Facts about standard distributions

Binomial distribution

Parameters are n and p. Range is the integers from 0 to n.

Probability mass function:
$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

Mean:
$$E(X) = np$$

Variance:
$$Var(X) = np(1-p)$$

Geometric distribution

Parameter is p. Range is the integers from 1 on up.

Probability mass function:
$$p(x) = p(1-p)^{x-1}$$

Mean:
$$E(X) = 1/p$$

Variance:
$$Var(X) = (1 - p)/p^2$$

Negative binomial distribution

Parameters are k and p. Range is the integers from k on up.

Probability mass function:
$$p(x) = \begin{pmatrix} x-1 \\ k-1 \end{pmatrix} p^k (1-p)^{x-k}$$

Mean:
$$E(X) = k/p$$

Variance:
$$Var(X) = k(1-p)/p^2$$

Poisson distribution

Parameter is μ . Range is the integers from 0 on up.

Probability mass function:
$$p(x) = e^{-\mu} \mu^x / x!$$

Mean:
$$E(X) = \mu$$

Variance:
$$Var(X) = \mu$$

Exponential distribution

Parameter is λ . Range is the positive real numbers.

Probability density function:
$$f(x) = \lambda e^{-\lambda x}$$

Mean:
$$E(X) = 1/\lambda$$

Variance:
$$Var(X) = 1/\lambda^2$$

Normal distribution

Parameters are μ and σ . Range is the real numbers.

Probability density function:
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}$$

Mean:
$$E(X) = \mu$$

Variance:
$$Var(X) = \sigma^2$$