Lecture 7 (Integrals)
Antiderivatives (section 4.9)
Very often we need to solve a reverse problem: we need to find a function, $F(x)$, whose derivative, $f(x)$, is known.
Definition: A function F is called an antiderivative of f on (a, b), if

$$
F^{\prime}(x)=f(x), \quad x \in(a, b)
$$

Example: $f(x)=x^{2}$

$$
\begin{gathered}
\frac{1}{3}\left(x^{3}\right)^{\prime}=\frac{1}{3} 3 x^{2}=x^{2} \\
F(x)=\frac{1}{3} x^{3} \\
\text { check } F^{\prime}(x)=\left(\frac{1}{3} x^{3}\right)^{\prime}=\frac{1}{3} \cdot 3 x^{2}=x^{2} \\
G^{\prime}(x)=\left(\frac{1}{3} x^{3}+5\right)^{\prime}=x^{2}
\end{gathered}
$$

$-y=\frac{x^{3}}{3}+3$
$-y=\frac{x^{3}}{3}+2 \rightarrow\left(\frac{x^{3}}{3}+2\right)^{\prime}=x^{2}$
$-y=\frac{x^{3}}{3}+1$
$-y=\frac{x^{3}}{3}$
$-y=\frac{x^{3}}{3}-1$
$-y=\frac{x^{3}}{3}-2$

Theorem: If F is an antiderivative of f on (a, b), then the most general antiderivative of f on (a, b) is

$$
F(x)+C
$$

where C is a constant
Example: $f(x)=x^{n}$

$$
\begin{aligned}
& \frac{1}{n+1}\left(x^{n+1}\right)^{\prime}=\frac{(n+1)}{n+1} x^{n}=x^{n} \\
& F(X)=\frac{1}{n+1} x^{n+1}+C
\end{aligned}
$$

| Function | Antiderivative |
| :---: | :---: | :---: |
| x^{n} | $\frac{x^{x+1}}{n+1}+C$ |
| $\frac{1}{x}$ | $\ln \|x\|+C$ |
| e^{x} | $e^{x}+C$ |
| $\cos x$ | $\sin x+C$ |
| $\frac{\sin x}{\sec x}$ | $-\cos x+C$ |
| $\frac{\sec x \tan x}{\sqrt{1-x^{2}}}$ | $\tan x+C$ |
| $\frac{1}{1+x^{2}}$ | $\sec x+C$ |

Example: $f(x)=2 e^{x}-\sin x+1$. Find the antiderivative, $F(x)$.

$$
f(x)=2 e^{x}+\cos x+x+c
$$

check

$$
F^{\prime}(x)=2 e^{x}-\sin x+1=f(x)
$$

Example: Given $f^{\prime \prime}(x)=2+\cos x, f(0)=-1, f\left(\frac{\pi}{2}\right)=0$. Find f.
antiderivative

$$
\text { of } f^{\prime \prime}(x)<-f^{\prime}(x)=2 x+\sin x+c
$$

check: $f^{\prime \prime}(x)=2+\cos x$

$$
\left.\begin{array}{rl}
\text { antiderivative } & \text { of } f(x)
\end{array}=2 \cdot \frac{x^{2}}{\prime}(x) \cos x+C x+D\right]
$$

check: $f^{\prime}(x)=2 x+\sin x+c$

$$
\begin{aligned}
& -1=f(0)=0^{2}-1+c \cdot 0+D \Rightarrow D=0 \\
& 0=f\left(\frac{\pi}{2}\right)=\left(\frac{\pi}{2}\right)^{2}-0+c \cdot \frac{\pi}{2}+0 \Rightarrow c=-\frac{\pi}{2} \\
& f(x)=x^{2}+\cos x-\frac{\pi}{2} x
\end{aligned}
$$

Area Problem
Find the area of the region under the curve $y=f(x)$ from a to b.

$A_{s}=\frac{1}{2} l \cdot h$

Example: Estimate the area under $y=x^{2}$ on $(0,1)$.

$$
\begin{aligned}
& 0<A_{s}<1 \\
& A_{3}=A_{s_{1}}+A_{s_{2}}+A_{s_{3}}+A_{s_{4}} \\
& A_{S_{1}} \approx \text { area of rectangle } \\
& =\frac{1}{4} \cdot\left(\frac{1}{4}\right)^{2} \\
& A_{S_{2}} \approx \frac{1}{4} \cdot\left(\frac{1}{2}\right)^{2} \\
& A_{S} \approx \frac{1}{4}\left(\frac{1}{4}\right)^{2}+\frac{1}{4}\left(\frac{1}{2}\right)^{2}+\frac{1}{4}\left(\frac{3}{4}\right)^{2}+\frac{1}{4}(1)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& A_{s}<0.469
\end{aligned}
$$

$0.219<A_{s}<0.469$

$$
\begin{aligned}
& R_{8}=\frac{1}{8} \cdot\left(\frac{1}{8}\right)^{2}+\frac{1}{8}\left(\frac{1}{4}\right)^{2}+\ldots+\frac{1}{8} \cdot 1^{2} \\
&=0.398 \\
& A_{s}<0.398
\end{aligned}
$$

$$
\begin{aligned}
& L_{8}=\frac{1}{8} \cdot\left(\frac{1}{8}\right)^{2}+\frac{1}{8} \cdot\left(\frac{1}{4}\right)^{2}++\frac{1}{8} \cdot\left(\frac{1}{8} x^{2}\right. \\
& =0.273<A_{S} \\
& 0.273<A_{S}<0.398
\end{aligned}
$$

$$
\begin{aligned}
A_{s} & \approx \frac{0.3328+0.3338}{2} \\
& \approx 0.333
\end{aligned}
$$

$$
A_{s}=\operatorname{limit}\left[\begin{array}{cc}
\text { sum of areas } \\
\text { of rectangles }
\end{array}\right]
$$

n	L_{n}	R_{n}
10	0.285	0.385
30	0.317	0.350
100	0.328	0.338
1000	0.3328	0.3338

$$
h \rightarrow \infty
$$

Riemann Sums

Our goal is to find a formula for the area which is bounded by the graph of the continuous function f defined on $[a, b]$.

> To achieve that, we divide the interval $[a, b]$ into n equal subintervals of the width $\frac{b-a}{n}$. Then we choose points $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$, called sample points.

We denote by R_{i} the area of the rectangle with height $f\left(x_{i}^{*}\right)$ and width $\Delta x=\frac{b-a}{n}$ ie.

$$
\begin{gathered}
R_{i}=f\left(x_{i}^{*}\right) \cdot \Delta x \\
\text { height }
\end{gathered}
$$

Definition: The area A of the region S that lies under the graph of the continuous function f is the limit of the sum of the areas of approximating rectangles: $\geqslant \frac{b-a}{h}$

$$
A=\lim _{n \rightarrow \infty}\left[R_{1}+\cdots+R_{n}\right]=\lim _{n \rightarrow \infty}\left[f\left(x_{1}^{*}\right) \cdot \Delta x+\cdots+f\left(x_{n}^{*}\right) \cdot \Delta x\right]
$$

In sigma notation: $A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \cdot \Delta x$

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i} \\
& =x_{1}+x_{2}++x_{n} \\
& \sum_{i=1}^{n} i \\
& =1+2++n \\
& \sum_{i=1}^{3} i=1+2+3
\end{aligned}
$$

Definition: The sum

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \cdot \Delta x
$$

is called a Riemann sum.

Back to our
Example: Estimate the area under $y=x^{2}$ on $(0,1)$

$$
\begin{aligned}
A= & \lim _{x} \sum f\left(x_{i}\right) \Delta x \\
& x_{i}=\frac{1}{n}, \Delta x=\frac{1}{n}, f(x)=x^{2} \\
= & \lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{2} \cdot \frac{1}{h} \\
= & \lim _{h \rightarrow \infty}\left[\left(\frac{1}{n}\right)^{2} \cdot \frac{1}{n}+\left(\frac{x_{i}}{n}\right)^{2} \cdot \frac{1}{n}+\ldots+\left(\frac{n}{n}\right)^{2} \cdot \frac{1}{n}\right] \\
= & \lim _{n \rightarrow \infty} \frac{1}{h^{3}}\left[1^{2}+2^{2}+3^{2}+\ldots+n^{2}\right] \\
= & \lim _{h \rightarrow \infty} \frac{1}{n^{3}} \sum_{i=1}^{n} i^{2}
\end{aligned}
$$

Useful formula:

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

$$
\begin{aligned}
A & =\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6} \\
& =\frac{1}{6} \lim _{n} \frac{1}{n^{2}}(n+1)(2 n+1) \\
& =\frac{1}{6} \lim _{n \rightarrow \infty} \frac{1}{n}(n+1) \cdot \frac{1}{n}(2 n+1) \\
& =\frac{1}{6} \lim _{n \rightarrow \infty}\left(1+\frac{\frac{1}{n}}{\left.\frac{n}{y}\right)}\left(2+\frac{1}{n}\right)=\frac{1}{6} \cdot 1 \cdot 2=\frac{1}{3}\right.
\end{aligned}
$$

$$
\int_{a}^{b} f(x) d x
$$

Definite Integral

We tried to estimate the area of the region by subdividing the interval into many subintervals. Our goal is to get the exact area, not just an estimate (like we did in the previous example).

Definition: Let f be a function defined on $[a, b]$. We divide $[a, b]$ into n subintervals of equal width $\Delta x=\frac{b-a}{n}$, and let $a=x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}=b$ be the endpoints of these subinterval and we let $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$ be any sample points of these subintervals, i.e. $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$. Then the definite integral of \boldsymbol{f} from \boldsymbol{a} to \boldsymbol{b} is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

provided that this limit exists. If it does exist, f is called integrable on $[a, b]$.

lower limit

Theorem: If f is integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$ (right endpoints).
Example: Evaluate $\int_{0}^{2}\left(2 x-x^{3}\right) d x$

$$
\begin{aligned}
f(x) & =2 x-x^{3}, \Delta x=\frac{2-0}{n}=\frac{2}{n} \\
x_{i}=a & +i \Delta x=0+i \cdot \frac{2}{n}-\frac{2}{n} i \\
\int_{0}^{2}\left(2 x-x^{3}\right) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[2 \frac{2}{n} i-\left(\frac{2}{n} i\right)^{3}\right] \frac{2}{n} \\
= & \lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\frac{4}{n} i+\frac{8}{n^{3}} i^{3}\right] \frac{2}{n}
\end{aligned}
$$

Rules for sigma notation:

$$
\begin{aligned}
& \text { - } \sum_{i=1}^{n} c=n c \\
& \sum_{i=1}^{n} c=\underbrace{c+c++c}_{n \text { times }}=n c \\
& \text { - } \sum_{i=1}^{n} c x_{i}=c \sum_{i=1}^{n} x_{i} \\
& \sum_{i=1}^{n} c x_{i}=c x_{1}+c x_{2}+\ldots+c x_{n}=c\left(x_{1}+x_{2}++x_{n}\right) \\
& \text { - } \sum_{i=1}^{n}\left(x_{i} \pm y_{i}\right)=\sum_{i=1}^{n} x_{i} \pm \sum_{i=1}^{n} y_{i} \\
& =c \sum_{i=1}^{n} x_{i} \\
& \sum_{i=}^{n}\left(x_{i} \pm y_{i}\right)=x_{1} \pm y_{1}+x_{2} \pm y_{2}+\ldots+x_{n} \pm y_{n} \\
& =\left(x_{1}+x_{2}+\ldots+x_{n}\right) \pm\left(y_{1}+y_{2} t+y_{n}\right) \\
& =\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} y_{i}
\end{aligned}
$$

Useful formulas:

$$
\begin{gathered}
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}=1+2+3+\ldots+n \\
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}=1^{2}+2^{2}-1>^{2}+\ldots+n^{2} \\
\sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}=1^{3}+2^{3}+3^{3}++n^{3}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Back to } \int_{0}^{2}\left(2 x-x^{3}\right) d x \\
= & \lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\frac{4}{n} i-\frac{8}{n^{3}} i^{3}\right] \frac{2}{n}-\lim \left[\frac{4}{n} \sum_{i=1}^{n} i-\frac{8}{n^{3}} \sum_{i=1}^{n} i^{3}\right] \frac{2}{n} \\
= & \lim _{n \rightarrow \infty}\left[\frac{4}{2} \cdot \frac{h(n+1)}{2}-\frac{8}{n^{7}} \cdot\left(\frac{(n(n+1))^{2}}{2}\right] \cdot \frac{2}{n}\right. \\
= & \lim \left[\frac{4}{n}(n+1)-\frac{4}{n^{2}}(n+1)^{2}\right]=4 \lim \left[\frac{n+1}{n}-\left(\frac{n+1}{n}\right)^{2}\right] \\
& =4 \lim _{n \rightarrow \infty}\left[1+\frac{1}{n}-\left(1+\frac{1}{n}\right)^{2}\right]=0
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{2}\left(2 x-x^{3}\right) d x \\
= & A_{1}-A_{2}
\end{aligned}
$$

Properties of Definite Integral

- $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$

$$
\int_{a}^{\frac{P r o f f}{b}} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \frac{b-a}{n}=-\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \frac{a-b}{n}=-\int_{b}^{a} f(x) d x
$$

- $\int_{a}^{a} f(x) d x=0 \quad \operatorname{since} \quad \frac{a-a}{h}=0$
- $\int_{a}^{b} c d x=c(b-a)$

$$
\begin{aligned}
& \text { Proof: } \\
& A=c(b-a) \\
& \int_{a}^{l} c d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} c \frac{b-a}{n} \\
& =\lim _{h \rightarrow \infty} c \sum_{i=1}^{n} \frac{b-a}{n} \\
& =\lim c \frac{b-a}{x} \not x \\
& =c(b-a)
\end{aligned}
$$

$$
\begin{aligned}
& \text { • } \int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x \\
& \text { • } \int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x \\
& \text { Proof: } \\
& \int_{a}^{b}[f(x)+g(x)] d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[f\left(x_{i}\right)+g\left(x_{i}\right)\right] \Delta x \\
& =\lim \sum f\left(x_{i}\right) \Delta x+\lim \sum g\left(x_{i}\right) \Delta x \\
& =\int_{a}^{b} f(x) \Delta x+\int_{a}^{l} g(x) d x \\
& \Delta x=\frac{b-a}{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example: Evaluate } \int_{0}^{1}\left(1-2 x^{2}\right) d x \\
& \qquad \begin{aligned}
\int_{0}^{1}\left(1-2 x^{2}\right) d x & =\int_{0}^{1} 1 d x-2 \int_{0}^{1} x^{2} d x \\
& =1 \cdot(1-0)-2 \cdot \frac{1}{3} \\
& =1-\frac{2}{3}=\frac{1}{3} \quad \begin{array}{l}
\text { calculated } \\
\text { it earlier }
\end{array}
\end{aligned}
\end{aligned}
$$

More properties...

- $\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x, \quad a<c<b$

- If $f(x) \geq g(x)$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$
- If $m \leq f(x) \leq M$ for $a \leq x \leq b$ then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M\left(b-a^{a}\right) \quad b$

Proof:

area
under $y=m$

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

Example: Use the last property to estimate $\int_{-1}^{1} \sqrt{1+x^{2}} d x$.

$$
f(x)=\sqrt{1+x^{2}},[-1,1]
$$

$$
-1 \leq x \leq 1
$$

$$
0 \leq x^{2} \leq 1
$$

$$
1 \leq 1+x^{2} \leq 2
$$

$$
m=\sqrt{1} \leq \sqrt{1+x^{2}} \leq \sqrt{2}=M
$$

$$
\sqrt{1}(1-(-1)) \leq \int_{-1}^{1} \sqrt{1+x^{2}} d x \leq \sqrt{2}(1-(-1))
$$

$$
2 \leq \int_{-1}^{1} \sqrt{4 x^{2}} d x \leq 2 \sqrt{2}
$$

Fundamental Theorem of Calculus (FTC)
The FTC consists of two parts:

$$
g(x)=\int_{a}^{x} f(t) d t
$$

Then g is an antiderivative of f, ie.

$$
g^{\prime}=f
$$

Proof:

$$
\text { Proof: } \begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
g(x+h)-g(x) & =\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t \\
& =\int_{x}^{x+h} f(t) d t
\end{aligned}
$$

$$
\frac{x_{a}(x)}{\substack{x+1}}
$$

Proof (continued):

$$
\frac{g(x+h)-g(x)}{h}=\frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

Let $h>0, f$ is continuous on $[x, x+h]$

Then there are $c, d \in[x, x+h]$ s.t. $f(c)=m-a b s$ min
$f(d)=M-a b s \cdot \max$
$m \leq f(t) \leq M$
$m(x+h-x) \leq \int_{x}^{x+h} f(t) d t \leq M(x+h-x)$
$m h \leq \int_{x}^{x+h} f(t) d t \leq M h$

$$
\begin{aligned}
& \text { Proof (continued): } \\
& \quad f(c)=m \leq \frac{1}{h} \int_{x}^{x+h} f(t) A-l \leq M=f(d)
\end{aligned}
$$

As $h \rightarrow 0 \quad[x, x+h] \rightarrow x \Rightarrow c, d \rightarrow x$
So, as $h \rightarrow 0, f(c) \rightarrow f(x)$

$$
f(d) \rightarrow f(x)
$$

By the squerzeThm,

$$
\begin{aligned}
& \frac{1}{h} \int_{x}^{x+h} f(t) d t \rightarrow{ }_{h \rightarrow 0}^{x} f(x) \\
& g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t=f(x)
\end{aligned}
$$

Example: Find the derivative of $g (x) = \int _ { 3 } ^ { x } \longdiv { e ^ { t ^ { 2 } - t } d t }$

$$
g^{\prime}(x) \overline{F T C, I} \quad f(x)=e^{x^{2}-x}
$$

Example: Find the derivative of $h(x)=\int_{\sin x}^{1} \sqrt{1+t^{2}} d t$ quiz

$$
=-\int^{\sin x} \sqrt{1+t^{2}} d t
$$

If $g(x)=\int_{1}^{x} \sqrt{1+t^{2}} d t$

$$
\begin{array}{r}
h(x)=-g(\sin x) \\
h^{\prime}(x)=-g^{\prime}(\sin x) \cdot \cos x \\
g^{\prime}(x)=\sqrt{1+x^{2}} \mid=-\sqrt{1+\sin ^{2} x} \cdot \cos x
\end{array}
$$

Part II: If F is any antiderivative of f, ie. $F^{\prime}=f$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Note: FTC shows that differentiation and integration are inverse processes.
Proof:

$$
g(x)=\int_{a}^{x} f(t) d t \underset{F T C, I}{\Rightarrow} g^{\prime}(x)=f(x)
$$

g is also antiderivative of f

$$
\text { So, } f(x)=g(x)+c
$$

$$
\begin{align*}
& F(b)-F(a)=g(b)+\phi-[g(a)+\phi] \\
&=g(b)-g(a)=g(b)=\int_{a}^{b} f(t) d t \\
& g(a)=\int_{a}^{a} f(t) d t=0 \tag{客}
\end{align*}
$$

Example: Evaluate the integral $\int_{0}^{1} x^{2} d x$.

$$
x^{n} \rightarrow \frac{1}{n+1} x^{n+1}
$$

$$
\begin{aligned}
& \left.\quad \begin{array}{l}
\text { Example: Evaluate the integral } \int_{0}^{1} x^{2} d x . \\
\int_{0}^{1} x^{2} d x=F(1)-F(0)=\frac{1}{3} \cdot 1^{3}-\frac{1}{3} \cdot 0^{3} \\
\\
F(x)=\frac{1}{3} x^{3}
\end{array}\right]=\frac{1}{3}
\end{aligned}
$$

Δ Example: Evaluate the integral $\int_{1}^{5} e^{x+1} d x=\int_{1}^{5} e e^{x} d x=e \int_{1}^{5} e^{x} d x$

$$
\begin{aligned}
& \left.=e_{F(x)}^{\left[e^{x}\right]_{1}^{5}=} \frac{e^{1} \cdot\left[e^{5}-e^{1}\right]}{F(5)-F(10)}\right\} \\
& =e^{6}-e^{2}
\end{aligned}
$$

Example: Evaluate the integral $\int_{1}^{2} \frac{1+x^{2}}{x^{3}} d x .=\int_{1}^{2}\left[\frac{1}{x^{3}}+\frac{1}{x}\right] d x$

$$
\begin{aligned}
& \frac{1}{x^{3}}=x^{-3} \rightarrow \frac{x^{-3+1}}{-3+1}=-\frac{x^{-2}}{2} \\
& \frac{1}{x} \rightarrow \ln x \\
= & {\left[-\frac{x^{-2}}{2}+\ln x\right]_{1}^{2} } \\
= & {\left[-\frac{2^{-2}}{2}+\ln 2\right]-\left[-\frac{1^{-2}}{2}+\ln 1\right] } \\
= & -\frac{1}{8}+\ln 2+\frac{1}{2}-0=\frac{3}{8}+\ln 2
\end{aligned}
$$

Example: Evaluate the integral $\int_{-1}^{1}|x| d x$.

$$
=\int_{-1}^{0}(-x) d x+\int_{0}^{1} x d x
$$

$$
=-\left.\frac{x^{2}}{2}\right|_{-1} ^{0}+\left.\frac{x^{2}}{2}\right|_{0} ^{1}
$$

$|x|=\left\{\begin{array}{l}-x, x \leq 0 \\ x, x \geqslant 0\end{array}\right.$

$$
\begin{aligned}
& =-\frac{0^{2}}{2}+\frac{(-1)^{2}}{2}+\frac{1^{2}}{2}-\frac{0^{2}}{2} \\
& =\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

