Lecture 4

Scatterplots, Association, and Correlation
Previously, we looked at

e Single variables on their own
e One or more categorical variables

In this lecture: We shall look at two quantitative variables.

First tool to do so: a scatterplot!
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Two variables measured on the same cases are associated if knowing the value of one of
the variables tells you something about the values of the other variable that you would
not know without this information.

Example: You visit a local Starbucks to buy a Mocha Frappuccino. The barista explains
that this blended coffee beverage comes in three sizes and asks if you want a Small, a
Medium, or a Large.

The prices are $3.15, $3.65, and $4.15, respectively. There is a clear association between
the size and the price.
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When you examine the relationship, ask yourself the following questions:

e \What individuals or cases do the data describe?
e \What variables are present? How are they measured?

e \Which variables are quantitative and which are categorical?
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New question might arise:

e |s your purpose simply to explore the nature of the relationship, or do you hope to
show that one of the variables can explain variation in the other?

Definition: A response variable measures an outcome of a study. An explanatory
variable explains or causes changes in the response variable.



Example: How does drinking beer affect the level of alcohol in our blood?

The legal limit for driving in most states iIs 0.08%. Student volunteers at Ohio State
University drank different numbers of cans of beer. Thirty minutes later, a police officer
measured their blood alcohol content. Here,
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Remark: You will often see explanatory variables called independent variables and
response variables called dependent variables. We prefer to avoid those words.

Explanatory variable:



Scatterplots:

e A scatterplot shows the relationship between two guantitative variables measured
on the same individuals.

e The values of one variable appear on the horizontal axis, and the values of the
other variable appear on the vertical axis.

e Each individual in the data appears as the point in the plot fixed by the values of
both variables for that individual.

o Always plot the explanatory variable, if there is one, on the horizontal axis (the x
axis) of a scatterplot.

As a reminder, we usually call the explanatory variable x and the response variable y. If
there is no explanatory response distinction, either variable can go on the horizontal axis.
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@ xample: More than a million high school seniors take the SAT college
entrance examination each year. We sometimes see the states “rated” by the average SAT
scores of their seniors. Rating states by SAT scores makes little sense, however, because
average SAT score is largely explained by what percent of a state’s students take the
SAT. The scatterplot below allows us to see how the mean SAT score in each state is

related to the percent of that state’s high school seniors who take the SAT.
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Examining a scatterplot:;

e Look for the overall pattern and for striking deviations from that pattern.

e Describe the overall pattern of a scatterplot by the form, direction, and strength of
the relationship.

e An important kind of deviation is an outlier, an individual value that falls outside the
overall pattern.

e Clusters in a graph suggest that the data describe several distinct kinds of
Individuals.




e Two variables are positively associated when above-average values of one tend to
accompany above-average values of the other and below-average values also tend to
occur together.

Pozitively A<zociated Daka

e Two variables are negatively associated when above-average values of one
accompany below-average values of the other, and vice versa.
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Hegarively Scsoniated Data

e The strength of a relationship in a scatterplot is determined by how closely the
points follow a clear form.



For the example above (Interpretation):
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StatCrunch -> Graphics - > Scatter Plot



Correlation

We say a linear relationship is

e strong if the points lie close to a straight line, and

e weak if they are widely scattered about a line.

Sometimes graphs might be misleading:
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Two scatterplots of the same data. The linear pattern in the plot on the right
appears stronger because of the surrounding space.



We use correlation to measure the relationship.
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Definition: The correlation measures the direction and strength of the linear relationship
between two quantitative variables. Correlation is usually written as .

Suppose that we have data on variables x and y for n individuals. The means and standard
deviations of the two variables are x and s, for the x-values, and y and s, for the y-

values. The correlation r between x and y is
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Properties of Correlation:
~—

e Correlation does not distinguish between explanatory and response variables.
——> Correlation requires that both variables be quantitative.

—- o Because r uses the standardized values of the observations, it does not change
when we change the units of measurement of X, y, or both. The correlation itself
has no unit of measurement; it is just a number.

> e Positive r indicates positive association between the variables, and negative r
Indicates negative association.
JAHVE e |
e The correlation r is always a number between -1 and 1. 1 Vo |
-\> T . . . V| okCon sl 4
- Values of r near O indicate a very weak linear relationship. fetec Ritety
- The strength of the relationship increases as r moves away from 0 toward
either -1 or 1.
- The extreme values r = -1 and r = 1 occur only when the points in a scatterplot
lie exactly along a straight line.
~. ¢ Correlation measures the strength of only the linear relationship between two
variables
e Like the mean and standard deviation, the correlation is not resistant: r is strongly

—> affected by a few outlying observations. Use r with caution when outliers appear
In the scatterplot.



Here is how correlation r measures the direction and strength of a linear association:
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Correlationr = -0.99



JAAN Correlation does not prove causation!

Examples:

1. There is a high correlation between number of sodas sold in one year and number of
divorces, years 1950- 2010. Does that mean that having more sodas makes you more
likely to divorce?

2. There is also a high correlation between number of teachers and number of bars for
cities in California. So teaching drives you to drink?

3. What about the high correlation between amount of daily walking and quality of
health for men aged over 65?




e In many studies of the relationship between two variables the goal is to establish that
changes in the explanatory variable cause changes in response variable.

e Even a strong association between two variables, does not necessarily imply a causal
link between the variables.

Some explanations for an observed association.
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The dashed double arrow lines show an association. The solid arrows show a cause and
effect link. The variable x is explanatory, y is response and z is a lurking variable.



Least-Squares Regression
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A regression line summarizes the relationship between two variables, but only in a
specific setting:

e when one of the variables helps explain or predict the other.

Definition:
e A regression line is a straight Iinel y = by + byx khat describes how a response
variable y changes as an explanatory variable X changes.

e \We often use a regression line to predict the value of y for a given value of x.

e Regression, unlike correlation, requires that we have an explanatory variable and a
response variable.
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Example: Does fidgeting keep you slim?

Some people don't gain weight even when they overeat. Perhaps fidgeting and other
«nonexercise activity» (NEA) explains why — the body might spontaneously increase
nonexercise activity when fed more. Researchers deliberately overfed 16 healthy young
adults for 8 weeks. They measured fat gain (in kilograms) and, as an explanatory
variable, increase in energy use (in calories) from activity other than deliberate exercise —

fidgeting, daily living, and the like. Here are the data:

——> | NEA increase (cal)
>, | Fat gain (kg)

-94
4.2

-57
3.0

-29
3.7

135
2.7

143
3.2

151
3.6

245
2.4

355
1.3

X
:J NEA increase (cal)
Fat gain (kg)

392
3.8

473
1.7

486
1.6

535
2.2

o571
1.0

580
0.4

620
2.3

690
1.1




Figure below is a scatterplot of these data. The plot shows a moderately strong negative
linear association with no outliers. The correlation iérrz —0.7786.
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What does it mean «fitting a line to data»?

¢ |t means drawing a line that comes as close as possible to the points representing our
data.

Definition: Suppose that

e Y iIs a response variable (plotted on the vertical axis) and
e X IS an explanatory variable (plotted on the horizontal axis).

A straight line relating y to x has an equation of the form

/; Yy =by + bix )
e b, Is the slope, the amount by which y changes when x increases by one unit.
e b, is the intercept, the value of y when x = 0.




Example: Regression line for fat gain.
In figure below we have drawn the:gegressi(/){] line with the equation
= o % X

fat gain = 3.505 — 0.00344 x NEA increase
J J I} Ny
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We can use a regression line to predict the response y for a specific value of the
explanatory variable x. o

Example: Say, we want to predict the fat gain for an individual whose NEA increases by
400 calories when she overeats. X, — Yvo

fat gain = 3.505 — 0.00344 x NEA increase
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Is this prediction reasonable? Can we predict the fat gain for someone whose nonexercise
activity increases by 1500 calories when she overeats?
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Definition: Extrapolation is the use of a regression line for prediction far outside the
range of values of the explanatory variable x used to obtain the line. Such predictions are
often not accurate.

My HOBBY: EXTRAPOLATING

AS YOU CAN SEE, BY LATE
NEXT MONTH YOU'LL HAVE
OVER FOUR DOZEN HUSBANDS,
) BETTER GET A
BULK RATE ON
WEDDING CAKE.




How do we get the regression line?

Fat gain (kilograms)
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NEA increase (cal) | 392 31486 535|571 580|620 |690
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Definition: The least-squares regression line of y on X is the line that makes the sum of
the squares of the vertical distances of the data points from the line as small as possible.
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Equation of the Least-Squares Regression Line:

e We have data on an explanatory variable x and a response variable y for n
individuals.

e The means and standard deviations of the sample data are x and s, for x and y and
sy, fory, and the correlation between x and y is r.

e The equation of the least-squares regression line of y on x is

rﬁ}?:bo‘l'blxi)

with slope

and intercept




Example: Let's check the calculations for our example.
Using software we get

Summary statistics:
Column n | Mean Std. Dev.
X NEA 16 32475  257.65674 ' — o = 14

2 Fat gain 16 2.3875 1.1389322
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StatCrunch -> Stat -> Regression -> Simple Linear

Simple linear regression results:
Dependent Variable: Fat gain

Independent Variable: NEA
| Fat gain = 3.505123 - 0.003441487 NEA
Sample size: 16
R (carrelatian-caefficient) ¥ -0.7786 ) = I

“Rosq = 5~y
"R-sq = 0.6061492

& of error standard deviation: 0.73985285 — S e

Parameter estimates:
Parameter Estimate

@0 Intercept 3.505123| 0.3036164
@ | Slope -0.003441487\7.414096E-

ternative DF | T-Stat ue
544577 <0.0001
+0 14 -4.641816 00004

Predicted values:
X value| Pred.Y |[s.e.(Predcy 95%-C 1 _for mean % Pt fornew
400 2.128528) 0.1931943 (1.7141676, 2.5428886) (0.48849356,-3.7685626)



Coefficient of determination (R?):

The square of the correlation (r2) is the fraction of the variation in the values of y that
IS explained by the least-squares regression of y on x.
In the above example: R-sq = 0.6061492 = appr. 61%
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l.e. 61% of the variation in fat gain is explained by the regression. Other 39% is the

vertical scatter in the observed responses remaining after the line has fixed the predicted
responses.



Residuals

Definition: A residual is the difference between an observed value of the response
variable and the value predicted by the regression line. That is,

residual = observed y — predicted y =y — y n
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For our example: fat gain = 3.505 — 0.00344 x NEA increase

—

NEA increase (cal) |-94 |-57 |-29 (135\‘143 151|245 | 355
Fat gain (kg) 4.2 13.0 |3.7 (2.7 )3.2 |13.6 |24 |1.3
NEA increase (cal) | 392 |473 486 |535 571 580|620 |690
Fat gain (kg) 38 [1.7 116 |22 |10 |04 |23 |11
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Residual Plots

Fitted line plot
Fatgain Residuals

Il

05

-0.5

MEA MEA

(a) (0)

(a) Scatterplot of fat gain versus increase in NEA
(b) Residual plot for this regression.

Because the residuals show how far the data fall from our regression line, examining the
residuals helps assess how well the line describes the data.



Definition: A residual plot is a scatterplot of the regression residuals against the
explanatory variable. Residual plots help us assess the model assumptions.

e If the regression line catches the overall pattern of the data, there should be no
pattern in the residuals.

e On the other hand, curvature would suggest using higher order models or
transformations.

Residual
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e Also look for trends in dispersion, e.g. an increasing dispersion as the fitted values

Increase, in which case a transformation of the response may help (e.g. log or square
root).

Residual
LAbbloavmwas
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e No regression analysis is complete without a display of the residuals to check that
the linear model is reasonable.

e Residuals often reveal things that might not be clear from a plot of the original data.



Example:
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Residuals

Residuals vs. Weight

6.
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e The residual plot doesn't look completely random, but a bit curved.



e Curve does seem to go through points better:
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e Sometimes residuals reveal violations of the regression conditions that require our
attention.

e An examination of residuals often leads us to discover groups of observations that
are different from the rest.

e \When we discover that there is more than one group in a regression, we may decide
to analyze the groups separately, using a different model for each group.
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Outliers, Leverage, and Influential Observations

e Qutliers: Any point that stands away from the others can be called an outlier and
deserves your special attention.

e QOutlying points can strongly influence a regression. Even a single point far from the
body of the data can dominate the analysis.

e High Leverage Point: A data point that has an x-value far from the mean of the x-
values is called a high leverage point.

Example:

Scatterplot of y2 vs x2 / Scatterplot of y4 vs x4 /\7{

;‘4' |over 0\/92
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Influential observations: A data point is influential if omitting it from the analysis gives a

very different model.

Example:

Scatterplot of y vs x s Scatterplot of y wsx
y = 1.38 + 0.414 x, y = 0.567 + 0.811 x
R—Sq = 33.2% R—Sq = 04.8%

Note: R? is much larger for the second plot.




Example: (A high leverage point that mﬂgﬂtia%l
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y = 0.577 + 0.806 x
N—
R-Sq = 96.3%

Note: R? is a bit less.
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Example: People with diabetes must manage their blood sugar levels carefully. They
measure their fasting plasma glucose (FPG) several times a day with a glucose meter.
Another measurement, made at regular medical checkups, is called HbA. This is roughly
the percent of red blood cells that have a glucose molecule attached. It measures average
exposure to glucose over a period of several months.

Table below gives data on both HbA and FPG for 18 diabetics five month after they had
completed a diabetes education class.

Two measures of glucose level in diabetics

—

HbA FPG HbA FPG 9 HbA FPG
Subject (%) (mg/ml) Subject (%) (mg/ml) Subject (%) (mg/ml)

1 6.1 141 7 7.5 96 13 10.6 103

2 6.3 158 8 7.9 78 14 10.7 172

3 6.4 11 9 7.9 148 15 10.7 359

4 6.8 153 10 8.7 172 16 11.2 145

S 7.0 134 11 9.4 200 17 134 147
6 73 95 12 10.4 271 18 19.3 255

\' -

Because both FPG and HbA measure blood glucose, we expect a positive association.



The scatterplot in figure below shows a surprisingly weak relationship, with correlation

r = 0.4819.
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The line on the plot is the least-squares regression line for predicting FPG from HbA. Its
equation is

9 = 66.4 + 10.41x
If we remove Subject 15, r = 0.5684.

If we remove Subject 18, r = 0.3837.
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Doing regression:

e Start with a scatterplot

If it does not look like a straight line relationship, stop (see Chapter 10).

Otherwise, calculate correlation, intercept, and slope of regression line.

Check whether regression is OK by looking at plot of residuals.

If not OK, do not use regression.

e Aim: want regression for which line is OK, confirmed by looking at scatterplot and
residual plot(s). Otherwise, cannot say anything useful.



Re-expressing data (transformations) — Get it Straight!

Take a simple function (a transformation) of the data to achieve:
e make the distribution more symmetric

e make a scatterplot more linear

Example:

x/1/2/3/14 |5 |6 |7 |8 |9

y12/1/6/14[{15|30(40|74|75

Residuals




\/} 1.1411|2.45/3.743.87|5.48|6.32|8.6 | 8.66

Residuals vs. x
Residuals

0.5

-0.5




Example:

Variable: potassium
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