
 

Lecture 8 (Integrals continued) 

Indefinite Integrals                                                          

Recall: Part I of FTC says that if   is continuous, then ∫  ( )  
 

 
 is an 

antiderivative of  . Part II tells us that ∫  ( )  
 

 
  ( )  ( ), where   is an 

antiderivative. From now on we shall use the following notation for an 

antiderivative: 

∫ ( )    ( ) 

 and call it an indefinite integral. 

Example: 

∫       

∫        



 

 Caution: There is a difference between a definite integral ∫  ( )  
 

 
 

which is a number, and an indefinite integral ∫ ( )   which is a function (or a 

family of functions).  
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Properties of indefinite integrals: 
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Table of Indefinite Integrals 
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Examples: Find the indefinite integrals  
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Examples: Evaluate  
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Substitution Rule 

Consider the following integral: 

∫
  

    
   

 

 

 

 

 

 

 

 

 



 

In general, this method will work if we have an integral of the form 

∫ ( ( ))  ( )   

If   is an antiderivative of  , then     . Thus, 

∫  ( ( ))  ( )    ( ( ))       (by the Chain Rule) 

If we make a substitution    ( ), then      ( )  , and we get that 

 

 

 

 

 

 

 



 

Substitution Rule: If     ( ) is a differentiable function whose range is an 

interval on which   is continuous, then 

∫ ( ( ))  ( )   ∫ ( )   

 

Example: Evaluate 
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Substitution Rule for Definite Integrals: 

If    is continuous on [   ] and   is continuous on the range of    ( ), then 

∫  ( ( ))  ( )  
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Proof: 

 

 

 

 

 

 

 

 



 

Example: Evaluate 
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Symmetry 

Suppose   is continuous on [    ]. 

 If   is even, i.e.  (  )   ( ), then ∫  ( )  
 

– 
  ∫  ( )  

 

 
 

 If   is odd, i.e.  (  )    ( ), then ∫  ( )  
 

– 
   

Proof: 

 

 

 

 

 

 

 



 

Proof (continued): 

 

 

 

 

 

 

 

 

 

 

 

 



 

Example: Evaluate  
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