
with K<D.
[ Dz } [ z=0(Wx) }
J]7 j]> * Given an input x, its
reconstruction is given by:
Input Vector x ]

(x,W, D) ZDM (Z W]@ZCIZrL) , j=1,.,D.

DECOIE!GF Encoder

D
Yj = ZDijk Xk =0 (Z szCI?rL)



Autoencoder

[ Binary Features z ) * An autoencoder with D inputs,
@ ﬁ D outputs, and K hidden units,

with K<D.
[ Dz } [ z=0(Wx) }

U ]

Input Vector x ]

e We can determine the network parameters W and D by
minimizing the reconstruction error:

E(W,D) = ZHZ/ (Xn, W, D) — xy|[*.



Autoencoder

[ Linear Features z ] e If the hidden and output layers

@ ﬁ are linear, it will learn hidden units

that are a linear function of the data
and minimize the squared error.

Wz z=Wx
* The K hidden units will span the

@ ﬁ same space as the first k principal

components. The weight vectors
Input Image x ]

may not be orthogonal.

e \With nonlinear hidden units, we have a nonlinear
generalization of PCA.



Another Autoencoder Model

[ Binary Features z 1

@ ﬁ Encoder

filters W.
T —
Decoder L G(W Z) } LZ G(WX)} Sigmoid

filters D @ ﬁ function

[ Binary Input x 1

* Need additional constraints to avoid learning an identity.

e Relates to Restricted Boltzmann Machines (later).



Predictive Sparse Decomposition

( Binary Features z 1

6_1 Sparsity} @ ﬁ Encoder

filters W.
Decoder L Dz } L £= G(WX) } Sigmoid

filters D @ ﬁ function

[ Real-valued Input x 1

At training : Dz — x!|I2 2\ Wx) — zl|2
Atlaining  min || Dz — x|I3 + Alels + [lo(Wx) — 23

Decoder Encoder
Kavukcuoglu et al., ‘09



Stacked Autoencoders

[ Class Labels ]
m >

[ Decoder } [ Encoder }
< ]

[ Features

m >
[ Sparsity J [ Decoder } [ Encoder }
< ]

[ Features

m >

[ Sparsity J [ Decoder} { Encoder }
]

[ Input x




Stacked Autoencoders

[ Class Labels ]
m 2

[ Decoder } L Encoder }
< O]

[ Features

m 2R
[ Sparsity J [ Decoder } L Encoder }
< O

( Features
(Ef Greedy Layer-wise Learning.
S
P ] < T T = 7

[ Input x




Stacked Autoencoders

[ Class Labels ]

e Remove decoders and >

use feed-forward part. [ Encoder }
L]

e Standard, or [ Features

convolutional neural A\

network architecture. [ Encoder }
L]

e Parameters can be [ Features

fine-tuned using N

backpropagation. [ Encoder }
L]

[ Input x




Stacked Autoencoders

[ Class Labels }
e Remove decoders and >
use feed-forward part. L Encoder }
L]
e Standard, or [ Features ]
convolutional neural A\
network architecture. { Encoder }
4 )
*Paranl  Top-down vs. bottom-up?
fine-t .
b;‘fkp“r': Is there a more rigorous
. mathematical formulation? y

[ Input x




Talk Roadmap
Part 1: Deep Networks

* Introduction, Sparse Coding, Autoencoders.
* Introduction to Graphical models.

* Restricted Boltzmann Machines: Learning low-
level features.

* Deep Belief Networks: Learning Part-based
Hierarchies.

Part 2: Deep Boltzmann Machines.

* Inference and Learning
 Advanced Deep Models



Graphical Models

Graphical Models: Powerful framework for representing dependency
structure between random variables.

a * The joint probability distribution over a set of
b random variables.

* The graph contains a set of nodes (vertices) that
represent random variables, and a set of links

¢ (edges) that represent dependencies between
those random variables.

* The joint distribution over all random variables decomposes into a product
of factors, where each factor depends on a subset of the variables.

Two type of graphical models:
* Directed (Bayesian networks)
* Undirected (Markov random fields, Boltzmann machines)

Hybrid graphical models that combine directed and undirected models, such
as Deep Belief Networks, Hierarchical-Deep Models.



Directed Graphical Models

Directed graphs are useful for expressing causal relationships between
random variables.

* The joint distribution defined by the graph is given
by the product of a conditional distribution for each
node conditioned on its parents.

p(x) = | [ p(zxlpay)

* For example, the joint distribution over x1,..,x7
factorizes:

p(X) — p(xl)p($2)p($3)p($4|ﬂf17 L2, $3)p($5\$1, $3)p($6|$4)p($7|$4, 2175)

Directed acyclic graphs, or DAGs.



Markov Random Fields
c p(x) = 3 [[ éc(ec)
C

A B  Each potential function is a mapping from joint
configurations of random variables in a clique to non-
negative real numbers.

* The choice of potential functions is not restricted to

D having specific probabilistic interpretations.

Potential functions are often represented as exponentials:

— %Hqﬁo(xc) = —eXp ZE T.)) = —eXP( E(x))
C

\ J
Y
where E(x) is called an energy function. Boltzmann distribution

* Suppose x is a binary random vector with &; € {+1, —1} :
e If x is 100-dimensional, we need to sum over 2100 terms!

Computing Z is often very hard. This represents a major limitation of undirected models.



Maximum Likelihood Learning

Consider binary pairwise MRF:

Py(x) = 229) exp ( Z rixil;; + szez)

ijEE =%

Given a set of i.i.d. training examples
D = {xW x@ .. %M1, wewantto learn
model parameters 6 .

N
Maximize log-likelihood objective: L(6) = % Z log PG(X(n))
n=1

Derivative of the log-likelihood:

oL(0) 1 (n) (n)
agij — N Z[xz «Tj ] - Z[%’zmjpg(x)] = EPdata[xixj] - Epe [xzajj]

mn X
1\ )
Y
Difficult to compute: exponentially many

configurations




Talk Roadmap
Part 1: Deep Networks

* Introduction, Sparse Coding, Autoencoders.
* Introduction to Graphical models.

* Restricted Boltzmann Machines: Learning low-
level features.

* Deep Belief Networks: Learning Part-based
Hierarchies.

Part 2: Deep Boltzmann Machines.

* Inference and Learning
 Advanced Deep Models



Restricted Boltzmann Machines

hidden variables

oy
g

N
OV

Bipartite o \ndirected bipartite graphical model
Structure

1
/A
i

he; G»

Image visible variables

 Stochastic binary visible variables:
v c {0,1}7

e Stochastic binary hidden variables:
h e {0,1}"

The energy of the joint configuration:

E(V, h; (9) = — Z Wijvih]’ — Z bz"Uz' — Z ajhj
1] 7 )

J

6 = {W,a,b} model parameters.



Restricted Boltzmann Machines

hidden variables

h ( )
\\,‘/]‘\\ Et'fj:utfe Probability of the joint configuration is
| \{‘;@é@% given by the Boltzmann distribution:
AANA 1
A/" "/\‘e Py(v,h) = Z00) exp ( — E(v,h;0))
Or
Pair-wise Unary

' A N\ r‘H r—M

Markov random fields, Boltzmann machines, log-linear models.



Restricted Boltzmann Machines

hidden variables

W

Y

J
QDL

YA\
Q

Bipartite . _ _
structure  Restricted: No interaction between

hidden variables

/

Inferring the distribution over the
hidden variables is easy:

P(alv) = [[ P(hilv) P(h; =1}v) = :
X J

Image visible variables

1 + exp(— Zz Wij’Uz' — CLj)

Factorizes: Easy to compute
Similarly:

P(vih) = [] P(oib) P(w: = 1]h) = 1

1+ exp(— Zj Wz’jhj — bz)

Markov random fields, Boltzmann machines, log-linear models.



Learning Features

Observed Data Learned W: “edges”
Subset of 25,000 characters Subset of 1000 features

Most hidden
New Image: p(h7 = 1|v) variables are off

| |
m = 0(0.99 X i + 0.97 x - + 0.82 xn )

1 Logistic Function: Suitable for
Itexp(=z)  modeling binary images

as P(h|v) =10, 0, 0.82, 0, 0, 0.99, 0,0 ... |

o(x) =

Represent:




Model Learning

1
Py(v) = Z0 > exp [VTWh +a'h+b'v
h

hidden variables

W
| /l‘vﬂ »l'i*

\

Image visible variables

Given a set of i.i.d. training examples
D ={v) v® _ v, wewanttolearn
model parameters § = {W, a, b}.

Maximize (penalized) log-likelihood objective:

N
1 I
L(0) = N § log Pp(v(™) — NHW I

n=1

Regularization



Model Learning

hidden variables

Maximize (penalized) log-likelihood objective:

N
1 oA
L(O) = - D log Po(v(™) — LW}

n=1 \ )

Regularization

Image visible variables

Derivative of the log-likelihood:

OL(O) 1 <~ 0 ) 2\
= — 1 ") TWh+a'h+b'vM] |- log Z(0)—==W;,
S N ; oW, 0g <Zh:exp [V Wh+a h+b'v ] W og Z(0) NWJ

2

= Ep,,,.|Vilj] — Ep,|vih;] — ~ Wis



Model Learning

hidden variables

Derivative of the log-likelihood:

Image visible variables

Easy to /
compute exactly
Difficult to compute:
Piata(v,h;0) = P(h|v;0) Piata(V) exponentially many
Prora(v) = 1 Z 5(v — v(™) configurations.
N Use MCMC

Approximate maximum likelihood learning



Approximate Learning
* An approximation to the gradient of the log-likelihood objective:
OL(6)
OW;;

Epdata /UZ E 0

P, Uz
’Uzh P@ V h
vh

* Replace the average over all possible input configurations by samples.

* Run MCMC chain (Gibbs sampling) starting from the observed
examples.

* Initialize V0 = v

* Sample h® from P(h | v9)

* Fort=1:T
- Sample vt from P(v | ht1)
- Sample htfrom P(h | v!)



Approximate ML Learning for RBMs

Run Markov chain (alternating Gibbs Sampling):
P(h|v)

hOO OO OO
v OOO OOO OOO

Data T=infinity
T Equilibrium
X Distribution

1 + eXp(— Zz Wijvi — aj)
1
1+ exp(—2_; Wijh; — b;)

P(v|h) = HP i[h) P(v; =1|h) =



Contrastive Divergence

A quick way to learn RBM:
e Start with a training vector

P(h|v) on the visible units.
h OO OO » Update all the hidden units
in parallel.

* Update the all the visible

v OOO OOO units in parallel to get a

Data Reconstructed Data reconstruction”.
P(v|h) « Update the hidden units
again.

Update model parameters:
AW,j = Ep,,,,[vili;] — Ep, [vilhy]

Implementation: ~10 lines of Matlab code.
Hinton, Neural Computation 2002



RBMs for Real-valued Data

hidden variables Pair-wise Unary
h Q_. () —A ~— ——
\\\§/\“IA\\\'////I Pp(v,h) = ! exp iiwijhj - i G _Si)Q +2F:ajh3
{;&%\Q“A‘# 2(0) i=1 j=1 = 20 j=1
/AN YA
//"/4 ’/“* 6 ={W,a,b}
, \' D D F
Pg(V|h) :HPO(Ui|h) —HN (bi—l—ZWZth,af)
Image visible variables =1 1=1 7=1

Gaussian-Bernoulli RBM:

* Stochastic real-valued visible variables v ¢ R,
* Stochastic binary hidden variables h € {0,1}*.

* Bipartite connections.



RBMs for Real-valued Data

hidden variables Pair-wise Unary

\\/"\\\'///I 1 exp iiwnh.ﬁ_i_i(vi_bi)z_'_ia,h_
| ’:\‘)/A‘IQ Z(0) i=1 j=1 B B j=1 o
NN
D\ KA

PQ (V, h) =

0 ={W,a,b}

D D F
Pg(V|h) = HPO(Uz|h) = HN (bz + ZWijhj,O'iz>
1=1 1=1 J=1

Learned features (out of 10,000)

4 million unlabelled images




RBMs for Real-valued Data

Learned features (out of 10,000)

4 million unlabelled images

h7=1|1} h29=1|v

Ry B EX B

New Image




RBMs for Images

Gaussian-Bernoulli RBM:

|\ /
RIXY

Interpretation: Mixture of exponential
number of Gaussians

PQ(V) — Z Pg(V|h)P9(h),

h

Image visible variables

where

Py(h) = / Py(v,h)dv is an implicit prior, and

1 (.I—bz—O'zZWZh)Q
P(v; = z|h) = Ty, P (— 50 e Gaussian



RBMs for Word Counts

h OOOOJ Pair-wise Unary
A A

v > -
©) J@ 4@ T Pp(v,h) = 229) exp (;Z: _JW{; vFh; +ZZv’“bk+Zh3aJ)
ofe el it z -
© O Oh 0 = {W,a,b}
O Q exp ( b” Eoon Wk

VvV @J Q l PQ(’Uf _ 1|h) _ p( 1 +Z]=1 szJ)

K F
—D— Zq:l CXp (bg + Zj:1 thz'qj)

Replicated Softmax Model: undirected topic model:

e Stochastic 1-of-K visible variables.
* Stochastic binary hidden variables h € {0,1}*".

* Bipartite connections.
(Salakhutdinov & Hinton, NIPS 2010, Srivastava & Salakhutdinov, NIPS 2012)



RBMs for Word Counts

h {OQOOJ Paiiwise r_JHUnar\;_JH

F
WEvER; + Z;vkbk + Zlhjaj)
1 j=

) ) )
=1 k=1 j=1 i=1

S
OK 0 = {W,a,b}
O
O

k F ik
l k exp (b + 301 hyWE)
v Pp(vi = 1|h) = — p— -
—D— Zq:1 CXp (bi + Zj:l thz’j)
A% REUTERS
L% AP associated Press Learned features: 'topics”
| russian clinton computer trade stock
Reuters dataset: russia house system country wall
804,414 unlabeled :> moscow | president | product import street
newswire stories yeltsin bill software world point
soviet congress develo econom dow
Bag-of-Words Vi & velop y




Collaborative Filtering

1
Py(v,h) = Z(0) exp (ZWZIEUfh] + be’vf + Zajhj)
ik j

ijk

Binary hidden: user preferences

Learned features: ‘genre”

Fahrenheit 9/11 Independence Day
Bowling for Columbine The Day After Tomorrow
_ o . The People vs. Larry Flynt Con Air
Multinomial visible: user ratings Canadian Bacon Men in Black Il
] La Dolce Vita Men in Black
Netflix dataset:
480,189 users |:> Friday the 13th Scary Movie
. The Texas Chainsaw Massacre Naked Gun
17'770 mo.\/l.es ) Children of the Corn Hot Shots!
Over 100 million ratings Child's Play American Pie
The Return of Michael Myers Police Academy

NIETIELTX
State-of-the-art performance
on the Netflix dataset.

(Salakhutdinov, Mnih, Hinton, ICML 2007)



Different Data Modalities

* Binary/Gaussian/Softmax RBMs: All have binary hidden
variables but use them to model different kinds of data.

hidden variables h \O OO O’

N W
D!

9
» %A\.k

‘\\ 0

AN
(0 \ XD
¢ );\!\

K

™~ — v

Real-valued 1-of-K

v
©
©
©
@
©

Helelelele),
} [©O000"

* |t is easy to infer the states of the hidden variables:

F

71=1 71=1



Product of Experts

The joint distribution is given by:
1
PQ(V, h) = Z(@) exp ( %: Wijvihj + ZL: b;v; + zj: CLjhj)
A Product o\f Experts

Py(v) = ZPQ(V, h) = % I:exp(bivi) H 6+ exp(a; + Z Wij%’))

Marginalizing over hidden variables:

1

government | clinton bribery oil stock
auhority house corruption barrel wall
power president | dishonesty | exxon street
empire bill putin putin point
putin congress fraud drill dow

”n . n

Topics “government”, "corruption”
and ”oil” can combine to give very high
Putin probability to a word “Putin”.

(Salakhutdinov & Hinton, NIPS 2010)



Product of Experts

The joint distribution is given by:

Pg (V, h) =

Marginalizing «

government
auhority
power
empire
putin

N

clint
hou
pres
bill

cony

1
2(9) €xXp ( Z Wz’jvihj + Z bi’U,L' + Z ajhj)
E
Reuters dataset deCt of Experts
o T
Replicated Vij vz))

Softmax 50-D

w
o

LDA 50-D

Precision (%)
N
o

tations allow the

0.001 0.006 0.051 0.4 1.6 6.4 256 100 ' CorrUpt_lon and
Recall (%) ve very high

O propanmtyto @ wora “Putin”.




Learned first-layer bases

- .Wl
=
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T LT TSI N

e R wii

Lee et.al., NIPS 2009



Comparison of bases to phonemes

“oy “al” uen

Example phones ("oy") Example phones ("el") Example phones ("s")
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Local vs. Distributed Representations

* Clustering, Nearest
Neighbors, RBF SVM, local
density estimators

Local regions

Learned
prototypes

Bengio, 2009, Foundations and Trends in Machine Learning



Local vs. Distributed Representations

* Clustering, Nearest  RBMs, Factor models,
Neighbors, RBF SVM, local PCA, Sparse Coding,
density estimators Deep models

4 )

* Parameters for each region.
* # of regions is linear with
# of parameters.

Cl C2 C3 s

Learned
prototypes

Bengio, 2009, Foundations and Trends in Machine Learning



Local vs. Distributed Representations

* Clustering, Nearest  RBMs, Factor models,
Neighbors, RBF SVM, local PCA, Sparse Coding,
density estimators Deep models | C1=1

(- )
e Parameters for each region.

* # of regions is linear with
# of parameters.

Cl1 C2 C3 \

Learned
prototypes

Bengio, 2009, Foundations and Trends in Machine Learning



Local vs. Distributed Representations

* Clustering, Nearest  RBMs, Factor models,
Neighbors, RBF SVM, local PCA, Sparse Coding,
density estimators Deep models \ E}=}
4 N\ [ N
* Parameters for each region. * Each parameter affects many
* # of regions is linear with regions, not just local.
. # of parameters. ) * ## of regions grows (roughly)
Kexponentially in # of parameters. y

CT=1 S C2=1 \ CT=0
C2=0 S~ C3=0 \ C2=1
C3=0 C1=0 “ ~ ~ ’ C3=1

C2=0 S
' ~
C3=0 | TSl
1 | ~
Cl C2 C3 | c1=0 S
\ C2=0

Learned 3=1
prototypes

Bengio, 2009, Foundations and Trends in Machine Learning



Multiple Application Domains

Natural Images
Text/Documents
Collaborative Filtering / Matrix Factorization

Video (Langford, Salakhutdinov and Zhang, ICML 2009)

Motion Capture (Taylor et.al. NIPS 2007)
Speech Perception (Dahl et. al. NIPS 2010, Lee et.al. NIPS 2010)

Same learning algorithm --
multiple input domains.

Limitations on the types of structure that can be
represented by a single layer of low-level features!



Talk Roadmap
Part 1: Deep Networks

* Introduction, Sparse Coding, Autoencoders.
* Introduction to Graphical models.

* Restricted Boltzmann Machines: Learning low-
level features.

 Deep Belief Networks: Learning Part-based
Hierarchies.

Part 2: Deep Boltzmann Machines.

* Inference and Learning
 Advanced Deep Models



Deep Belief Network

* Probabilistic Generative model.

* Contains multiple layers of nonlinear
representation.

* Fast, greedy layer-wise pretraining
algorithm.

* Inferring the states of the latent
variables in highest layers is easy.

* Inferring the states of the latent variables in highest layers
IS easy.



Deep Belief Network

Low-level features:
Edges

N

y
o/
,/f&\';!h Q’/

Built from unlabeled inputs.

Input: Pixels

(Hinton et.al. Neural Computation 2006)



Deep Belief Network

Internal representations capture
higher-order statistical structure

Higher-level features:
Combination of edges

Low-level features:
Edges

//
UV

WG
AR

Built from unlabeled inputs.

Input: Pixels

(Hinton et.al. Neural Computation 2006)



Deep Belief Network
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Deep Belief Network

The joint probability
distribution factorizes:

Deep Belief Network

P(v,h', h? h?)
> RBM
= P(vih')P(h'|h?)P(h* h°)
N J J
Y Y
Sigmoid Sigmoid Belief RBM
Belief Network
Network
P(h* h%) = L exp [h* " W°h?]

Z(W3)

1
hilh?)  P(hj =1]h?) =
; 14 exp (— > Wfkh%)

1
P(vih') = TT P(v,|h! P(v; = 1|h") =
) = [ Plon Ut e (5, i)




Deep Belief Network

Approximate Generative
Inference 4 Process
Q(h3h?) P(h* h?)
A
Q(hZ|h!) P(h'|h?)
A
Q(h'|v) P(v|h')




DBN Layer-wise Training

* Learn an RBM with an input

layer v and a hidden layer h.




DBN Layer-wise Training

* Learn an RBM with an input
layer v and a hidden layer h.

* Treat inferred values

Q(h'|v) = P(hl|v) asthe data
for training 2"%-layer RBM.

' 12
* Learn and freeze 2™ layer 'h Q

|
RBM.

————————————




* Treat inferred values

DBN Layer-wise Training

* Learn an RBM with an input

layer v and a hidden layer h. Unsupervised Feature Learning.

I
I
Q(h'lv) = P(h'|v) asthe data
for training 2"d-layer RBM. !
:
I

* Learn and freeze 2" |ayer
RBM. 51y 1
Q(h*h")

* Proceed to the next layer.

Q(h'|v) T




* Treat inferred values

e Learn and freeze 2" laver

* Procee

DBN Layer-wise Training

* Learn an RBM with an input

layer v and a hidden layer h. Unsupervised Feature Learning.

Q(h'|v) = P(h'|v) asthe data
for training 2"d-layer RBM.

r e = = ==

4 : .
RBM. [ Layerwise pretraining

| improves variational
_lower bound

Q(h'[v) |




Why this Pre-training Works?

* Greedy pre-training improves variational lower bound!

LT
O ‘V)T »%»«94\
* For any approximating Y Q/Q(/‘@'\‘@\@

distribution Q(h'|v)

log Pp(v) =)  Ps(v,h")

>3 " Q(h|v) [log P(h') + log P(v|h1)] +H(Q(h'|v))

hl



Why this Pre-training Works?

Greedy training improves variational lower bound.

RBM and 2-layer DBN are equivalent

when W2 = W'

The lower bound is tight and
the log-likelihood improves by
greedy training.

For any approximating
distribution Q(h'|v)

log Pp(v) =)  Ps(v,h")

Train 2"%-layer RBM
/

> 30 QMhv) | log P(hY) + log P(vin!) | + H(Q(W[v)



Supervised Learning with DBNs

* If we have access to label information, we can train the joint

generative model by maximizing the joint log-likelihood of data
and labels

log P(y,Vv) h3C )

e Discriminative fine-tuning: / ‘

* Use DBN to initialize a
multilayer neural network.
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e Maximize the conditional
distribution:

log P(y|v) v



Sampling from DBNSs

* To sample from the DBN model:
P(v,h', h* h?)= P(v|h')P(h'|h?)P(h*, h°)

e Sample h? using alternating Gibbs sampling from RBM.

 Sample lower layers using sigmoid belief network.

Gibbs chain

Digit Demo




Learned Features

1%¢-layer features 2nd_]ayer features




Learning Part-based Representation

Convolutional DBN

Groups of parts.

Object Parts

Trained on face images.

Lee et.al., ICML 2009



based Representation

Learning Part

Cars Elephants Chairs

Faces
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Lee et.al., ICML 2009



Learning Part-based Representation

ird layer leamned from 4 object categories

Groups of parts.

Class-specific object
parts

Trained from multiple
classes (cars, faces,

motorbikes, airplanes).
Lee et.al., ICML 2009




DBNs for Classification

| 2000 ‘
T ;
| 500 | RBM Softmax Output
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, [10] [10]
[ 500 | | LA W, +ey
I W, 2000 2000
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| 500 | : W Wi+e,
RBM
****************************************** | 500 500
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RBM; . .

Pretraining Unrolling Fine—tuning
 After layer-by-layer unsupervised pretraining, discriminative fine-tuning
by backpropagation achieves an error rate of 1.2% on MNIST. SVM’s get

1.4% and randomly initialized backprop gets 1.6%.

* Clearly unsupervised learning helps generalization. It ensures that most of
the information in the weights comes from modeling the input data.

(Hinton and Salakhutdinov, Science 2006)



DBNs for Regression

Predicting the orientation of a face patch

Training Data
-22.07 3299 -41.15 6638 27.49

LIRSS " AR TR e

Training Data: 1000 face patches of Test Data: 1000 face patches of
30 training people. 10 new people.

Test Data

Regression Task: predict orientation of a new face.

Gaussian Processes with spherical Gaussian kernel achieves a RMSE
(root mean squared error) of 16.33 degree.

(Salakhutdinov and Hinton, NIPS 2007)



DBNs for Regression

Training Data
-22.07 3299 -41.15 6638 2749 Unlabeled

El et N R
Additional Unlabeled Training Data: 12000 face patches from
30 training people.

* Pretrain a stack of RBMs: 784-1000-1000-1000.

* Features were extracted with no idea of the final task.

The same GP on the top-level features: RMSE: 11.22
GP with fine-tuned covariance Gaussian kernel: RMSE: 6.42

Standard GP without using DBNs: RMSE: 16.33



Pretraining

Autoencoders

: . :

[ wi

| 2000
F N

Encoder

Unrolling
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Fine—tuning




Deep Autoencoders

* We used 25x25 — 2000 — 1000 — 500 — 30 autoencoder to extract
30-D real-valued codes for Olivetti face patches.

* Top: Random samples from the test dataset.

* Middle: Reconstructions by the 30-dimensional deep autoencoder.

* Bottom: Reconstructions by the 30-dimentinoal PCA.



Information Retrieval

European Community 2-D LSA space

Interbank Markets Monetary/Economic

< .. Disasters and
:470 s Accidents

Leading

. -
: Legal/Judicial
Economic ; o
Indicators .3
: . "".:
. St e
e Bt
I, om Government

Accounts/ Yy

: Borrowings
Earnings 9

* The Reuters Corpus Volume Il contains 804,414 newswire stories
(randomly split into 402,207 training and 402,207 test).

» “Bag-of-words” representation: each article is represented as a vector
containing the counts of the most frequently used 2000 words in the

training set.
g (Hinton and Salakhutdinov, Science 2006)



Information Retrieval

Reuters Dataset

Precision (%)
w
o

N
o

== Deep Generative Model
-©-Latent Sematic Analysis |
—B-Latent Dirichlet Allocation

0.1

0.4

1.6

6.4 25 100
Recall (%)

Reuters dataset: 804,414
newswire stories.

Deep generative model significantly
outperforms LSA and LDA topic models



Semantic Hashing

European Community 0 002 Qo
H ©]
Monetary/Economic SR o c%®%%®7 %9

Address Space Disasters and

Accidents

o s Semantically
\ Similar
Documents

’
’
’

Semantic v
Hashing Government
Function Borrowing
X
£
X
Document

Accounts/Earnings

* Learn to map documents into semantic 20-D binary codes.

* Retrieve similar documents stored at the nearby addresses with no
search at all.

(Salakhutdinov and Hinton, SIGIR 2007)



Searching Large Image Database
using Binary Codes

* Map images into binary codes for fast retrieval.
Input image 30-RBM

* Small Codes, Torralba, Fergus, Weiss, CVPR 2008

* Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
* Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 20111
* Norouzi and Fleet, ICML 2011,



Learning Similarity Measures

Maximize the Agreement
D[y ¥’ ]

Related to Siamese
Networks of LeCun. X X°

* Learn a nonlinear transformation of the input space.

e Optimize to make KNN perform well in the low-dimensional

feature space
(Salakhutdinov and Hinton, Al and Statistics 2007)



Learning Similarity Measures

Learning Similarity Metric
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Learning Similarity Measures

Learning Similarity Metric

D[y ¥’ ]
Yoo T T Y
w W

| 2000 | ] 2000 |

;Ti $353%53%%53% %

x? xP

* As we change unit 25 in the code layer, 3" image turns
into 5" image

* As we change unit 42 in the code layer, thick 3" image turns into
skinny 3",



Learning Invariant Features of
Tumor Signature

Mixed necrotic and
apoptotic regions

A viable tumor region

(Le, Han, Spellman, Borowsky, Parvin, ISBI 2012.



Reconstruction Independent
Subspace Analysis (RISA)

2
m d
P W, V)= | Vi (Z Wk:sz')
k=1 =1
/ § Y,

%

Total input into

JT) the 1 layer.

Layer 2 units
(pooling units)

Layer 1 units

(simple units)

|nput ......

(Le, Han, Spellman, Borowsky, Parvin, ISBI 2012.



Reconstruction Independent
Subspace Analysis (RISA)

1 Layer 2 units
(pooling units)

Layer 1 units
(simple units)

|nput ......

* Given a set of training patches: {x",x® ... x"1  we
minimize:

N m
mml/_n < pz(X 7W7 V)+)‘||WW X X || )

1=1 N\ J
Y

Reconstruction term

n=1

(Le, Han, Spellman, Borowsky, Parvin, ISBI 2012.



Reconstruction Independent

Subs

0.92

pace Analysis (RISA)

Percentage of correct classification

09

0.88

T

- - =-Manual feature
—— RISA feature

0.8
-3

-2

-1

0

1 2 3 4 5 6

Cost of constraints violation (in log10 scale)

* RISA features work much better for classification compared to hand-crafted

features.

(Le, Han, Spellman, Borowsky, Parvin, ISBI 2012.



