Lecture 3

Probability Distribution

Discrete Case

Definition: A r.v. Y is said to be discrete if it assumes only a finite or countable number of distinct values.

$$
P(Y=y)=\text { profability that } Y \text { taky }
$$

Definition: The probability that Y takes on the value $y, P(Y=y)$, is defined as the sum of the probabilities of all points in S that are assigned the value y.
$p(y)=P(Y=y)$ is called a probability function for Y.

Definition: The probability distribution for Y can be described by a formula, table, or a graph that provides $p(y)$ for all y.

Theorem: For any discrete probability distribution, $p(y)$,

$$
\begin{aligned}
& 1.0 \leq p(y) \leq 1 \text { for all } y \\
& \text { 2. } \sum_{y: P(Y=y) \neq 0} p(y)=1
\end{aligned}
$$

Example: (\#3.6) Five balls (\#1, 2, 3, 4, 5) are placed in an urn. Two balls are randomly selected from the five. Find the probability distribution for
(a) the largest of 2 numbers;
(b) the sum of two numbers.

Solution:

$$
\begin{aligned}
& \text { of two numbers. } \\
& S=\{ (1,2),(1,3),(1,4),(1,5), \\
&(2,3) \\
&(3,4),(3),(2,5), \\
& \operatorname{card} d(S)(3,5),(4,5)\} \\
&\binom{5}{2}=10
\end{aligned}
$$

$Y=$ largest of 2 numbers

$$
\begin{aligned}
& p(2)=\frac{1}{10}, p(3)=\frac{2}{10}, p(4)=\frac{3}{10} \\
& p(5)=4 / 10
\end{aligned}
$$

(b) $Y=$ sum of 2 numbers

Y	3	4	5	6	7	8	9
p	$1 / 10$	$1 / 10$	$2 / 10$	$2 / 10$	$2 / 10$	$1 / 10$	$1 / 10$

Expected Values
Definition: Let Y be a discrete r.v. with probability function $p(y)$. Then the expected value of $Y, E(Y)$, is given by

$$
E(Y)=\sum_{y} y p(y)
$$

If $p(y)$ is an accurate characteristic of the population distribution, then $E(Y)=\mu$ is the population mean.
Theorem: Let Y be a discrete r.v. with probability function $p(y)$ and $g(Y)$ be a real-valued function of Y. Then the expected value of $g(Y)$ is given by

$$
E[g(Y)]=\sum_{y} g(y) p(y)
$$

Proof: $Y: y_{1}, \ldots, y_{n}$

$$
\begin{aligned}
& P\left[p(Y)=g_{i}\right]=\sum p\left(y_{j}\right)=p^{*}(g i) \\
& E[g(Y)] \frac{d_{i} d}{=} \sum_{i=1}^{m} g_{i} p^{*}\left(g_{i}\right)=\sum_{i=1}^{m} g_{i}\left[y_{j}\right)=g_{i} p\left(y_{j}\right) \\
& =\sum_{i=1}^{m_{i}} \sum g_{i} p\left(y_{j}\right)=g_{i} \\
& \left.E y_{j}\right)=\sum_{j=1}^{n} g\left(y_{j}\right) p\left(y_{j}\right)
\end{aligned}
$$

Definition: Let Y be a r.v. with $E(Y)=\mu$, the variance of a r.v. Y is given by

$$
\operatorname{Var}(Y)=E\left[(Y-\mu)^{2}\right]
$$

The standard deviation of Y is the positive square root of $\operatorname{Var}(Y)$.
σ^{2} is population Variance, σ is st.der.
Example: Given a probability distribution for Y :

$$
\begin{aligned}
& \begin{array}{l|l|}
\hline y & p(y) \\
\hline 0 & 1 / 8 \\
\hline 1 & 1 / 4
\end{array} \quad E(Y)=\sum_{y=0}^{3} y p(y) \\
& =0 \cdot \frac{1}{8}+1 \cdot \frac{1}{4}+2 \cdot \frac{3}{8}+3 \cdot \frac{1}{4}=1.75 \\
& \operatorname{Var}(Y)=E\left[(Y-1.75)^{2}\right] \\
& M \\
& =\sum_{y=0}^{3}(y-1.75)^{2} p(y) \\
& =(0-1.75)^{2} \cdot \frac{1}{8}+(1-1.75)^{2} \frac{1}{4} \\
& +(2-1.75)^{2} \cdot \frac{3}{8}+(3-1.75)^{2} \cdot \frac{1}{4} \\
& =\frac{0.9375}{}=\frac{20.97}{\text { st. den }=\sqrt{0.9375}}=0.9 \\
& \underbrace{1}_{1} \quad(\mu \pm 0)-(1.75 \pm 0.97)
\end{aligned}
$$

Theorem: Let Y be a discrete riv. with probability function $p(y)$. Then

1. $E(c)=c, c$ is a constant;
2. $E[c g(y)]=c E[g(Y)], g(Y)$ is a function of Y;
3. $E\left[g_{1}(Y)+\cdots+g_{k}(Y)\right]=E\left[g_{1}(Y)\right]+\cdots+E\left[g_{k}(Y)\right]$, $g_{1}(Y), \ldots, g_{k}(Y)$ are functions of Y.

Proof:

$$
\text { (1) } E(c)=\sum_{y} c p(y)=c \sum_{y} p(y)=c
$$

$$
\text { (2) } \begin{aligned}
E(c g(Y)) & =\sum c g(y) p(y)=c \sum g(y) p(y) \\
& =c E(g(Y))
\end{aligned}
$$

$$
\begin{aligned}
& E\left[g_{1}(Y)+\ldots+g_{k}(Y)\right] \\
= & \sum\left(g_{1}(y)+\ldots g_{k}(y)\right) p(y) \\
= & \sum_{y} g_{1}(y) p(y)+\ldots+\sum_{y} g_{k}(y) p(y) \\
= & E\left(g_{1}(Y)\right)+\ldots+E\left(g_{k}(Y)\right)
\end{aligned}
$$

Theorem: $\operatorname{Var}(Y)=E\left[(Y-\mu)^{2}\right]=E\left(Y^{2}\right)-\mu^{2}$,
where $E(Y)=\mu$.
Proof:

$$
\begin{aligned}
\text { of: } & \begin{aligned}
\operatorname{ar}(Y) & =E\left[(Y-\mu)^{2}\right] \\
& =E\left[Y^{2}-2 Y \mu+\mu^{2}\right] \\
& =E\left(Y^{2}\right)-2 \mu \underbrace{E}_{\mu^{\mu}(Y)}+\mu^{2} \\
& =E\left(Y^{2}\right)-2 \mu^{2}+\mu^{2} \\
& =E\left(Y^{2}\right)-\mu^{2}
\end{aligned} \text { ? }
\end{aligned}
$$

Example: use previous example with $\mu=1.75$

$$
\begin{aligned}
& E\left(Y^{2}\right)=\sum_{y} y^{2} p(y) \\
& =0^{2} \cdot \frac{1}{8}+1^{2} \cdot \frac{1}{4}+2^{2} \cdot \frac{3}{8}+3^{2} \cdot \frac{1}{4} \\
& =\frac{1}{4}+\frac{3}{2}+\frac{9}{4}=4 \\
& \operatorname{Var}(Y)=4-1.75^{2} \\
& =0.9375
\end{aligned}
$$

Binomial Probability Distribution
Definition: A binomial experiment possesses the following properties:

1. It consists of a fixed number, n, of trials;
2. Each trial results in either success, S, or failure, F;
3. p is a probability of successes, $q=1-p$ is a probability of failure;
4. The trials are independent;
5. The r.v. of interest, Y, is the number of successes observed during the n trials.
Examples: flipping a win
rolling a die
Definition: A rev. Y is said to have a binomial distribution based on n trials with success probability p if and only if

$$
p(y)=\binom{n}{y} p^{y} q^{n-y}, \quad y=0, \ldots, n, \quad 0 \leq p \leq 1
$$

Why?

$$
\begin{aligned}
& S=\{\underbrace{\text { Why? }}_{n} S \text { SFFFS} \ldots F F S, \ldots \\
& P(\underbrace{S S S \ldots S}_{y} \underbrace{F F F \ldots F}_{n-y})=p^{y}(1-p)^{n-y}=p^{y} q^{n-y} \\
& \binom{n}{y}=\# \text { of } n-\text { tuples } \Rightarrow p(y)=\binom{n}{y} p^{y} q^{n-y}
\end{aligned}
$$

The term 'binomial' experiment derives from the fact that each trial results in one of two possible outcomes and that the probabilities $p(y)$ are terms of the binomial expansion:

$$
\begin{gathered}
(p+q)^{n}=\binom{n}{0} p^{0} q^{n}+\binom{n}{1} p^{1} q^{n-1}+\cdots+\binom{n}{n} p^{n} q^{0} \\
1
\end{gathered} \Rightarrow \sum_{y=1}^{n} p(y)=1 ~ l i l l
$$

Example: A lot of 5000 electrical fuses contains 5% defectives. If a sample of 5 fuses is tested, find P (at least one is defective).

Solution:

$$
n=5
$$

$$
\begin{aligned}
& p(\text { at least one })=1-p(\text { none }) \\
= & 1-p(0)=1-\binom{5}{0} 0.05^{0} \cdot 0.95 \\
= & 0.226
\end{aligned}
$$

$$
y=0
$$

Theorem: Let $Y \sim \operatorname{Bin}(n, p)$. Then $\mu=E(Y)=n p$ and $\sigma^{2}=$ $\operatorname{Var}(Y)=n p q$.
Proof: $E(Y)=\sum_{y=0}^{n} y p(y)=\sum_{y=0}^{n} y\binom{n}{y} p^{y} q^{n-y}$

$$
\begin{aligned}
& \text { Proof: } E(Y)=\sum_{y=0} y p(y)=\sum_{y=0} y(y) 1 \\
& =\sum_{y=1}^{n} y \frac{n!}{(n-y)!y^{\prime}!} p q^{n-y}=n p \sum_{y=1}^{n} \frac{(n-1)!}{(n-y)!(y-1)!} p^{y-1} q^{n-1} \\
& =(z=y-1)=n p \sum_{z=0}^{n-1} \frac{(n-1)!}{(n-1-z)!z!} p^{z} q^{n-1-z} \\
& -1
\end{aligned}
$$

$$
\Rightarrow E(Y)=n p
$$

$$
\left.=1 \quad \text { of for } B \operatorname{in}(n-1)_{1}\right)
$$

$$
\begin{aligned}
& \operatorname{Var}(Y)=E\left(Y^{2}\right)-E(Y)^{2}=E\left(Y^{2}\right)-(n p)^{2} \\
& E(Y(Y-1))=E\left(Y^{2}-Y\right)=E\left(Y^{2}\right)-E(Y) \\
& E\left(Y^{2}\right)=E(Y(Y-1))+E(Y) \\
& E(Y(Y-1))=\sum_{y=0}^{n} y(y-1)\binom{n}{y} p^{y} q^{n-y} \\
& =\sum_{y=2}^{n} y(y-1) \frac{n!}{(n-y)!y!} p^{y} q^{n-y} \\
& =p^{2} n(n-1) \sum_{y=2}^{n} \frac{(n-2)!}{(n-y)!(y-2)!} p^{y-2} q^{n-y} \\
& =(Z=y-2)=p^{2} n(n-1) \sum_{z=0}^{n-2} \frac{(n-2)!}{(n-2-z)!z^{2} q^{n-2-z}} \\
& \beta \ln (n-2, p) \\
& =p^{2} n(n-1) \\
& E\left(Y^{2}\right)=p^{2} n(n-1)+p n \\
& \operatorname{Var}(Y)=E\left(Y^{2}\right)-E(Y)^{2} \\
& =p^{2} n(n-1)+p n-(p n)^{2}=-p_{n}^{2}+p n=n p q
\end{aligned}
$$

Example: (\#3.56) An oil exploration firm is formed with enough capital to finance 10 explorations. The probability of a particular exploration being successful is 0.1 . Find μ and σ^{2} of the number of successful explorations.
Solution: $\quad V=1$ of successful exploration

$$
\begin{aligned}
& Y \sim \operatorname{Bin}(10,0.1) \\
& n, p \\
& E(Y)=n p=1 \\
& \operatorname{Var}(Y)=n p q=10 \cdot 0.1 \cdot 0.9=0 . g
\end{aligned}
$$

Geometric Probability Distribution
Let Y be the number of the trial when the $1^{\text {st }}$ success occurs.

$$
\begin{aligned}
& S: E_{1}=S \\
& E_{2}=F S \\
& E_{3}=F F S \\
& \vdots \\
& E_{r}=\underbrace{F F \ldots F}_{k-1} S \\
& \because \\
& P(y)=P(Y=y)=P(\underbrace{F F \ldots F}_{y-1} S)=q^{y-1} p
\end{aligned}
$$

Definition: A rev. Y is said to have a geometric probability distribution if and only if

$$
p(y)=q^{y-1} p, y=1,2,3, \ldots, 0 \leq p \leq 1
$$

Let's show that $\sum_{y} p(y)=1$.

Example: (\#3.70) An oil prospector will drill a succession of holes in a given area to find a productive well. The probability of success is 0.2 .
(a) What is the probability that the $3^{\text {rd }}$ hole drilled is the first to yield a productive well?
(b) If the prospector can afford to drill at most 10 well.swhat is the probability that he will fail to find a productive well?

$$
\begin{aligned}
\text { Solution:(a) } P(Y=3) & =0.8^{2}(0.2)=0.128 \\
(b) P(Y>10) & =P(\text { first } 10 \mathrm{wells}
\end{aligned}
$$

$$
\begin{equation*}
\text { are not productive) }=0.8 \tag{10}
\end{equation*}
$$

$$
\begin{aligned}
& \sum_{y=1}^{\infty} p(y)=\sum_{y=1}^{\infty} q^{y-1} p=p \sum_{y=1}^{\infty} q^{y-1}=p \sum_{y=0}^{\infty} q^{y} \\
& \sum_{y=0}^{\infty} q^{y}=\binom{\text { geom. series }}{q \leq 1}=\frac{1}{1-q}=\frac{1}{p} \Rightarrow \sum p(y)=p \cdot \frac{1}{p}=1
\end{aligned}
$$

Theorem: Let $Y \sim \operatorname{Geom}(p)$, then

$$
\mu=E(Y)=\frac{1}{p} \text { and } \sigma^{2}=\operatorname{Var}(Y)=\frac{1-p}{p^{2}}
$$

$$
\begin{align*}
& \text { Proof: } \\
& \quad E(y)=\sum y p(y)=\sum_{y=1}^{\infty} y q^{y-1} p=p \sum_{y=1}^{\infty} y q^{y-1} \\
& =p \sum_{y=1}^{\infty} \frac{d}{d q}\left(q^{y}\right)=p \frac{d}{d q}\left(\sum_{y=1}^{\infty} q^{y}\right) \Theta \\
& -1+\sum_{y=0}^{\infty} q^{y}=\frac{1}{1-q}-1 \Rightarrow \sum_{y=1}^{\infty} q^{y}=\frac{q}{1-q}
\end{align*}
$$

$\Theta p \frac{d}{d q} \frac{q}{1-q}=p \cdot \frac{(1-q)+q}{(1-q)^{2}}=\frac{p}{(1-q)^{2}}=\frac{1}{p}$

$$
\begin{aligned}
& E(Y(Y-1))=\sum_{y=1}^{\infty} y(y-1) q^{y-1} p=p q \sum_{y=1}^{\infty} y(y-1)^{1} q^{y-2} \\
& =p q \sum \frac{d^{2}}{d q^{2}}\left(q^{y}\right)=p q \frac{d^{2}}{d q^{2}} \sum_{y=2}^{\infty} q^{y} \oint \\
& -1-q+\sum_{y=0}^{\infty} q^{y}=\frac{1}{1-q}-1-q \Rightarrow \sum_{y=2}^{\infty} q^{y}=\frac{1}{1-q}-1-q \\
& \Theta p q \frac{d}{d q}\left(\frac{1}{(1-q)^{2}}-1\right)=p q \frac{2}{(1-q)^{3}}=\frac{2 q}{p^{2}} \\
& \operatorname{Var}(Y)=E\left(Y^{2}\right)-E(Y)^{2}=E(Y(Y-1))+E(Y)-E(Y)^{2} \\
& =\frac{2 q}{p^{2}}+\frac{1}{p}-\frac{1}{p^{2}}=\frac{2 q+p-1}{p^{2}}=\frac{q}{p^{2}}=\frac{1-p}{r^{2}}
\end{aligned}
$$

Hypergeometric Probability Distribution

Suppose we have a population of N elements that possess one of two characteristics, e.g. r of them are red and $N-r$ are green.

A sample of n elements is randomly selected from the population. The r.v. of interest, Y, is the number of red elements in the sample.

Definition: A r.v. Y is said to have a hypergeometric probability distribution if and only if

$$
\begin{gathered}
p(y)=\frac{\binom{r}{y}\binom{N-r}{n-y}}{\binom{N}{n}}, \\
y=0, \ldots, n, \quad y \leq n, \quad n-y \leq N-r
\end{gathered}
$$

Theorem: If Y is a r.v. with a hypergeometric distribution, then
$\mu=E(Y)=\frac{n r}{N}$ and $\sigma^{2}=\operatorname{Var}(Y)=n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-n}{N-1}\right)$
Proof: omitted
Example: (\#3.102) An urn contains 10 marbles: 2 blue, 5 green, 3 red. Three marbles are to be drawn without replacement. Find $\mathrm{P}($ all 3 marbles are green).

Solution:

Poisson Probability Distribution
Definition: A rev. Y is said to have a Poisson probability distribution with parameter λ if and only if

$$
p(y)=\frac{\lambda^{y} e^{-\lambda}}{y!}, \quad y=0,1,2, \ldots, \quad \lambda>0
$$

We can show that it is the limit of the binomial distribution, i.e.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\binom{n}{y} p^{y}(1-p)^{n-y}=\frac{\lambda^{y} e^{-\lambda}}{y!}, \lambda=n p \Rightarrow p=\frac{\lambda}{n} \\
& \lim _{n \rightarrow \infty} \frac{n!}{(n-y)!y!}\left(\frac{\lambda}{n}\right)^{y}\left(1-\frac{\lambda}{n}\right)^{n-y}=\lim _{n \rightarrow \infty} \frac{n(h-1)(n-2) \ldots(n-y+1)}{y!}\left(\frac{\lambda}{n}\right)^{y}\left(1-\frac{\lambda}{n}\right)^{n-y} \\
& =\lim _{n \rightarrow \infty} \frac{\lambda^{y}}{y!}\left(1-\frac{\lambda}{n}\right)^{n-y} \frac{n(n-1)(n-2) \cdots(n-y+1)}{n y} \\
& =\frac{\lambda^{y}}{y^{\prime}} \lim \left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-y} \frac{n(n-1)(n-2) \cdots(n-y+1)}{n \cdot h \cdot n \cdot h} \\
& =\frac{\lambda^{y}}{y!} \lim _{h \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n} \underbrace{\left(1-\frac{\lambda}{h}\right)^{-y}}_{y,} \underbrace{\left(1-\frac{1}{h}\right)}_{1 \rightarrow 1} \underbrace{\left(1-\frac{2}{h}\right)}_{1} \cdots \underbrace{\left(1-\frac{y-1}{h}\right)}_{1} \\
& =\frac{\lambda^{y}}{\lim _{h \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n}}=\frac{\lambda^{y}}{\left.y\right|_{1}} \ell^{-} \\
& \sum_{y=0}^{\infty} p(y)=\sum_{y=0}^{\infty} \frac{\lambda y e^{-\lambda}}{y!}=e^{-\lambda} \sum_{y=0}^{\infty} \frac{\lambda y}{y!}=e^{\lambda}=1
\end{aligned}
$$

Theorem: If $Y \sim \operatorname{Poisson}(\lambda)$, then

$$
\begin{aligned}
& \left|\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=e^{x}\right| \\
& =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+=e^{x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Proof: } \\
& \left.\mathbb{E}(Y)=\sum y p Y\right)=\sum_{y=0}^{\infty} y \frac{\lambda^{y} e^{-\lambda}}{y^{\prime}!} \\
& =\sum_{y=1}^{\infty} \frac{\lambda^{y} e^{-\lambda}}{(y-1)!}=\lambda \sum_{y=1}^{\infty} \frac{\lambda^{y-1} e^{-x}}{(y-1)!} \\
& =(z=y-1)=\lambda \sum_{z=0}^{\infty} \frac{\lambda^{z} e^{-\lambda}}{z!}=\lambda \\
& \operatorname{Var}(Y)=E\left(Y^{2}\right)-E(Y)^{2}=E(Y(Y-1))+E(Y)-E(Y)^{2} \\
& E(Y(Y-1))=\sum_{y=0}^{\infty} y(y-1) \frac{\lambda^{y} e^{-\lambda}}{y!}=\sum_{y=2}^{\infty} \frac{\lambda^{y} e^{-\lambda}}{(y-2)!} \\
& =\lambda^{2} \sum_{y=2}^{\infty} \frac{\lambda^{y-2} e^{-\lambda}}{(y-2)!}=(z=y-2) \\
& =\lambda^{2}\left(\sum_{z=0}^{\infty} \frac{\lambda^{z} e^{-\lambda}}{z!}\right)=1=\lambda^{2} \\
& \operatorname{Var}(Y)=\lambda^{2}+\lambda-\lambda^{2}=\lambda
\end{aligned}
$$

Example: (\#3.122) Customers arrive at a checkout counter according to a Poisson distribution at an average of 7 per hour. During a given hour, what are the probabilities that
(a) No more than 3 customers arrive?
(b) At least 2 customers arrive?
(c) Exactly 5 customers arrive?

Solution: $\quad Y \sim p_{0 i}$ sion (7)
(a)

$$
\begin{aligned}
& p(Y \leq 3)=p(0)+p(1)+p(2)+p(3) \\
= & \frac{7^{0} e^{-7}}{0!}+\frac{7^{1} e^{-7}}{1!}+\frac{7^{2} e^{-7}}{2!}+\frac{7^{3} e^{-}}{3!} \\
= & 0.0818
\end{aligned}
$$

(b)

$$
\begin{aligned}
& p(Y \geqslant 2)=1-p(Y \leq 1) \\
= & 1-p(0)-p(1)=0.9927
\end{aligned}
$$

(c) $p(Y=5)=p(5)=\frac{7^{5} e^{-7}}{5!}$

$$
=0.1277
$$

Moments and Moment-Generating Functions
Definition: The $\boldsymbol{k}^{\boldsymbol{t h}}$ moment of a rev. Y taken about its mean, or the $\boldsymbol{k}^{\text {th }}$ central moment of Y , is defined to be $E\left[(Y-\mu)^{k}\right]$ and denoted by μ_{k}.
Note: $\sigma^{2}=\mu_{2}$.

$$
\mu_{k}^{\prime}=E\left(Y^{k}\right) \quad \begin{aligned}
& E(Y)=\mu \\
& E\left(Y^{2}\right)
\end{aligned}
$$

Definition: The moment-generating function (mgr), $m(t)$, for a r.v. Y is defined to be $m(t)=E\left(e^{t Y}\right)$.

We say that an mgf for Y exists if there is $b>0$ such that

$$
\begin{aligned}
& m(t)<\infty \text { for }|t| \leq b \text {. } \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+ \\
& e^{t Y}=1+t Y+\frac{(t Y)^{2}}{2!}+\frac{(t Y)^{3}}{3!}+ \\
& \begin{aligned}
m(t)= & F\left(e^{t w}\right)=\sum_{y} e^{t y} p(y) \\
& <(t y)^{2}
\end{aligned} \\
& =\sum_{y}\left[1+t y+\frac{(t y)^{2}}{2!}+\frac{(t y)^{3}}{3!}+\ldots\right] p(y) \\
& =\sum\left[p(y)+t y p(y)+\frac{(t y)^{2}}{2!} p(y)+\right. \\
& =\frac{\sum p(y)+t \sum y p(y)+\frac{t^{2}}{2!} \sum y^{2} p(y)+}{(Y)+t^{2}} \\
& =\left(1+t E(Y)+\frac{t^{2}}{2!} E^{2}(Y)\right.
\end{aligned}
$$

Theorem: If $m(t)$ exists, then for any $k \in Z^{+}$

$$
\left.\frac{d^{k} m(t)}{d t^{k}}\right|_{t=0}=m^{(k)}(0)=\mu_{k}^{\prime}=E\left(Y^{k}\right)
$$

Proof:

$$
\begin{align*}
& m(t)=1+t \mu_{1}^{\prime}+\frac{t^{2}}{2!} \mu_{2}^{\prime}+\frac{t^{3}}{3!} \mu_{3}^{\prime}+ \\
& m^{\prime}(t)=\mu_{1}^{\prime}+\frac{2 t}{2!} \mu_{2}^{\prime}+\frac{3 t^{2}}{3!} \mu_{3}^{\prime}+\ldots \\
& m^{\prime}(0)=\mu_{1}^{\prime}=E(Y) \\
& m^{\prime \prime}(t)=\mu_{2}^{\prime}+\frac{2 t}{2!} \mu_{3}^{\prime}+\ldots \\
& m^{\prime \prime}(0)=\mu_{2}^{\prime}=E\left(Y^{2}\right) \quad \text { 目 } \tag{图}
\end{align*}
$$

Example: Find the mgf for $Y \sim \operatorname{Poisson}(\lambda)$.

$$
\begin{aligned}
m(t) & =E\left(e^{t y}\right)=\sum_{y=0}^{\infty} e^{t y} \frac{\lambda^{y} e^{-\lambda}}{y!} \\
& =e^{-\lambda} \sum_{y=0}^{\infty} \frac{\left(e^{t} \lambda\right)^{y}}{y!}=e^{-\lambda} \cdot e^{t} \lambda \\
& =e^{\lambda\left(e^{t}-1\right)} \\
E(Y) & =m^{\prime}(0)=\left.e^{\lambda\left(e^{t}-1\right)} \cdot \lambda e^{t}\right|_{t=0}=\lambda
\end{aligned}
$$

Example: (\#3.155) Let $m(t)=\frac{1}{6} e^{t}+\frac{2}{6} e^{2 t}+\frac{3}{6} e^{3 t}$. Find
(a) $E(Y)$;
(b) $\operatorname{Var}(Y)$;
(c) Distribution of Y.

Solution:
(a)

$$
\begin{aligned}
E(Y) & =m^{\prime}(0)=\frac{1}{6} e^{t}+\frac{2}{6} e^{2 t} \cdot 2+\left.\frac{3}{6} e^{5 t} \cdot 3\right|_{t=0} \\
& =\frac{1}{6}+\frac{4}{6}+\frac{9}{6}=\frac{7}{3} \\
49 & =5
\end{aligned}
$$

(b) $\operatorname{Var}(Y)=E\left(Y^{2}\right)-E(Y)^{2}=6-\frac{49}{9}=\frac{5}{9}$

$$
\begin{aligned}
E\left(Y^{2}\right) & =m^{\prime \prime}(0)=\frac{1}{6} e^{t}+\frac{2}{6} e^{2 t} \cdot 4+\left.\frac{3}{6} e^{3 t} \cdot 9\right|_{t=0} \\
& =\frac{1}{6}+\frac{8}{6}+\frac{27}{6}=6
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) } m(t)=E\left(e^{t y}\right)=\sum_{t y} e^{t y} p(y) \\
& =e^{t y_{1}} p\left(y_{1}\right)+e^{t y_{2}} p\left(y_{2}\right)+\ldots \\
& \text { V. } \begin{array}{ccc}
1 & 2 & 3 \\
1 / 6 & 2 / 6 & 3 / 6
\end{array} \\
& E(Y)=1 \cdot \frac{1}{6}+2 \cdot \frac{2}{6}+3 \cdot \frac{3}{6}=\frac{7}{3}
\end{aligned}
$$

