Lecture 8 (Integrals continued)

Indefinite Integrals

Recall: Part I of FTC says that if f is continuous, then $\int_{a}^{x} f(t) d t$ is an antiderivative of f. Part II tells us that $\int_{a}^{b} f(x) d x=F(b)-F(a)$, where F is an antiderivative. From now on we shall use the following notation for an antiderivative:

$$
\int f(x) d x=F(x)
$$

and call it an indefinite integral.
Example:
$\int x^{2} d x=\frac{x^{3}}{3}+C$
$\int \cos x d x=\sin x+C$

Caution: There is a difference between a definite integral $\int_{a}^{b} f(x) d x$ which is a number, and an indefinite integral $\int f(x) d x$ which is a function (or a family of functions).

$$
\int_{a}^{b} f(x) d x=\left.\int f(x) d x\right|_{a} ^{b}
$$

Properties of indefinite integrals:

- $\int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x$
- $\int c f(x) d x=c \int f(x) d x$

Table of Indefinite Integrals

$$
\begin{array}{|ll}
\hline \int k d x=k x+c & \\
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, \quad n \neq-1 & \int \frac{1}{x} d x=\ln |x|+C \\
\int e^{x} d x=e^{x}+C & \int a^{x} d x=\frac{a^{x}}{\ln a}+C \\
\int \sin x d x=-\cos x+C & \int \cos x d x=\sin x+C \\
\int \sec ^{2} x d x=\tan x+C & \int \csc ^{2} x d x=-\cot x+C \\
\int \sec x \tan x d x=\sec x+C & \int \csc x \cot x d x=-\csc x+C \\
\int \frac{1}{x^{2}+1} d x=\tan ^{-1} x+C & \int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+C
\end{array}
$$

$$
\begin{aligned}
& \text { Examples: Find the indefinite integrals } \\
& \int \begin{aligned}
\int \frac{1}{x^{3}} d x & =\int x^{-3} d x=\frac{x^{-3+1}}{-3+1}+C \\
\int x^{n} d x & =\frac{x^{n+1}}{n+1}+c \\
\int \frac{x^{2}-\sqrt{x}+1}{x} d x & =\int\left[x-x^{-1 / 2}+\frac{1}{2} x^{2}\right. \\
& =\int x d x-\int x^{-1 / 2} d x+\int \frac{1}{x} d x \\
& =\frac{x^{2}}{2}-2 x^{1 / 2}+\ln |x|+C
\end{aligned} \\
& \begin{aligned}
\int\left(3 \sec ^{2} x-5 e^{x}\right) d x & =3 \int \sec ^{2} x d x-5 \int e^{x} d x \\
& =3 \tan x-5 e^{x}+C
\end{aligned}
\end{aligned}
$$

Examples: Evaluate

$$
\begin{aligned}
& \frac{\text { Examples: Evaluate }}{\int_{1}^{2} \frac{(x-1)^{2}}{x} d x=\int_{1}^{2} \frac{x^{2}-2 x+1}{x} d x=\int_{1}^{2}\left(x-2+\frac{1}{x}\right) d x} \begin{array}{l}
=\left[\frac{x^{2}}{2}-2 x+\ln |x|\right]_{1}^{2} \\
=\frac{2^{2}}{2}-2 \cdot 2+\ln 2-\left(\frac{1^{2}}{2}-2 \cdot 1+\ln 1\right) \\
=-2+\ln 2+\frac{3}{2} \\
=-\frac{1}{2}+\ln 2
\end{array}, l \\
& =-2
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{2}|2 x-1| d x= \\
& \begin{aligned}
&|2 x-1|= \begin{array}{l}
2 x-1, x \geq \frac{1}{2} \\
-(2 x-1), x \leq \frac{1}{2}
\end{array} \\
&= \int_{0}^{1 / 2}(1-2 x) d x+\int_{1 / 2}^{2}(2 x-1) d x \\
&= {\left[x-2 \cdot \frac{x^{2}}{2}\right]_{0}^{1 / 2}+\left[2 \cdot \frac{x^{2}}{2}-x\right]_{1 / 2}^{2} } \\
&=\left[\frac{1}{2}-\frac{1}{4}-0\right]+\left[(4-2)-\left(\frac{1}{4}-\frac{1}{2}\right)\right] \\
&=\frac{1}{2}+2=\frac{5}{2}
\end{aligned} .
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{\pi / 3} \frac{\sin x \sin x \tan 2^{2} x}{\sec ^{2} x} d x & = \\
& =\int_{0}^{\pi / 3} \frac{\sin x\left(1+\tan ^{2} x\right)}{\sec ^{2} x} d x \\
& =\int_{0}^{\pi / 3} \frac{\sin x \cdot \frac{2}{\sec ^{2} x}}{\sec ^{2 x}} d x \\
& =\int_{0}^{\pi / 3} \sin x d x=-\left.\cos x\right|_{0} ^{\pi / 3} \\
& =-\left[\cos \frac{\pi}{3}-\cos 0\right] \\
& =-\left[\frac{1}{2}-1\right]=\frac{1}{2}
\end{aligned}
$$

Substitution Rule
Consider the following integral:

$$
\begin{aligned}
u & =x^{2}+3 \\
u^{\prime} & =2 x \\
\frac{d u}{d x} & =2 x \\
d u & =2 x d x
\end{aligned}
$$

$$
\begin{aligned}
\int \frac{2 x}{x^{2}+3} d x & =\int \underbrace{\frac{1}{x^{2}+3}}_{\frac{1}{4}} \underbrace{2 x d x} d u \\
& =\int \frac{1}{u} d u \\
& =\ln |u|+c \\
& =\ln \left|x^{2}+3\right|+c \\
& =\ln \left(x^{2}+3\right)+c
\end{aligned}
$$

In general, this method will work if we have an integral of the form

$$
\begin{aligned}
& \int f(g(x)) g^{\prime}(x) d x=\int f(u) d u \\
& \text { then } F^{\prime}=f . \text { Thus, } \\
& x=F(g(x))+C \quad \text { (by the Chain Rule) } \\
& =g(x), \text { then } d u=g^{\prime}(x) d x \text {, and we get that }
\end{aligned}
$$

If we make a substitution $u=g(x)$, then $d u=g^{\prime}(x) d x$, and we get that

$$
\begin{gathered}
F(g(x)) \text { is antiAerivative of } \\
\\
f(g(x)) g^{\prime}(x) \\
\text { why? }[F(g(x))]^{\prime}=F^{\prime}(g(y)) \cdot g^{\prime}(x) \\
=f(g(x)) g^{\prime}(x) \\
\text { So } \int f(g(x)) g^{\prime}(x) d x=F(g(x))+c
\end{gathered}
$$

Substitution Rule: If $u=g(x)$ is a differentiable function whose range is an interval on which f is continuous, then

$$
\begin{array}{r}
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u \\
u=g(x), \quad d u=g^{\prime}(x) d x
\end{array}
$$

Example: Evaluate

$$
\left.\begin{array}{rl}
\int \sqrt{x+1} d x= & \int \sqrt{u} d u
\end{array}\right)=\frac{u^{3 / 2}}{3 / 2}+c .
$$

$$
\begin{array}{lrl}
\int e^{-2 x} d x= & \int e^{u}\left(-\frac{1}{2} d u\right) & =-\frac{1}{2} \int e^{u} d u \\
u & =-2 x \\
d u & =-2 d x \\
-\frac{1}{2} d u & =-\frac{1}{2} e^{u}+c \\
& =-\frac{1}{2} e^{-2 x}+c \\
\int x^{2} \sin \left(x^{3}-1\right) d x=\frac{1}{3} \int \sin u d u \\
u & =x^{3}-1 & =-\frac{1}{3} \cos u+c \\
d u & =3 x^{2} d x & =-\frac{1}{3} \cos \left(x^{3}-1\right)+c
\end{array}
$$

$$
\begin{aligned}
\int \tan x d x & =\int \frac{\sin x}{\cos x} d x
\end{aligned}=-\int \frac{1}{u} d u \quad \begin{aligned}
u & =\cos x \\
d u & =-\ln |u|+C \\
-d u & =\sin x d x d x \\
& =-\ln |\cos x|+C \\
& =\ln x \mid+c \\
& =\ln |\sec x|+C
\end{aligned}
$$

$$
\begin{array}{rlrl}
\int x e^{x^{2}} d x & =\quad \frac{1}{2} \int e^{u} d u \\
u & =x^{2} & & =\frac{1}{2} e^{u}+c \\
d u & =2 x d x & & =\frac{1}{2} e^{x^{2}}+c
\end{array}
$$

$$
\begin{aligned}
& \int x \sqrt{x+2} d x=\int(u-2) \sqrt{u} d u \\
& u=x+2 \Rightarrow x=u-2 \\
& d u=d x \\
& =\int[u \sqrt{u}-2 \sqrt{u}] d u=\int\left[u^{3 / 2}-2 u^{1 / 2}\right] d u \\
& =\frac{u^{5 / 2}}{5 / 2}-2 \frac{u^{3 / 2}}{3 / 2}+C \\
& =\frac{2}{5}(x+2)^{F / 2}-\frac{u}{3}(x+2)^{3 / 2}+C
\end{aligned}
$$

$$
\begin{aligned}
\int \frac{e^{x}}{1+e^{x}} d x= & \int \frac{1}{u} d u
\end{aligned}=\ln |u|+c
$$

Substitution Rule for Definite Integrals:
If g^{\prime} is continuous on $[a, b]$ and f is continuous on the range of $u=g(x)$, then

$$
(\nVdash) \int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

Proof: Let F be antiderivative of f $\Rightarrow F(g(x))$ is antiderivative of $f(g(x)) g^{\prime}(x)$

$$
\begin{aligned}
& \int_{a}^{b} f(g(x)) g^{\prime}(x) d x=F(g(b))-F(g(a)) \\
& F T c, I \\
& \int_{g(a)}^{g(f)} f(n) d u=F(g(b))-F(g(a)) \\
& F(1 c, I I
\end{aligned}
$$

$$
\Rightarrow \quad(*)
$$

Example: Evaluate

$$
\begin{array}{rlrl}
\int_{0}^{3} \sqrt{5 x+2} d x= & \frac{1}{5} \int_{5 \cdot 0+2}^{5 \cdot 3+2} \sqrt{u} d u & =\frac{1}{5} \int_{2}^{17} \sqrt{u} d u \\
u=5 x+2 & & =\left.\frac{1}{5} \frac{u^{3 / 2}}{3 / 2}\right|_{2} ^{17} \\
\frac{1}{5} d u=d x & & =\frac{2}{15}\left[17^{3 / 2}-2^{3 / 2}\right] \\
& =896
\end{array}
$$

$$
\begin{aligned}
\int_{1}^{e} \frac{\ln x}{x} d x= & \int_{\ln e}^{\ln e} u d u & =\int_{0}^{1} u d u \\
u=\ln x & & \\
d u=\frac{1}{x} d x & & =\left.\frac{u^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{1} x e^{-x^{2}} d x= & -\frac{1}{2} \int_{-0^{2}}^{-1^{2}} e^{u} d u \\
u=-x^{2} & =-\frac{1}{2} \int_{0}^{-1} e^{u} d u \\
d u=-2 x d x \quad & =\frac{1}{2} \int_{-1}^{0} e^{u} d u \\
-\frac{1}{2} d u=x d x \quad & =\left.\frac{1}{2} e^{u}\right|_{-1} ^{0} \\
& =\frac{1}{2}\left(e^{0}-e^{-1}\right) \\
& =\frac{1}{2}\left(1-\frac{1}{e}\right)
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{\pi / 2} \underline{\cos x \sin (\sin x) d x}= & \int_{\sin u}^{\sin \frac{\pi}{2}} \sin u d u \\
d u & =\sin x \\
d u & =\cos x d x \\
& =\int_{0}^{1} \sin u d u \\
& =-\left.\cos u\right|_{0} ^{1} \\
& =-(\cos 1-\cos 0) \\
& =1-\cos 1
\end{aligned}
$$

Symmetry
Suppose f is continuous on $[-a, a]$.

- If f is even, i.e. $f(-x)=f(x)$, then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$
- If f is odd, i.e. $f(-x)=-f(x)$, then $\int_{-a}^{a} f(x) d x=0$

$$
\begin{aligned}
& \text { Proof: } \\
& \int_{-a}^{a} f(x) d x= \int_{-a}^{0} f(x) d x+\int_{0}^{a} f(x) d x \\
&=-\int_{0}^{0} f(x) d x+\int_{0}^{a} f(x) d x \\
&= \int_{0}^{a} f(-u) d u+\int_{0}^{a} f(x) d x \\
&=\int_{0}^{a} f(-x) d x+\int_{0}^{a} f(x) d x
\end{aligned}
$$

$$
\int_{-a}^{\text {Proof (continued): }} f(x) d x=\int_{0}^{a} f(-x) d x+\int_{0}^{a} f(x) d x
$$

If $f(x)$ is even, $f(-x)=f(x)$, then

$$
\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x
$$

If $f(x)$ is odd, $f(-x)=-f(x)$, then

$$
\begin{aligned}
& \text { If } f(x) \text { is odd } f(-x)=-f(x) \text {, then } \\
& \int_{-a}^{a} f(x) d x=-\int_{0}^{a} f(x) d x+\int_{0}^{a} f(x) d x=0
\end{aligned}
$$

Example: Evaluate

$$
\begin{gathered}
\int_{-\pi / 3}^{\pi / 3} x^{4} \cos x \sin ^{3} x d x=0 \\
f(-x)=(-x)^{4} \cos (-x) \sin ^{3}(-x) \\
=x^{4} \cos x\left(-\sin ^{3} x\right) \\
=-x^{4} \cos x \sin ^{3} x=-f(x)
\end{gathered}
$$

$f(x)$ is odd

