STA 247 - Solution to Assignment \#2, Question 1

You roll ten fair six-sided dice. Let the sum of the numbers shown on all ten dice be R. You then flip a fair coin R times. Let the number of times the coin lands heads be H and the number of times the coin lands tails be T. (So $H+T$ will be equal to R.)

Find each of the quantities below. You must produce an actual numerical answer, as a simple fraction (eg, 3/8) or decimal number (eg, 0.375). You must also justify how you obtained your answer in terms of theorems in the book.
a) $E(R)$, the expected value of R.

Solution: We can write $R=R_{1}+R_{2}+\cdots+R_{10}$, where R_{i} is the value from the i th roll. From Theorem 2.7-2 or 2.7-3, we can conclude that

$$
E(R)=E\left(R_{1}\right)+E\left(R_{2}\right)+\cdots+E\left(R_{10}\right)=10 E\left(R_{i}\right)
$$

We can compute $E\left(R_{i}\right)$ (which is the same for all i) as

$$
E\left(R_{i}\right)=(1 / 6)(1+2+3+4+5+6)=3.5
$$

From which we get that $E(R)=35$.
b) $\operatorname{VAR}(R)$, the variance of R.

Solution: Again, we write $R=R_{1}+R_{2}+\cdots+R_{10}$, where R_{i} is the value from the i th roll. Since the R_{i} are independent, we can use Theorem 2.7-6 (or 2.7-5) to conclude that

$$
\operatorname{VAR}(R)=\operatorname{VAR}\left(R_{1}\right)+\operatorname{VAR}\left(R_{2}\right)+\cdots+\operatorname{VAR}\left(R_{10}\right)=10 \operatorname{VAR}\left(R_{i}\right)
$$

We can compute $\operatorname{VAR}\left(R_{i}\right)$ (which is the same for all i) as

$$
\begin{aligned}
\operatorname{VAR}\left(R_{i}\right) & =(1 / 6)\left((1-3.5)^{2}+(2-3.5)^{2}+(3-3.5)^{2}+(4-3.5)^{2}+(5-3.5)^{2}+(6-3.5)^{2}\right) \\
& =2.91666 \ldots
\end{aligned}
$$

From which we get that $\operatorname{VAR}(R)=29.1666 \ldots$
c) $E(H)$, the expected value of H.

First solution: Using Theorem 2.9-1, we can write

$$
E(H)=E(E(H \mid R))
$$

For a given value of R, the number of heads is just the number of "successes" in R independent Bernoulli trials in which a trial is a flip of the coin, with success being a head. The distribution of H given R is therefore binomial with $n=R$ and $p=1 / 2$. From Theorem 3.1-2, we know that $E(H \mid R)=R / 2$. We therefore get that

$$
E(H)=E(E(H \mid R))=E(R / 2)=E(R) / 2=35 / 2=17.5
$$

Theorem 2.3-2 is used above to go from $E(R / 2)$ to $E(R) / 2$.
Second solution: By using Theorem 2.3-3 (or 2.7-2, or 2.7-3), we can write $E(R)=$ $E(H+T)=E(H)+E(T)$. The problem is completely symmetrical between H and T, so $E(T)=E(H)$. We also know that $E(R)=35$. It follows that $E(H)=35 / 2=17.5$.
d) $\operatorname{VAR}(H)$, the variance of H.

Solution: Using Theorem 2.9-2, we can write

$$
\operatorname{VAR}(H)=E(\operatorname{VAR}(H \mid R))+\operatorname{VAR}(E(H \mid R))
$$

As argued above, the distribution of H given R is binomial with $n=R$ and $p=1 / 2$. From Theorem 3.1-2, we know that $E(H \mid R)=R / 2$ and $\operatorname{VAR}(H \mid R)=R / 4$. Therefore,

$$
\begin{aligned}
\operatorname{VAR}(H) & =E(\operatorname{VAR}(H \mid R))+\operatorname{VAR}(E(H \mid R)) \\
& =E(R / 4)+\operatorname{VAR}(R / 2) \\
& =E(R) / 4+\operatorname{VAR}(R) / 4 \\
& =35 / 4+29.1666 \ldots / 4=16.041666 \ldots
\end{aligned}
$$

Theorem 2.3-2 is used above to go from $E(R / 4)$ to $E(R) / 4$ and Theorem 2.4-2 is used to go from $\operatorname{VAR}(R / 2)$ to $\operatorname{VAR}(R) / 4$.
e) $\operatorname{COV}(T, H)$, the covariance of T and H.

First solution: From the discussion just after the definition of covariance on page 90,

$$
\operatorname{COV}(T, H)=E(T H)-E(T) E(H)
$$

We can write $T=R-H$, and therefore $E(T H)=E((R-H) H)=E\left(R H-H^{2}\right)=$ $E(R H)-E\left(H^{2}\right)$ (using Theorem 2.7-2). Using Theorem 2.4-3, we can write $E\left(H^{2}\right)=$ $\operatorname{VAR}(H)+E(H)^{2}$. Since T and H are completely symmetrical in this problem, we also know that $E(T)=E(H)$. Combining these facts, we get that

$$
\begin{aligned}
\operatorname{COV}(T, H) & =E(T H)-E(T) E(H) \\
& =E(R H)-\left(\operatorname{VAR}(H)+E(H)^{2}\right)-E(H)^{2} \\
& =E(R H)-\operatorname{VAR}(H)-2 E(H)^{2}
\end{aligned}
$$

Using Theorem 2.9-1, $E(R H)=E(E(R H \mid R))=E(R(E(H \mid R))$, where the last step is an application of Theorem 2.3-2, considering that R is a constant if we're given the value of R. As argued above, $E(H \mid R)=R / 2$. Therefore $E(R H)=E\left(R^{2} / 2\right)=E\left(R^{2}\right) / 2$. Using Theorem 2.4-3 again, we write $E\left(R^{2}\right)=\operatorname{VAR}(R)+E(R)^{2}$, so $E(R H)=(\operatorname{VAR}(R)+$ $\left.E(R)^{2}\right) / 2$. Putting these facts together, and then substituting known values,

$$
\begin{aligned}
\operatorname{COV}(T, H) & =E(R H)-\operatorname{VAR}(H)-2 E(H)^{2} \\
& =\left(\operatorname{VAR}(R)+E(R)^{2}\right) / 2-\operatorname{VAR}(H)-2 E(H)^{2} \\
& =\left(29.1666 \ldots+35^{2}\right) / 2-16.041666 \ldots-2 \times 17.5^{2} \\
& =-1.458333 \ldots
\end{aligned}
$$

Second solution: From Theorem 2.8-1, we know that $\operatorname{VAR}(R)=\operatorname{VAR}(T+H)=$ $\operatorname{VAR}(T)+\operatorname{VAR}(H)+2 \operatorname{COV}(T, H)$. From symmetry, $\operatorname{VAR}(T)=\operatorname{VAR}(H)$, so

$$
\begin{aligned}
\operatorname{COV}(T, H) & =\operatorname{VAR}(R) / 2-\operatorname{VAR}(H) \\
& =29.1666 \ldots / 2-16.041666 \ldots=-1.458333 \ldots
\end{aligned}
$$

f) $\operatorname{CORR}(T, H)$, the correlation of T and H.

Solution: By definition, $\operatorname{CORR}(T, H)=\operatorname{COV}(T, H) / \sqrt{\operatorname{VAR}(T) \operatorname{VAR}(H)}$. Since by symmetry, $\operatorname{VAR}(H)=\operatorname{VAR}(T)$, we get that

$$
\begin{aligned}
\operatorname{CORR}(T, H) & =\operatorname{COV}(T, H) / \operatorname{VAR}(H) \\
& =-1.458333 \ldots / 16.041666 \ldots=-0.09090909 \ldots
\end{aligned}
$$

