Example: Given $\mathrm{P}(A)=0.25, \mathrm{P}(B)=0.80$, and $\mathrm{P}(A$ or $B)=0.65$. Are A and B disjoint? Are they independent?

$$
\begin{aligned}
P(A \text { or } B)=P(A)+P(B) & =0.25+0.80 \\
& =1.05>1
\end{aligned}
$$

$\Rightarrow A, B$ are not disjoint

$$
\begin{aligned}
P(A \text { or } B) & =P(A)+P(B)-P(A \text { and } B) \\
\Rightarrow P(A \text { and } B) & =P(A)+P(B)-P(A \text { or } B) \\
& =0.25+0.80-0.65=0.40 \\
P(A) \cdot P(B) & =0.250 .80=0.20
\end{aligned}
$$

So, $P(A$ and $B) \neq P(A \mid P(B)$
$\Rightarrow A, B$ are nat independent

Example: There are 10 balls in the box: 4 blue ones, 3 red ones, and 3 green ones. You select a ball at random, note its colour, then put it back (replace it). Then you take a ball second time.

$$
P(b)=4 / 10
$$

(a) What is the probability that both balls you selected are blue?

$$
P(f \text { and } b)=P(f) P(f)=\frac{4}{10} \cdot \frac{4}{10}=\frac{16}{100}
$$

(b) What is the probability that neither is blue?

$$
p(\text { not } b \text { and nat } f)=\frac{6}{10} \cdot \frac{6}{10}=\frac{36}{100}
$$

(c) What is the probability that one is blue and another is green?

$$
P(b \text { and } g)+P(g \text { and } f)=\frac{4}{10} \frac{3}{10}+\frac{3}{10} \cdot \frac{4}{10}=\frac{24}{100}
$$

(d) What is the probability that the balls are of the same colour?

$$
\begin{aligned}
& P(f \text { and } f)+P(g \text { and } g)_{3}+P(r \text { and } r) \\
& =\frac{4}{10} \cdot \frac{4}{10}+\frac{3}{10} \cdot \frac{3}{10}+\frac{3}{10} \cdot \frac{3}{10}=\frac{3}{100}
\end{aligned}
$$

Example: In Exton School, 40% of the girls like music and 12\% of the girls like music and dance. What percent of those that like music also like dance?

$$
\begin{aligned}
& A=\{\text { music }\} \\
& B=\{\text { dance }\} \\
& P(A)=0.4 \\
& P(A \text { and } B)=0.12 \\
& P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}=\frac{0.12}{0.4} \\
& \quad \Rightarrow 30 \%
\end{aligned}
$$

Ch. 14, \# 19
Real estate ads suggest that 64% of homes for sale have garages, 21% have swimming pools, and 17% have both features. What is the probability that a home for sale has
(a) A pool or garage?

$$
P(p \text { or } g)=P(p)+P(g)-P(p \text { and } g)
$$

(b) Neither a pool nor a garage? $=0.21+0.64-0.17=0.68$

$$
P(\text { neither })=1-P\left(p_{\text {or }}\right)=1-0.68=0.32
$$

(c) A pool but no garage?

$$
\begin{gathered}
P\left(P \text { and } g^{c}\right)=P(P)-P(P \text { and } g) \\
=0.21-0.17=0.04
\end{gathered}
$$

Ch. 15, \# 7:
You roll a fair die three times. What is the probability that
(a) You roll all bs? $\quad P\left(\sigma^{\prime}\right)=1 / 6$

$$
p\left(a\left|\left.\right|^{\prime} 6^{\prime}\right)=\frac{1}{6} \cdot \frac{1}{6} \frac{1}{6}=\frac{1}{216}\right.
$$

(b) You roll all odd numbers? $\quad P(o d d)=\frac{3}{6}=\frac{1}{2}$

$$
\frac{1}{2} \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}
$$

(c) You roll at least one 5?

$$
\begin{array}{r}
P\left(\text { at least one } S^{\prime}\right)=1-P(\text { hone }) \\
=1-\frac{5}{6} \cdot \frac{5}{6} \cdot \frac{5}{6}=1-\frac{125}{216}=\frac{91}{216}
\end{array}
$$

