Midterm Review

What to do:

- Read lectures 1-4, chapters 1-10 from the textbook
- Do the assigned exercises from the textbook
- Go over the quiz questions
you're halfway there.
- Use sample tests to practice
- Use extra TAs' office hours
- Types of variables

Topics to review: What
 Who

- Categorical
$>$ Bar char
\rightarrow Pie chart
Two-way table
$>$ Joint distribution
$>$ Marginal distribution
$>$ Conditional distribution
$>$ Independence

Review how linear transformations affect measures of center and
spread

- Quantitative
$>$ Dot plot
$>$ Stemplot
$>$ Histogram
$>$ Distribution
- Shape: symmetric, skewed, - Center mean, median, mode
- Spread: range, standard deviation, percentiles, IQR
$>$ Five-number summary
B Boxplots
$>$ Outliers: $1.5 \times I Q R$ rule

Example: Here are the projected numbers (in thousands) of earned degrees in the U.S. in the 2010-2011 academic year, classified by level and by the sex of the degree recipient.

(a) What proportion of degree recipients are women?

$$
\begin{aligned}
\frac{1412}{2403} & =058+6 \\
& \sim 5950
\end{aligned}
$$

	Bachelor's	Master's	Professional	Doctorate	Total
Female	933	402		51	26
Male	661	260	44	26	991
Total	1594	662	95	52	2403

(b) What proportion of those who received a professional degree are women?

(c) Are the events "choose a woman" and "choose a professional degree recipient" independent?
$N 0$

$$
59^{6} / 0 \neq 5^{-} \%
$$

Example: For given stemplot find a five-number summary, range, standard deviation. Are there any outliers?
611
711
81729
91112328
101911

$$
\begin{array}{llll}
\operatorname{Min} & Q_{1} & M & Q_{3} M a x \\
61 & 88 & 92 & 99101 \tag{98}\\
(89) & & (98)
\end{array}
$$

101911

$$
\text { range }=101-61=40
$$

lecture $\xrightarrow{2}$ st. der $\approx \frac{\text { range }}{4}=\frac{40}{4}=10$

$$
\begin{aligned}
& I Q R=Q_{3}-Q_{1}=99-88=11 \\
& Q_{1}-1.5 I Q R=88-1.511=71.5>61 \\
& Q_{3}+1.5 I Q R=99+1.511=115.5>101
\end{aligned}
$$

61 is the only outlier

- Density Curve
- Normal distribution
- Shape: symmetric, unimodal, bell-shaped
- Parameters: mean μ and standard deviation σ
- 68-95-99.7 Rule
- Z-scores
- $\mathrm{N}(0,1)$
- Z-Table
- Inverse Normal calculations
- Normal quantile plots

Example: An English placement examination is given to 900 incoming students. The distribution of examination scores is approximately normal with a mean of 82 and a standard deviation of 5 . How many students had test scores between 75 and 85 ?

$$
x=\text { scores } \sim N(82,5)
$$

$$
P(75 \leq x \leq 85)=p(x \leq 85)-p(x=75)
$$

z-score for $85=\frac{85-82}{5}=0.6$
z-score for $75=\frac{75-82}{5}=-1.4$

$$
\begin{aligned}
& =P(z \leq 0.6)-P(z \leq-1.4) \\
& =0.7257-0.0008=0.6449 \approx 65 \%
\end{aligned}
$$

\# of students $=900 \cdot 0.6449 \approx 580$

What score is equal to P_{92}, or the 92 nd percentile?

$$
\begin{aligned}
& x \sim N(82,5) \\
& P(z \leq z)=0.92 \\
& z=1.405
\end{aligned}
$$

$$
\begin{aligned}
x & =\mu+6 z=82+5 z \\
& =82+5 \cdot 1.405 \approx 89
\end{aligned}
$$

Example: What value is closest to the interquartile range for the standard normal distribution?
(A) 0
(B) 0.5
(C) 1.3
(D) 3.0

(E) 2.3

$$
\begin{aligned}
& Q_{1}=-Q_{3} \\
& Q_{1}=-0.675 \\
& Q_{3}=0.675 \\
& I Q R=0.675-(-0.675) \\
& =1.35
\end{aligned}
$$

Example: 68% of the marks in a test are between 51 and 64 . Assuming these data are normally distributed, what are the mean and standard deviation?

- Linear regression
- Scatterplot: overall pattern (form, direction, and strength of the relationship), outliers, clusters
- Association

Variables: explanatory or response?

- Positively or negatively associated?
- Correlation r
- Regression lime: $y=b_{0}+b_{1} x$. How to interpret slope b_{1}, intercept b_{0} ?
o How to use regression line for prediction?
Extrapolation
- Coefficient of determination r^{2}
- Residuals/residual plots

OOurliers vs influential observations

Example: A long jump competition took place recently at a local high school. The coach is interested in performing as well as possible next time, so he is looking at the relationship between height and distance jumped (both measured in inches). He uses height to predict distance. The data are shown:

Which statement is correct about the scatter plot?
(A) There is negative linear relationship between the two variables.
(B) There is no apparent relationship between height and distance.
(C) There is positive linear relationship between the two variables.
(D) As height increases distance decreases.
(E) There is a negative quadratic relationship between height and distance.

Which of the following is true?
(A) Both height and distance are explanatory variables.
(B) Height is the explanatory variable.
(C) Height is the response variable.
(D) Distance is the explanatory variable.

The least square solution is: intercept $=6.4285$; and slope $=1.0534$
Interpret the slope. distance $=6.4285+1.0534$ height
(A) As distance increases by one inch, height increases by 1.0534 inches.
(B) As height increases by one inch, distance increases by 6.4284 inches.
(C) As distance increases by 6.4285 inches, height increases by 1.0534 inches.
(D) As distance increases by one inch, height increases by 6.4285 inches.
(E) As height increases by one inch, distance increases by 1.0534 inches.

For the pair of data $(75,85)$, what is the residual?
(A) -0.4335
(B) 160.4335
(C) 0.4335
(D) 0
(E) -398.1909

$$
\begin{aligned}
\hat{y} & =6.4285+1.0534 .75 \\
& =85.4335
\end{aligned}
$$

$$
\text { residual }=y-\hat{y}
$$

$$
=85-85.4335
$$

$$
=-0.4335
$$

Example: In a simple linear regression problem, the least squares line is given by $y=2.15-1.75 x$, and the coefficient of determination is 0.81 . What is the correlation?
(A) 0.81

$$
r^{2}=0.81
$$

(B) -0.81

$$
r=\sqrt{08}
$$

(C) 0.9
(D) -0.9

$$
-09
$$

(E) Impossible to determine

Example: Given the graph,

which of the statements are true?
I. Observations 1 and 2 are not influential
II. Observations 2 and 3 have high leverage
X III. Observations 2 and 3 have large residuals
X IV. Only observation 3 is an outlier

(A) I only
(B) I and II
(C) I, II, and III
(D) IV only
(E) all are correct

