Lecture 4

Scatterplots, Association, and Correlation

Previously, we looked at

- Single variables on their own
- One or more categorical variables

In this lecture: We shall look at two quantitative variables.

First tool to do so: a scatterplot!

Two variables measured on the same cases are associated if knowing the value of one of the variables tells you something about the values of the other variable that you would not know without this information.

Example: You visit a local Starbucks to buy a Mocha Frappuccino. The barista explains that this blended coffee beverage comes in three sizes and asks if you want a Small, a Medium, or a Large.

The prices are $\$ 3.15, \$ 3.65$, and $\$ 4.15$, respectively. There is a clear association between the size and the price.

$$
\begin{aligned}
\text { Size } & \longrightarrow \text { Price } \\
& \text { strong as }
\end{aligned}
$$

When you examine the relationship, ask yourself the following questions:

- What individuals or cases do the data describe?
- What variables are present? How are they measured?
- Which variables are quantitative and which are categorical?

For the example above:

New question might arise:

$$
\begin{aligned}
& \text { size is categorical } \\
& \text { price is quantitative }
\end{aligned}
$$

- Is your purpose simply to explore the nature of the relationship, or do you hope to show that one of the variables can explain variation in the other?

Definition: A response variable measures an outcome of a study. An explanatory variable explains or causes changes in the response variable.

Example: How does drinking beer affect the level of alcohol in our blood?

The legal limit for driving in most states is 0.08%. Student volunteers at Ohio State University drank different numbers of cans of beer. Thirty minutes later, a police officer measured their blood alcohol content. Here,

Explanatory variable:

Response variable:

 alcohol in blood

Remark: You will often see explanatory variables called independent variables and response variables called dependent variables. We prefer to avoid those words.

Scatterplots:

- A scatterplot shows the relationship between two quantitative variables measured on the same individuals.
- The values of one variable appear on the horizontal axis, and the values of the other variable appear on the vertical axis.
- Each individual in the data appears as the point in the plot fixed by the values of both variables for that individual.
- Always plot the explanatory variable, if there is one, on the horizontal axis (the x axis) of a scatterplot.

As a reminder, we usually call the explanatory variable \boldsymbol{x} and the response variable \boldsymbol{y}. If there is no explanatory response distinction, either variable can go on the horizontal axis.

ACTs Example: More than a million high school seniors take the SAT college entrance examination each year. We sometimes see the states "rated" by the average SAT scores of their seniors. Rating states by SAT scores makes little sense, however, because average SAT score is largely explained by what percent of a state's students take the SAT. The scatterplot below allows us to see how the mean SAT score in each state is related to the percent of that state's high school seniors who take the SAT.

Examining a scatterplot:

- Look for the overall pattern and for striking deviations from that pattern.
- Describe the overall pattern of a scatterplot by the form, direction, and strength of the relationship.
- An important kind of deviation is an outlier, an individual value that falls outside the overall pattern.
- Clusters in a graph suggest that the data describe several distinct kinds of individuals.

- Two variables are positively associated when above-average values of one tend to accompany above-average values of the other and below-average values also tend to occur together.

Fositively Assoristed Data

- Two variables are negatively associated when above-average values of one accompany below-average values of the other, and vice versa.

Hegravely Asoociated Data

- The strength of a relationship in a scatterplot is determined by how closely the points follow a clear form.

For the example above (Interpretation):

ACT
SAT
negative moderately strong association negative weak aysouation

Correlation

We say a linear relationship is

- strong if the points lie close to a straight line, and
- weak if they are widely scattered about a line.

Sometimes graphs might be misleading:

Two scatterplots of the same data. The linear pattern in the plot on the right appears stronger because of the surrounding space.

We use correlation to measure the relationship.

Correlation

Relationship Between Two Quantities Such That When One Changes, the Other Does

Negative
Zero
Positive

Definition: The correlation measures the direction and strength of the linear relationship between two quantitative variables. Correlation is usually written as \boldsymbol{r}.

Suppose that we have data on variables x and y for n individuals. The means and standard deviations of the two variables are \bar{x} and s_{x} for the x-values, and \bar{y} and s_{y} for the y values. The correlation r between x and y is

$$
\begin{aligned}
& \qquad r=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\left(y_{i}-\bar{y}\right)^{2}}} \\
& \text { to Units } \quad \text { standardized } \\
& \text { of measurement, } \quad x \text { and } y \text { values } \\
& \text { just a number }
\end{aligned}
$$

Properties of Correlation:

\longrightarrow Correlation does not distinguish between explanatory and response variables.
\longrightarrow Correlation requires that both variables be quantitative.

- Because r uses the standardized values of the observations, it does not change when we change the units of measurement of x, y, or both. The correlation itself has no unit of measurement; it is just a number.
- Positive r indicates positive association between the variables, and negative r indicates negative association.
\rightarrow The correlation r is always a number between -1 and 1 .
- Values of r near 0 indicate a very weak linear relationship. perfert $\begin{gathered}\text { netive }\end{gathered}$
- The strength of the relationship increases as r moves away from 0 toward either -1 or 1 .
- The extreme values $r=-1$ and $r=1$ occur only when the points in a scatterplot lie exactly along a straight line.
- Correlation measures the strength of only the linear relationship between two variables
- Like the mean and standard deviation, the correlation is not resistant: r is strongly affected by a few outlying observations. Use r with caution when outliers appear in the scatterplot.

Here is how correlation r measures the direction and strength of a linear association:

Correlation $r=0$

$$
\text { Correlation } r=0.5
$$

Correlation $r=-0.3$

Correlation $r=-0.99$

Correlation does not prove causation!

Examples:

1. There is a high correlation between number of sodas sold in one year and number of divorces, years 1950-2010. Does that mean that having more sodas makes you more likely to divorce?

2. There is also a high correlation between number of teachers and number of bars for cities in California. So teaching drives you to drink?
3. What about the high correlation between amount of daily walking and quality of health for men aged over 65?

- In many studies of the relationship between two variables the goal is to establish that changes in the explanatory variable cause changes in response variable.
- Even a strong association between two variables, does not necessarily imply a causal link between the variables.

Some explanations for an observed association.

The dashed double arrow lines show an association. The solid arrows show a cause and effect link. The variable x is explanatory, y is response and z is a lurking variable.

Least-Squares Regression

A regression line summarizes the relationship between two variables, but only in a specific setting:

- when one of the variables helps explain or predict the other.

Definition:

- A regression line is a straight line $y=b_{0}+b_{1} x$ that describes how a response variable y changes as an explanatory variable x changes.
- We often use a regression line to predict the value of y for a given value of x.
- Regression, unlike correlation, requires that we have an explanatory variable and a response variable.

Example: Does fidgeting keep you slim?

Some people don't gain weight even when they overeat. Perhaps fidgeting and other «nonexercise activity» (NEA) explains why - the body might spontaneously increase nonexercise activity when fed more. Researchers deliberately overfed 16 healthy young adults for 8 weeks. They measured fat gain (in kilograms) and, as an explanatory variable, increase in energy use (in calories) from activity other than deliberate exercise fidgeting, daily living, and the like. Here are the data:

$X \longrightarrow$	NEA increase (cal)	-94	-57	-29	135	143	151	245	355
Fat gain (kg)	4.2	3.0	3.7	2.7	3.2	3.6	2.4	1.3	
NEA increase (cal)	392	473	486	535	571	580	620	690	
Fat gain (kg)	3.8	1.7	1.6	2.2	1.0	0.4	2.3	1.1	

Figure below is a scatterplot of these data. The plot shows a moderately strong negative linear association with no outliers. The correlation is $r=-0.7786$.

What does it mean «fitting a line to data»?

- It means drawing a line that comes as close as possible to the points representing our data.

Definition: Suppose that

- y is a response variable (plotted on the vertical axis) and
- x is an explanatory variable (plotted on the horizontal axis).

A straight line relating y to x has an equation of the form

$$
y=b_{0}+b_{1} x
$$

- b_{1} is the slope, the amount by which y changes when x increases by one unit.
- b_{0} is the intercept, the value of y when $x=0$.

Example: Regression line for fat gain.

$$
\begin{aligned}
& \text { In figure below we have drawn the regression line with the equation } \\
& \begin{array}{l}
y=b 0+61 \times \\
\text { fat gain }=3.505-0.00344 \times \text { NEA increase }
\end{array} \\
& \text { Fixed ines pot } \\
& b_{1}=-0.00344 \mathrm{~kg} / \mathrm{cal}
\end{aligned}
$$

fat gain goes down by 0.00344 kg for each added cal of NEA So b_{1} is the rate of change in y weer x changes
$b_{0}=3.505 \mathrm{~kg} \longrightarrow$ fat gain if NEA does not change

We can use a regression line to predict the response y for a specific value of the explanatory variable x.

Example: Say, we want to predict the fat gain for an individual whose NEA increases by 400 calories when she overeats.

$$
x_{0}=400
$$

$$
\text { fat gain }=3.505-0.00344 \times \text { NEA increase }
$$

predicted fat gain $=3.505-0.00344 .400$

$$
=2.13 \mathrm{~kg}
$$

Is this prediction reasonable? Can we predict the fat gain for someone whose nonexercise activity increases by 1500 calories when she overeats?

$$
x_{0}=1500
$$

$$
\text { predicted fat gain }=3.505-0.00344 \cdot 1500
$$

$$
=-1.66 \mathrm{~kg}
$$

$$
\Rightarrow \text { loses fat }
$$

Definition: Extrapolation is the use of a regression line for prediction far outside the range of values of the explanatory variable x used to obtain the line. Such predictions are often not accurate.

MY HOBBY: EXTRAPOLATING

How do we get the regression line?

NEA increase (cal)	-94	-57	-29	135	143	151	245	355
Fat gain (kg)	4.2	3.0	3.7	2.7	3.2	3.6	2.4	1.3
NEA increase (cal)	392	473	486	535	571	580	620	690
Fat gain (kg)	3.8	1.7	1.6	2.2	1.0	0.4	2.3	1.1

fat gain $=3.505-0.00344 \times$ NEA increase

$$
x_{2}=-57, \quad y_{2}=3.0
$$ predicted $y_{2}=$

$$
\begin{aligned}
& =3.505-0.00344 \cdot(-57) \\
& =3.7 \\
& C^{3} \text { error }
\end{aligned}
$$

error $=$ observed - predicted
Goal
minimize errors

Definition: The least-squares regression line of \boldsymbol{y} on \boldsymbol{x} is the line that makes the sum of the squares of the vertical distances of the data points from the line as small as possible.
$\left.\left(x_{1}, y_{1}\right) \ldots x_{n}, y_{n}\right)$

$$
\begin{aligned}
& \hat{y}=b_{0}+b_{1} x \\
& \hat{y}_{i}=b_{0}+b_{1} x_{i}
\end{aligned}
$$

\hat{y}_{i} is predicted value
y_{i} is observed value

$$
\text { error }=y_{i}-\hat{y}_{i}=y_{i}-\left(b_{0}+b_{1} x_{i}\right)
$$

Idea: Find bo, l, that minimize

$$
\sum(\text { errors })^{2}=\sum\left(y_{i}-\left(b_{0}+b_{i} x_{i}\right)\right)^{2}
$$

Equation of the Least-Squares Regression Line:

- We have data on an explanatory variable x and a response variable y for n individuals.
- The means and standard deviations of the sample data are \bar{x} and s_{x} for x and \bar{y} and s_{y} for y, and the correlation between x and y is r.
- The equation of the least-squares regression line of y on x is

$$
\hat{y}=b_{0}+b_{1} x
$$

with slope
and intercept

$$
b_{1}=r \frac{s_{y}}{s_{x}}<
$$

$$
b_{0}=\bar{y}-b_{1} \bar{x}
$$

Example: Let's check the calculations for our example.
Using software we get
Summary statistics:

Column	\boldsymbol{n}	Mean	Std. Dev.		$\bar{x}=324.75$
NBA	16	324.75	257.65674	$s_{x}=257.67$	
Fat gain	16	2.3875	1.1389322	$\bar{y}=2.3875$	$s_{y}=1.14$

$$
\begin{aligned}
& r=-0.7786 \\
& f_{1}=r \frac{S_{y}}{S_{x}}=-0.7786 \cdot \frac{1.14}{257.67}=0.00344 \\
& l_{0}=\bar{y}-f_{1} \bar{x}=2.3875+0.00344 .324 .75 \\
& =3.505 \\
& \hat{y}=3.505-0.00344 x
\end{aligned}
$$

StatCrunch -> Stat -> Regression -> Simple Linear

Simple linear regression results:

Dependent Variable: Fat gain
Independent Variable: NEA
Fat gain $=3.505123-0.003441487$ NEA
Sample size: 16
$R($ ometationcoefficient $)=-0.7786=r$
R-sq $=0.6061492$
Estimate of error standard deviation: $0.73985285=S_{e}$

Parameter estimates:

	Parameter	Estimate	Std. Err.	Alternative DF	T-Stat	P-Value	
b_{0}	Intercept	3.505123	0.3036164	$\neq 0$	14	1.544577	<0.0001
b_{1} Slope	-0.003441487	$7.414096 \mathrm{E}-4$	$\neq 0$	14	-4.641816	0.0004	

Predicted values:

| X value | Pred. Y | s.e.(Pred. y) | 95\% C.I.for mean | 95\% P.I. for new |
| :--- | :---: | ---: | :---: | :---: | :---: |
| 400 | 2.128528 | 0.1931943 | $(1.7141676,2.5428886)$ | $(0.48849356,3.7685626)$ |

Coefficient of determination $\left(\boldsymbol{R}^{\mathbf{2}}\right)$:

The square of the correlation $\left(r^{2}\right)$ is the fraction of the variation in the values of y that is explained by the least-squares regression of y on x. In the above example: $\mathrm{R}-\mathrm{sq}=0.6061492=$ appr. 61%

i.e. 61% of the variation in fat gain is explained by the regression. Other 39% is the vertical scatter in the observed responses remaining after the line has fixed the predicted responses.

Residuals
Definition: A residual is the difference between an observed value of the response variable and the value predicted by the regression line. That is,

y-predicted $y=y-\hat{y}$
Note. If residarl >0, then $y-\hat{y}>0$
$y>y$
So the model underestimates
If residual <0, then $y<\hat{y}$
So the model overestimates
For our example: fat gain $=3.505-0.00344 \times$ NEA increase

NEA increase (cal)	-94	-57	-29	$\sqrt{35}$	143	151	245	355
Fat gain (kg)	4.2	3.0	3.7	2.7	3.2	3.6	2.4	1.3
NEA increase (cal)	392	473	486	535	571	580	620	690
Fat gain (kg)	3.8	1.7	1.6	2.2	1.0	0.4	2.3	1.1

$$
\begin{aligned}
&\left(x 4, y_{4}\right)=(135,2.7) \\
& \hat{y}=3.505-0.00344 \cdot 135=3.04 \\
& \text { residual }=2.7-304=-0.34<0 \\
& \text { our model overestimates }
\end{aligned}
$$

Residual Plots

(a) Scatterplot of fat gain versus increase in NEA
(b) Residual plot for this regression.

Because the residuals show how far the data fall from our regression line, examining the residuals helps assess how well the line describes the data.

Definition: A residual plot is a scatterplot of the regression residuals against the explanatory variable. Residual plots help us assess the model assumptions.

- If the regression line catches the overall pattern of the data, there should be no pattern in the residuals.
- On the other hand, curvature would suggest using higher order models or transformations.

- Also look for trends in dispersion, e.g. an increasing dispersion as the fitted values increase, in which case a transformation of the response may help (e.g. log or square root).

- No regression analysis is complete without a display of the residuals to check that the linear model is reasonable.
- Residuals often reveal things that might not be clear from a plot of the original data.

Example:

Fitted line plot

- The residual plot doesn't look completely random, but a bit curved.
- Curve does seem to go through points better:

- Sometimes residuals reveal violations of the regression conditions that require our attention.
- An examination of residuals often leads us to discover groups of observations that are different from the rest.
- When we discover that there is more than one group in a regression, we may decide to analyze the groups separately, using a different model for each group.

Outliers, Leverage, and Influential Observations

- Outliers: Any point that stands away from the others can be called an outlier and deserves your special attention.
- Outlying points can strongly influence a regression. Even a single point far from the body of the data can dominate the analysis.
- High Leverage Point: A data point that has an x-value far from the mean of the x values is called a high leverage point.

Example:

Influential observations: A data point is influential if omitting it from the analysis gives a very different model.

Example:

$$
\begin{aligned}
& y=1.38+\underline{0.414} x \\
& R-S q=33.2 \%
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{y}=0.567+0.811 \mathrm{x} \\
& \mathrm{R}-\mathrm{Sq}=\underline{94.8 \%}
\end{aligned}
$$

Note: R^{2} is much larger for the second plot.

Example: (A high leverage point that is not influential)

Note: R^{2} is a bit less.
low leverage
not influential large residual
high leverage not in fluential small residual
not high leverage influential (somewhat)
not very large residual

I igh leverage in fluential nat large residual

Example: People with diabetes must manage their blood sugar levels carefully. They measure their fasting plasma glucose (FPG) several times a day with a glucose meter. Another measurement, made at regular medical checkups, is called HbA . This is roughly the percent of red blood cells that have a glucose molecule attached. It measures average exposure to glucose over a period of several months.

Table below gives data on both HbA and FPG for 18 diabetics five month after they had completed a diabetes education class.

Subject	HbA (\%)	$\begin{gathered} \text { FPG } \\ (\mathrm{mg} / \mathrm{ml}) \end{gathered}$	Subject	$\begin{gathered} \mathrm{HbA} \\ (\%) \end{gathered}$	$\begin{aligned} & \text { FPG } \\ & (\mathrm{mg} / \mathrm{ml}) \end{aligned}$	Subject	HbA (\%)	$\begin{aligned} & \text { FPG } \\ & (\mathrm{mg} / \mathrm{ml}) \end{aligned}$
1	6.1	141	7	7.5	96	13	10.6	103
2	6.3	158	8	7.7	78	14	10.7	172
3	6.4	112	9	7.9	148	15	10.7	359
4	6.8	153	10	8.7	172	16	11.2	145
5	7.0	134	11	9.4	200	17	13.7	147
6	7.1	95	12	10.4	271	18	19.3	255

Because both FPG and HbA measure blood glucose, we expect a positive association.

The scatterplot in figure below shows a surprisingly weak relationship, with correlation $r=0.4819$.

The line on the plot is the least-squares regression line for predicting FPG from HbA . Its equation is

$$
\hat{y}=66.4+10.41 x
$$

If we remove Subject $15, r=0.5684$.
If we remove Subject $18, r=0.3837$.

Doing regression:

- Start with a scatterplot
- If it does not look like a straight line relationship, stop (see Chapter 10).
- Otherwise, calculate correlation, intercept, and slope of regression line.
- Check whether regression is OK by looking at plot of residuals.
- If not OK, do not use regression.
- Aim: want regression for which line is OK, confirmed by looking at scatterplot and residual plot(s). Otherwise, cannot say anything useful.

Re-expressing data (transformations) - Get it Straight!

Take a simple function (a transformation) of the data to achieve:

- make the distribution more symmetric
- make a scatterplot more linear

Example:

x	1	2	3	4	5	6	7	8
9								
y	2	1	6	14	15	30	40	74

Take \sqrt{y} :

x	1	2	3	4	5	6	7	8	9
\sqrt{y}	1.14	1	2.45	3.74	3.87	5.48	6.32	8.6	8.66

Example:

Variable: potassium

0002233333333444444444
055555666666778999999
100000001111111222233444
1667799
2034
268
323

Variable: \log (potassium)

27
3022224444
366666777788889
40001112244
45555566666667777777788889999
511112234
556688

