Using \(s^2 \) and \(s \) as Estimators for \(\sigma^2 \) and \(\sigma \)

Recall the definition of the sample variance:
\[
s^2 = \frac{\sum(x_i - \bar{x})^2}{n-1}
\]

This is a statistic, computed from the sample, \(x_1, \ldots, x_n \).

We would like to know whether \(s^2 \) is a good estimator of \(\sigma^2 \), and also whether \(s \) is a good estimator of \(\sigma \).

We can answer these questions by looking at the sampling distributions for \(s^2 \) and \(s \), found by imagining that we compute them for many randomly generated data sets.

Sampling Distributions of \(s^2 \) and \(s \)

Histograms of \(s^2 \) and \(s \) computed from 10000 samples of independent, normal data points with \(\mu = 0 \) and \(\sigma = 3 \), for \(n = 5 \) and \(n = 50 \):

Are \(s^2 \) and \(s \) Unbiased Estimators?

The mean of the sampling distribution for \(s^2 \) turns out to be equal to \(\sigma^2 \). So \(s^2 \) is an unbiased estimator of \(\sigma^2 \).

This is why we divide by \(n - 1 \) when computing \(s^2 \). If we divided by \(n \), it wouldn’t be unbiased.

However, \(s \) is not an unbiased estimator for \(\sigma \). The mean of the sampling distribution for \(s \) is a bit smaller than \(\sigma \). It’s not far off, however, and the bias approaches zero as \(n \) gets bigger, so people don’t bother to correct for this.

A Statistical Inference Problem

You are a “ham” radio operator who communicates with another operator in Mongolia. You try to use the signal delay to measure the distance, \(d \), from your station to their station, using \(n \) measurements, \(x_1, \ldots, x_n \).

From theory and past experience, you think the distribution of these measurements

- has mean equal to \(d \).
- has a standard deviation of \(\sigma = 100 \) kilometres.

From \(x_1, \ldots, x_n \), you compute \(\bar{x} = (1/n) \sum x_i \).

What can you say about the distance \(d \) based on \(\bar{x} \)?
Sampling Distribution

Since the measurements are unbiased, we know that the mean of \bar{x} is equal to d.

If the measurements are independent, the standard deviation of \bar{x} will be σ/\sqrt{n}.

The mean and standard deviation tell us something about how accurate \bar{x} is, but not everything.

The sampling distribution of \bar{x} tells us more. It will be normal if the measurements are normally distributed. It will be approximately normal when n is large even if the distribution of the x_i is not normal.

Confidence Intervals

Using the sampling distribution, we can try to construct a $C\%$ confidence interval (C.I.) for d. A C.I. is a range (low, high) computed from x_1, \ldots, x_n by a method that ensures that:

If we compute the C.I. (low, high) many times, from many samples of size n, in the long run, $C\%$ of these intervals will contain d (ie, low $\leq d \leq$ high).

There are many different ways of computing confidence intervals that satisfy this, but when \bar{x} has an approximately normal distribution, we usually use a confidence interval of the form $(\bar{x} - e, \bar{x} + e)$.

We need to set e so that this is indeed a $C\%$ confidence interval, for whatever confidence level C we choose.

Finding the Confidence Interval

Suppose that \bar{x} is normally distributed with mean d and standard deviation σ/\sqrt{n}. Assume we know σ. How do we select e so that $(\bar{x} - e, \bar{x} + e)$ is a $C\%$ confidence interval?

We set e so that

$$P(\bar{x} > d + e) = P(\bar{x} < d - e) = (1 - C)/2$$

If this is so, then

$$P(\bar{x} - e \leq d \leq \bar{x} + e) = C$$

When the standard deviation of \bar{x} is one, we can find such an e from the normal table. We just multiply to get the appropriate value for other standard deviations.

Note: We need to know σ, but we do not need to know the value of d. That's certainly fortunate!

Example Confidence Intervals

Here are the values of e to give a C.I. of $(\bar{x} - e, \bar{x} + e)$ for some commonly-used confidence levels:

90%: $1.645 \sigma/\sqrt{n}$
95%: $1.960 \sigma/\sqrt{n}$
99%: $2.576 \sigma/\sqrt{n}$

Suppose you decide to use a 95% confidence interval, and make $n = 16$ measurements, giving $\bar{x} = 5510$ kilometres. What is your confidence interval for the distance to the operator in Mongolia? (Recall that $\sigma = 100$.)

We find $e = 1.960 \times 100/\sqrt{16} = 49$. The 95% C.I. is $(\bar{x} - e, \bar{x} + e) = (5461, 5559)$.

What happens to the C.I. as we change C and n?