Deep Learning

Russ Salakhutdinov

Department of Statistics and Computer Science University of Toronto

Slides available at http://www.utstat.toronto.edu/~rsalakhu/isbi.html

Mining for Structure

Massive increase in both computational power and the amount of data available from web, video cameras, laboratory measurements.

- Develop statistical models that can discover underlying structure, cause, or statistical correlation from data in **unsupervised** or **semi-supervised** way.
- Multiple application domains.

Mining for Structure

Massive increase in both computational power and the amount of data available from web, video cameras, laboratory measurements.

• Develop statistical models that can discover underlying structure, cause, or statistical correlation from data in **unsupervised** or **semi-supervised** way.

• Multiple application domains.

Deep Generative Model

(Salakhutdinov, 2008; Salakhutdinov & Hinton, AI & Statistics 2009)

Deep Generative Model (Salakhutdinov, 2008; Salakhutdinov & Hinton, AI & Statistics 2009)

Sanskrit

Model P(image)

रु	ਧ	খ্	श	ਸ	ন্থ	প	দ
ट	भ	জ	आ	ਲ	ओ	년	र
種	ম্দ	শ	ম	ष	अ	ત	সা
ए	ਧ	१८	य	तर	Ъ	দ্য	لم

25,000 characters from 50 alphabets around the world.

- 3,000 hidden variables
- 784 observed variables (28 by 28 images)
- Over 2 million parameters

Bernoulli Markov Random Field

Deep Generative Model (Salakhutdinov, 2008; Salakhutdinov & Hinton, AI & Statistics 2009)

Conditional Simulation

P(image | partial image)

Bernoulli Markov Random Field

Deep Generative Model (Salakhutdinov, 2008; Salakhutdinov & Hinton, AI & Statistics 2009)

Conditional Simulation

Why so difficult?

28

 $2^{28 \times 28}$ possible images! \gg number of particles in the universe

P(image | partial image)

Bernoulli Markov Random Field

Deep Generative Model

Model P(document)

Reuters dataset: 804,414 newswire stories: **unsupervised**

(Hinton & Salakhutdinov, Science 2006)

Convolutinal Deep Models for Image Recognition

• Learning multiple layers of representation.

(LeCun, 1992)

Convolutinal Deep Models for Image Recognition

mite		container ship	motor scooter	leopard	
	mite	container ship	motor scooter	leopard	
	black widow	lifeboat	go-kart	jaguar	
Π	cockroach	amphibian	moped	cheetah	
Π	tick	fireboat	bumper car	snow leopard	
Т	starfish	drilling platform	golfcart	Egyptian cat	
	grille	mushroom	cherry	Madagascar cat	
	convertible	agaric	dalmatian	squirrel monkey	
	grille	mushroom	grape	spider monkey	
	pickup	jelly fungus	elderberry	titi	
	beach wagon	gill fungus	ffordshire bullterrier	indri	

dead-man's-fingers

fire engine

(Krizhevsky et. al., NIPS 2012)

howler monkey

currant

Predicting Roads from Satellite Images

(Mnih and Hinton, ICML 2012)

Predicting Roads from Satellite Images

(Mnih and Hinton, ICML 2012)

Talk Roadmap

Part 1: Deep Networks

- Introduction, Sparse Coding, Autoencoders.
- Introduction to Graphical models
- Restricted Boltzmann Machines: Learning lowlevel features.
- Deep Belief Networks: Learning Part-based Hierarchies.

Part 2: Advanced Deep Models.

- Deep Boltzmann Machines
- Multimodal Learning

Learning Feature Representations

Learning Feature Representations

How is computer perception done?

Slide Credit: Honglak Lee

Computer vision features

HoG

Textons

RIFT

GLOH Slide Credit: Honglak Lee

Spin image

à

RIFT

 2π

Audio features

Spectrogram

MFCC

Rolloff

Flux

ZCR

Audio features

Sparse Coding

• Sparse coding (Olshausen & Field, 1996). Originally developed to explain early visual processing in the brain (edge detection).

• Objective: Given a set of input data vectors $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$, learn a dictionary of bases $\{\phi_1, \phi_2, ..., \phi_K\}$, such that:

• Each data vector is represented as a sparse linear combination of bases.

Sparse Coding

[0, 0, ... **0.8**, ..., **0.3**, ..., **0.5**, ...] = coefficients (feature representation)

Slide Credit: Honglak Lee

Sparse Coding: Training

- Input image patches: $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N \in \mathbb{R}^D$
- Learn dictionary of bases: $oldsymbol{\phi}_1, oldsymbol{\phi}_2, ..., oldsymbol{\phi}_K \in \mathbb{R}^D$

- Alternating Optimization:
 - 1. Fix dictionary of bases $\phi_1, \phi_2, ..., \phi_K$ and solve for activations **a** (a standard Lasso problem).
 - 2. Fix activations **a**, optimize the dictionary of bases (convex QP problem).

Sparse Coding: Testing Time

- Input: a new image patch x* , and K learned bases $\phi_1, \phi_2, ..., \phi_K$
- Output: sparse representation **a** of an image patch x*.

$$\begin{split} \min_{\mathbf{a}} \left\| \left\| \mathbf{x}^* - \sum_{k=1}^{K} a_k \phi_k \right\|_2^2 + \lambda \sum_{k=1}^{K} |a_k| \\ &= 0.8 * \left\| \mathbf{p}_{36} + 0.3 * \right\|_2^2 + 0.5 * \left\| \mathbf{p}_{42} + 0.5 * \right\|_2^2 \\ &= 0.8 * \left\| \phi_{36} + 0.3 * \right\|_2^2 + 0.5 * \left\| \phi_{65} \right\|_2^2 \end{split}$$

[0, 0, ... **0.8**, ..., **0.3**, ..., **0.5**, ...] = coefficients (feature representation)

Image Classification

Evaluated on Caltech101 object category dataset.

Lee et al., NIPS 2006

Interpreting Sparse Coding

- Sparse, over-complete representation a.
- Encoding $\mathbf{a} = f(\mathbf{x})$ is implicit and nonlinear function of \mathbf{x} .
- Reconstruction (or decoding) $\mathbf{x'} = g(\mathbf{a})$ is linear and explicit.

- Details of what goes insider the encoder and decoder matter!
- Need constraints to avoid learning an identity.

- An autoencoder with D inputs, D outputs, and K hidden units,
- Given an input x, its reconstruction is given by:

• An autoencoder with D inputs, D outputs, and K hidden units, with K<D.

• We can determine the network parameters W and D by minimizing the reconstruction error:

$$E(W,D) = \frac{1}{2} \sum_{n=1}^{N} ||y(\mathbf{x}_n, W, D) - \mathbf{x}_n||^2.$$

- If the hidden and output layers are linear, it will learn hidden units that are a linear function of the data and minimize the squared error.
- The K hidden units will span the same space as the first k principal components. The weight vectors may not be orthogonal.

• With nonlinear hidden units, we have a nonlinear generalization of PCA.

Another Autoencoder Model

- Need additional constraints to avoid learning an identity.
- Relates to Restricted Boltzmann Machines (later).

Predictive Sparse Decomposition

Talk Roadmap

Part 1: Deep Networks

- Introduction, Sparse Coding, Autoencoders.
- Introduction to Graphical models.
- Restricted Boltzmann Machines: Learning lowlevel features.
- Deep Belief Networks: Learning Part-based Hierarchies.

Part 2: Deep Boltzmann Machines.

- Inference and Learning
- Advanced Deep Models

Graphical Models

Graphical Models: Powerful framework for representing dependency structure between random variables.

- The joint probability distribution over a set of random variables.
- The graph contains a set of nodes (vertices) that represent random variables, and a set of links (edges) that represent dependencies between those random variables.
- The joint distribution over all random variables decomposes into a **product of factors**, where each factor depends on a subset of the variables.

Two type of graphical models:

- **Directed** (Bayesian networks)
- Undirected (Markov random fields, Boltzmann machines)

Hybrid graphical models that combine directed and undirected models, such as Deep Belief Networks, Hierarchical-Deep Models.

Directed Graphical Models

Directed graphs are useful for expressing causal relationships between random variables.

• The joint distribution defined by the graph is given by the **product of a conditional distribution for each node conditioned on its parents.**

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathbf{pa}_k)$$

• For example, the joint distribution over x1,..,x7 factorizes:

 $p(\mathbf{x}) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5)$

Directed acyclic graphs, or *DAGs*.

Markov Random Fields

$$p(\mathbf{x}) = \frac{1}{\mathcal{Z}} \prod_{C} \phi_C(x_C)$$

• Each potential function is a mapping from joint configurations of random variables in a clique to non-negative real numbers.

• The choice of potential functions is not restricted to having specific probabilistic interpretations.

Potential functions are often represented as exponentials:

$$p(\mathbf{x}) = \frac{1}{\mathcal{Z}} \prod_{C} \phi_{C}(x_{C}) = \frac{1}{\mathcal{Z}} \exp(-\sum_{C} E(x_{c})) = \frac{1}{\mathcal{Z}} \exp(-E(\mathbf{x}))$$

where E(x) is called an energy function.

Boltzmann distribution

- Suppose x is a binary random vector with $x_i \in \{+1, -1\}$.
- If x is 100-dimensional, we need to sum over 2^{100} terms!

Computing Z is often very hard. This represents a major limitation of undirected models.

Maximum Likelihood Learning

Consider binary pairwise MRF:

$$P_{\theta}(\mathbf{x}) = \frac{1}{\mathcal{Z}(\theta)} \exp\left(\sum_{ij\in E} x_i x_j \theta_{ij} + \sum_{i\in V} x_i \theta_i\right)$$

Given a set of *i.i.d.* training examples $\mathcal{D} = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(N)}\}$, we want to learn model parameters θ .

Maximize log-likelihood objective: $L(\theta) = \frac{1}{N} \sum_{n=1}^{N} \log P_{\theta}(\mathbf{x}^{(n)})$

Derivative of the log-likelihood:

$$\frac{\partial L(\theta)}{\partial \theta_{ij}} = \frac{1}{N} \sum_{n} [x_i^{(n)} x_j^{(n)}] - \sum_{\mathbf{x}} [x_i x_j P_{\theta}(\mathbf{x})] = \mathbf{E}_{P_{data}} [x_i x_j] - \mathbf{E}_{P_{\theta}} [x_i x_j]$$

Difficult to compute: exponentially many configurations

Talk Roadmap

Part 1: Deep Networks

- Introduction, Sparse Coding, Autoencoders.
- Introduction to Graphical models.
- Restricted Boltzmann Machines: Learning lowlevel features.
- Deep Belief Networks: Learning Part-based Hierarchies.

Part 2: Deep Boltzmann Machines.

- Inference and Learning
- Advanced Deep Models

Restricted Boltzmann Machines

- Undirected bipartite graphical model
 - Stochastic binary visible variables: $\mathbf{v} \in \{0,1\}^D$
 - Stochastic binary hidden variables: $\mathbf{h} \in \{0,1\}^F$

The energy of the joint configuration:

$$E(\mathbf{v}, \mathbf{h}; \theta) = -\sum_{ij} W_{ij} v_i h_j - \sum_i b_i v_i - \sum_j a_j h_j$$

 $\theta = \{W, a, b\}$ model parameters.

Restricted Boltzmann Machines

Markov random fields, Boltzmann machines, log-linear models.

Restricted Boltzmann Machines

Markov random fields, Boltzmann machines, log-linear models.

Learning Features

Observed Data Learned W: "edges" Subset of 1000 features Subset of 25,000 characters 1 1 1 1 1 1 1 2 ਣ ਈ ਮ ₫ Æ 3 T E ľ പ ァらじめひ 0 SXem Ц Most hidden $p(h_7 = 1|v)$ $p(h_{29} = 1|v)$ New Image: variables are off = $\sigma(0.99 \times$ + 0.97 \times + 0.82 \times Logistic Function: Suitable for $\sigma(x) = \frac{1}{1 + \exp(-x)}$ modeling binary images as $P(\mathbf{h}|\mathbf{v}) = [0, 0, 0.82, 0, 0, 0.99, 0, 0 \dots]$ Represent:

Maximize (penalized) log-likelihood objective:

$$L(\theta) = \frac{1}{N} \sum_{n=1}^{N} \log P_{\theta}(\mathbf{v}^{(n)}) - \frac{\lambda}{N} ||W||_{F}^{2}$$
Regularization

Model Learning

Derivative of the log-likelihood:

$$\begin{split} \frac{\partial L(\theta)}{\partial W_{ij}} &= \frac{1}{N} \sum_{n=1}^{N} \frac{\partial}{\partial W_{ij}} \log \left(\sum_{\mathbf{h}} \exp \left[\mathbf{v}^{(n)\top} W \mathbf{h} + \mathbf{a}^{\top} \mathbf{h} + \mathbf{b}^{\top} \mathbf{v}^{(n)} \right] \right) - \frac{\partial}{\partial W_{ij}} \log \mathcal{Z}(\theta) - \frac{2\lambda}{N} W_{ij} \\ &= \mathbf{E}_{P_{data}} \left[v_i h_j \right] - \mathbf{E}_{P_{\theta}} \left[v_i h_j \right] - \frac{2\lambda}{N} W_{ij} \end{split}$$

Model Learning

Approximate maximum likelihood learning

Approximate Learning

• An approximation to the gradient of the log-likelihood objective:

$$\frac{\partial L(\theta)}{\partial W_{ij}} = \mathbb{E}_{P_{data}}[v_i h_j] - \mathbb{E}_{P_{\theta}}[v_i h_j]$$
$$\underbrace{\sum_{\mathbf{v},\mathbf{h}} v_i h_j P_{\theta}(\mathbf{v},\mathbf{h})}_{\mathbf{v},\mathbf{h}}$$

- Replace the average over all possible input configurations by samples.
- Run MCMC chain (Gibbs sampling) starting from the observed examples.
 - Initialize $v^0 = v$
 - Sample h⁰ from P(h | v⁰)
 - For t=1:T
 - Sample v^t from P(v | h^{t-1})
 - Sample h^t from P(h | v^t)

Approximate ML Learning for RBMs

Run Markov chain (alternating Gibbs Sampling):

Contrastive Divergence

A quick way to learn RBM:

- Start with a training vector on the visible units.
- Update all the hidden units in parallel.
- Update the all the visible units in parallel to get a "reconstruction".
- Update the hidden units again.

Update model parameters:

$$\Delta W_{ij} = \mathbf{E}_{P_{data}}[v_i h_j] - \mathbf{E}_{P_1}[v_i h_j]$$

Implementation: ~10 lines of Matlab code.

Hinton, Neural Computation 2002

RBMs for Real-valued Data

Gaussian-Bernoulli RBM:

- Stochastic real-valued visible variables $\mathbf{v} \in \mathbb{R}^D$.
- Stochastic binary hidden variables $\mathbf{h} \in \{0, 1\}^F$.
- Bipartite connections.

RBMs for Real-valued Data

4 million unlabelled images

Learned features (out of 10,000)

RBMs for Real-valued Data

4 million **unlabelled** images

Learned features (out of 10,000)

$$p(h_{7} = 1|v) \qquad p(h_{29} = 1|v) \\ = 0.9 * 1 + 0.8 * 1 + 0.6 * 1 \dots$$
New Image

RBMs for Images

Gaussian-Bernoulli RBM:

Interpretation: Mixture of exponential number of Gaussians

$$P_{\theta}(\mathbf{v}) = \sum_{\mathbf{h}} P_{\theta}(\mathbf{v}|\mathbf{h}) P_{\theta}(\mathbf{h}),$$

where

$$P_{\theta}(\mathbf{h}) = \int_{\mathbf{v}} P_{\theta}(\mathbf{v}, \mathbf{h}) d\mathbf{v} \quad \text{is an implicit prior, and}$$
$$P(v_i = x | \mathbf{h}) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{(x - b_i - \sigma_i \sum_j W_{ij}h_j)^2}{2\sigma_i^2}\right) \quad \text{Gaussian}$$

RBMs for Word Counts

Replicated Softmax Model: undirected topic model:

- Stochastic 1-of-K visible variables.
- Stochastic binary hidden variables $\mathbf{h} \in \{0, 1\}^F$.
- Bipartite connections.

(Salakhutdinov & Hinton, NIPS 2010, Srivastava & Salakhutdinov, NIPS 2012)

RBMs for Word Counts

REUTERS

Reuters dataset: 804,414 **unlabeled** newswire stories Bag-of-Words russian russia moscow yeltsin soviet

Learned features: ``topics''

ian	clinton	computer	trade	stock
ia	house	system	country	wall
cow	president	product	import	street
sin	bill	software	world	point
et	congress	develop	economy	dow

Collaborative Filtering

Fahrenheit 9/11

Canadian Bacon

La Dolce Vita

Bowling for Columbine The People vs. Larry Flynt

$$P_{\theta}(\mathbf{v}, \mathbf{h}) = \frac{1}{\mathcal{Z}(\theta)} \exp\left(\sum_{ijk} W_{ij}^{k} v_{i}^{k} h_{j} + \sum_{ik} b_{i}^{k} v_{i}^{k} + \sum_{j} a_{j} h_{j}\right)$$

Binary hidden: user preferences

Multinomial visible: user ratings

Netflix dataset: 480,189 users 17,770 movies Over 100 million ratings

NETFLIX

Friday the 13th The Texas Chainsaw Massacre Children of the Corn Child's Play The Return of Michael Myers

Learned features: ``genre''

Independence Day The Day After Tomorrow Con Air Men in Black II Men in Black

Scary Movie Naked Gun Hot Shots! American Pie Police Academy

State-of-the-art performance on the Netflix dataset.

(Salakhutdinov, Mnih, Hinton, ICML 2007)

Different Data Modalities

• Binary/Gaussian/Softmax RBMs: All have binary hidden variables but use them to model different kinds of data.

• It is easy to infer the states of the hidden variables:

$$P_{\theta}(\mathbf{h}|\mathbf{v}) = \prod_{j=1}^{F} P_{\theta}(h_j|\mathbf{v}) = \prod_{j=1}^{F} \frac{1}{1 + \exp(-a_j - \sum_{i=1}^{D} W_{ij}v_i)}$$

Product of Experts

The joint distribution is given by:

$$P_{\theta}(\mathbf{v}, \mathbf{h}) = \frac{1}{\mathcal{Z}(\theta)} \exp\left(\sum_{ij} W_{ij}v_{i}h_{j} + \sum_{i} b_{i}v_{i} + \sum_{j} a_{j}h_{j}\right)$$
Marginalizing over hidden variables:

$$P_{\theta}(\mathbf{v}) = \sum_{\mathbf{h}} P_{\theta}(\mathbf{v}, \mathbf{h}) = \frac{1}{\mathcal{Z}(\theta)} \prod_{i} \exp(b_{i}v_{i}) \prod_{j} \left(1 + \exp(a_{j} + \sum_{i} W_{ij}v_{i})\right)$$
government
auhority
power
empire
putin
fraud

$$P_{\theta}(\mathbf{v}, \mathbf{h}) = \frac{1}{\mathcal{Z}(\theta)} \prod_{i} \exp(b_{i}v_{i}) \prod_{j} \left(1 + \exp(a_{j} + \sum_{i} W_{ij}v_{i})\right)$$

$$\int_{\mathbf{v}} \left(1 + \exp(a_{j} + \sum_{i} W_{ij}v_{i}\right)$$

$$\int_{\mathbf{v}} \left(1 + \exp(a_{j} + \sum_{i} W_{ij}v_{i}\right)\right)$$

$$\int_{\mathbf{v}} \left(1 + \exp(a_{j} + \sum_{i} W_{ij}v_{i}\right)$$

$$\int_{\mathbf{v}} \left(1 + \exp(a_{j} + \sum_{i} W_{ij}v_{i}\right)$$

$$\int_{\mathbf{v}} \left(1 + \exp(a_{j} + \sum_{i} W_{ij}v_{i}\right)$$

$$\int_{\mathbf{v}} \left(1 + \exp(a_{j} + \sum_{i} W_{ij}v_{i}\right)\right)$$

$$\int_{\mathbf{v}} \left(1 + \exp(a_{j} + \sum_{i} W_{ij}v_{i}\right)$$

$$\int_{\mathbf{v}} \left(1 + \exp(a_{j} + \sum_{i} W_{i}v_{i}\right)$$

$$\int_{\mathbf{v}} \left(1 + \exp$$

(Salakhutdinov & Hinton, NIPS 2010)

Product of Experts

The joint distribution is given by:

Learned first-layer bases

Lee et.al., NIPS 2009

Comparison of bases to phonemes

Slide credit: Honglak Lee

Clustering, Nearest
 Neighbors, RBF SVM, local
 density estimators

- Clustering, Nearest
 Neighbors, RBF SVM, local
 density estimators
- Parameters for each region.
- # of regions is linear with # of parameters.

RBMs, Factor models,
PCA, Sparse Coding,
Deep models

- Clustering, Nearest
 Neighbors, RBF SVM, local
 density estimators
- Parameters for each region.
- # of regions is linear with # of parameters.

- Clustering, Nearest
 Neighbors, RBF SVM, local
 density estimators
- Parameters for each region.
- # of regions is linear with # of parameters.

Multiple Application Domains

- Natural Images
- Text/Documents
- Collaborative Filtering / Matrix Factorization
- Video (Langford, Salakhutdinov and Zhang, ICML 2009)
- Motion Capture (Taylor et.al. NIPS 2007)
- Speech Perception (Dahl et. al. NIPS 2010, Lee et.al. NIPS 2010)

Same learning algorithm -multiple input domains.

Limitations on the types of structure that can be represented by a single layer of low-level features!

Talk Roadmap

Part 1: Deep Networks

- Introduction, Sparse Coding, Autoencoders.
- Introduction to Graphical models.
- Restricted Boltzmann Machines: Learning lowlevel features.
- Deep Belief Networks: Learning Part-based Hierarchies.

Part 2: Deep Boltzmann Machines.

- Inference and Learning
- Advanced Deep Models

Deep Belief Network

- Probabilistic Generative model.
- Contains multiple layers of nonlinear representation.
- Fast, greedy layer-wise pretraining algorithm.
- Inferring the states of the latent variables in highest layers is easy.

• Inferring the states of the latent variables in highest layers is easy.

Deep Belief Network

Deep Belief Network

Deep Belief Network

• Learn an RBM with an input layer v and a hidden layer h.

- Learn an RBM with an input layer v and a hidden layer h.
- Treat inferred values $Q(\mathbf{h}^1|\mathbf{v}) = P(\mathbf{h}^1|\mathbf{v})$ as the data for training 2nd-layer RBM.
- Learn and freeze 2nd layer RBM.

- Learn an RBM with an input layer v and a hidden layer h.
- Treat inferred values $Q(\mathbf{h}^1|\mathbf{v}) = P(\mathbf{h}^1|\mathbf{v})$ as the data for training 2nd-layer RBM.
- Learn and freeze 2nd layer RBM.
- Proceed to the next layer.

Unsupervised Feature Learning.

- Learn an RBM with an input layer v and a hidden layer h.
- Treat inferred values $Q(\mathbf{h}^1|\mathbf{v}) = P(\mathbf{h}^1|\mathbf{v})$ as the data for training 2nd-layer RBM.

 Learn and freeze 2nd layer in²
 RBM.
 Layerwise pretraining improves variational lower bound

Unsupervised Feature Learning.

Why this Pre-training Works?

• Greedy pre-training improves variational lower bound!

• For any approximating distribution
$$Q(\mathbf{h}^{1}|\mathbf{v})$$

 $\log P_{\theta}(\mathbf{v}) = \sum_{\mathbf{h}^{1}} P_{\theta}(\mathbf{v}, \mathbf{h}^{1})$
 $\geq \sum_{\mathbf{h}^{1}} Q(\mathbf{h}^{1}|\mathbf{v}) \left[\log P(\mathbf{h}^{1}) + \log P(\mathbf{v}|\mathbf{h}^{1})\right] + \mathcal{H}(Q(\mathbf{h}^{1}|\mathbf{v}))$

Why this Pre-training Works?

- Greedy training improves variational lower bound.
- RBM and 2-layer DBN are equivalent when $W^2 = W^1^\top$.
- The lower bound is tight and the log-likelihood improves by greedy training.

$$Q(\mathbf{h}^1|\mathbf{v})$$

• For any approximating distribution $Q(\mathbf{h}^1|\mathbf{v})$

$$\log P_{\theta}(\mathbf{v}) = \sum_{\mathbf{h}^{1}} P_{\theta}(\mathbf{v}, \mathbf{h}^{1})$$

$$\geq \sum_{\mathbf{h}^{1}} Q(\mathbf{h}^{1} | \mathbf{v}) \left[\log P(\mathbf{h}^{1}) + \log P(\mathbf{v} | \mathbf{h}^{1}) \right] + \mathcal{H}(Q(\mathbf{h}^{1} | \mathbf{v}))$$

 $\mathbf{W}^{\mathbf{1}^{\mathsf{T}}}$

 $\mathbf{W}^{\mathbf{1}}$

 h^1

Supervised Learning with DBNs

 If we have access to label information, we can train the joint generative model by maximizing the joint log-likelihood of data and labels

 $\log P(\mathbf{y}, \mathbf{v})$

- Discriminative fine-tuning:
 - Use DBN to initialize a multilayer neural network.
 - Maximize the conditional distribution:

$$\log P(\mathbf{y}|\mathbf{v})$$

Sampling from DBNs

• To sample from the DBN model:

 $P(\mathbf{v}, \mathbf{h}^1, \mathbf{h}^2, \mathbf{h}^3) = P(\mathbf{v}|\mathbf{h}^1)P(\mathbf{h}^1|\mathbf{h}^2)P(\mathbf{h}^2, \mathbf{h}^3)$

- Sample h² using alternating Gibbs sampling from RBM.
- Sample lower layers using sigmoid belief network.

Learned Features

1^{st} -layer features

2^{nd} -layer features

Learning Part-based Representation

Faces

Convolutional DBN

Groups of parts.

Object Parts

Trained on face images.

Lee et.al., ICML 2009

Learning Part-based Representation

Faces

Cars

Elephants

Lee et.al., ICML 2009

Learning Part-based Representation

Groups of parts.

Class-specific object parts

Trained from multiple classes (cars, faces, motorbikes, airplanes).

Lee et.al., ICML 2009

DBNs for Classification

• After layer-by-layer **unsupervised pretraining**, discriminative fine-tuning by backpropagation achieves an error rate of 1.2% on MNIST. SVM's get 1.4% and randomly initialized backprop gets 1.6%.

• Clearly unsupervised learning helps generalization. It ensures that most of the information in the weights comes from modeling the input data.

DBNs for Regression

Predicting the orientation of a face patch

Training Data: 1000 face patches of 30 training people.

Test Data: 1000 face patches of **10 new people**.

Regression Task: predict orientation of a new face.

Gaussian Processes with spherical Gaussian kernel achieves a RMSE (root mean squared error) of 16.33 degree.

(Salakhutdinov and Hinton, NIPS 2007)

DBNs for Regression

Additional Unlabeled Training Data: 12000 face patches from 30 training people.

- Pretrain a stack of RBMs: 784-1000-1000-1000.
- Features were extracted with no idea of the final task.

The same GP on the top-level features:RMSE: 11.22GP with fine-tuned covariance Gaussian kernel:RMSE: 6.42Standard GP without using DBNs:RMSE: 16.33

Deep Autoencoders

Deep Autoencoders

• We used 25x25 – 2000 – 1000 – 500 – 30 autoencoder to extract 30-D real-valued codes for Olivetti face patches.

- Top: Random samples from the test dataset.
- Middle: Reconstructions by the 30-dimensional deep autoencoder.
- Bottom: Reconstructions by the 30-dimentinoal PCA.

Information Retrieval

• The Reuters Corpus Volume II contains 804,414 newswire stories (randomly split into **402,207 training** and **402,207 test)**.

• "Bag-of-words" representation: each article is represented as a vector containing the counts of the most frequently used 2000 words in the training set.

(Hinton and Salakhutdinov, Science 2006)

Information Retrieval

Reuters dataset: 804,414 newswire stories.

Deep generative model significantly outperforms LSA and LDA topic models

Semantic Hashing

- Learn to map documents into semantic 20-D binary codes.
- Retrieve similar documents stored at the nearby addresses with no search at all.

(Salakhutdinov and Hinton, SIGIR 2007)

Searching Large Image Database using Binary Codes

• Map images into binary codes for fast retrieval.

- Small Codes, Torralba, Fergus, Weiss, CVPR 2008
- Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
- Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 20111
- Norouzi and Fleet, ICML 2011,

Learning Similarity Measures

D[y^a,y^b] y^b y^a 30 30 W₄ W₄ 2000 2000 W₃ W₃ 500 500 W_2 W_2 500 500 W_1 W_1

X^a

Maximize the Agreement

Related to Siamese Networks of LeCun.

- Learn a nonlinear transformation of the input space.
 - Optimize to make KNN perform well in the low-dimensional feature space

(Salakhutdinov and Hinton, AI and Statistics 2007)

Xb

Learning Similarity Measures

Learning Similarity Measures

• As we change unit 25 in the code layer, ``3" image turns into ``5" image

• As we change unit 42 in the code layer, thick ``3" image turns into skinny ``3".

Learning Invariant Features of Tumor Signature

A viable tumor region

Reconstruction Independent Subspace Analysis (RISA)

- Given a set of training patches: $\{\mathbf{x}^{(1)},\mathbf{x}^{(2)},...,\mathbf{x}^{(N)}\}$, we minimize:

$$\min_{W} \sum_{n=1}^{N} \left(\sum_{i=1}^{m} p_i(\mathbf{x}^{(n)}; W, V) + \lambda ||WW^{\top} \mathbf{x}^{(n)} - \mathbf{x}^{(n)}||^2 \right)$$

Reconstruction term

Reconstruction Independent Subspace Analysis (RISA)

• RISA features work much better for classification compared to hand-crafted features.