Lecture 5 (Differentiation Rules Continued)Chain Rule

What if we want to find the derivative of $F(x)=\sqrt{\sin x}$?

$$
\begin{aligned}
& F(x)=(f \circ g)(x)=f(g(x)) \\
& g(x)=\sin x \\
& f(x)=\sqrt{x} \\
& F^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
\end{aligned}
$$

Chain rule: If g is differentiable at x and f is differentiable at $g(x)$, then $F(x)=f(g(x))$ is differentiable at x and

$$
F^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

(in Leibniz notation: if $y=f(x)$ and $x=g(t)$, then $\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}$)
Example: Differentiate $F(x)=\sqrt{\sin x}$

$$
\begin{gathered}
g(x)=\sin x \Rightarrow g^{\prime}(x)=\cos x \\
f(x)=\sqrt{x} \Rightarrow f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \\
F^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
=\frac{1}{2 \sqrt{\sin x}} \cdot \cos x=\frac{\cos x}{2 \sqrt{\sin x}}
\end{gathered}
$$

Example: Differentiate $f(x)=e^{g(x)}$, where $g(x)=x^{2}-1$.

$$
\begin{aligned}
f(x)= & h(g(x)) \\
& h(x)=e^{x} \Rightarrow h^{\prime}(x)=e^{x} \\
& g(x)=x^{2}-1 \Rightarrow g^{\prime}(x)=2 x \\
f^{\prime}(x)= & h^{\prime}(g(x)) \cdot g^{\prime}(x) \\
= & e^{g(x)} \cdot 2 x \\
= & 2 x e^{x^{2}-1}
\end{aligned}
$$

Example: Given $f(x)=\left(\cos ^{2} x-x\right)^{20}$, find $f^{\prime}(x)$.

$$
\begin{aligned}
f(x)= & h(g(x)) \\
& g(x)=\cos ^{2} x-x \Rightarrow g^{\prime}(x)=\left(\cos ^{2} x\right)^{\prime}-1 \\
& h(x)=x^{20} \Rightarrow h^{\prime}(x)=20 x^{19}
\end{aligned}
$$

$$
\begin{gathered}
\rightarrow \cos ^{2} x=F(G(x)) \\
G(x)=\cos x \Rightarrow G^{\prime}(x)=-\sin x \\
F(x)=x^{2} \Rightarrow F^{\prime}(x)=2 x \\
\left(\cos ^{2} x\right)^{\prime}=F^{\prime}(G(x)) \cdot G^{\prime}(x) \\
=2 \cos x \cdot(-\sin x) \\
\left.f^{\prime}(x)=h^{\prime} \Gamma g(x)\right) \cdot g^{\prime}(x) \\
=20\left(\cos ^{2} x-x\right)^{19} \cdot(-2 \cos x \sin x-1)
\end{gathered}
$$

Example: Differentiate (a) $y=\sec \left(x^{2}\right)$ and (b) $y=\sec ^{2} x$
(a)

$$
\begin{aligned}
& y=\sec \left(x^{2}\right)=f(g(x)) \\
& g(x)=x^{2} \Rightarrow g^{\prime}(x)=2 x \\
& f(x)=\sec x \Rightarrow f^{\prime}(x)=\sec x \cdot \tan x
\end{aligned}
$$

$$
\left(x^{n}\right)^{1}=n x^{n-1}
$$

$$
\begin{aligned}
& y^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)=\sec \left(x^{2}\right) \tan \left(x^{2}\right) \cdot 2 x \\
& (b) y=\sec ^{2} x=g(f(x)) \\
& g(x)=x^{2} \\
& f(x)=\sec x \\
& y^{\prime}=g^{\prime}(f(x)) \cdot f^{\prime}(x)=2 \sec x \cdot \sec x \cdot \tan x \\
& =2 \sec ^{2} x \cdot \tan x
\end{aligned}
$$

Power rule + Chain rule:

$$
\begin{aligned}
& F(x)=[g(x)]^{n}=f(g(x)), \quad f(x)=x^{n} \\
& F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) \quad f^{\prime}(x)=n x^{n-1} \\
& =n[g(x)]^{n-1} \cdot g^{\prime}(x) \\
& \frac{d}{d x}[g(x)]^{n}=n[g(x)]^{n-1} g^{\prime}(x)
\end{aligned}
$$

Example: $y=\sec ^{2} x=[g(x)]^{2}, g(x)=\sec x, n=2$

$$
\begin{aligned}
y^{\prime}=2[g(x)]^{\prime} \cdot g^{\prime}(x) & =2 \sec x \cdot \sec x \cdot \tan x \\
& =2 \sec ^{2} x \tan x
\end{aligned}
$$

Example: Find the derivative of $f(x)=\frac{1}{\left(e^{+}+x^{2}\right)^{3}}=[g(x)]^{n}$

$$
\begin{aligned}
& g(x)=e^{x}+x^{2} \\
& n=-3 \\
& f^{\prime}(x)=(-3) \cdot\left(e^{x}+x^{2}\right)^{-3-1} \cdot\left(e^{x}+2 x\right)=e^{x}+2 x \\
&=-3 \cdot\left(e^{x}+x^{2}\right)^{-4}\left(e^{x}+2 x\right) \\
&=\frac{-3\left(e^{x}+2 x\right)}{\left(e^{x}+x^{2}\right)^{4}} \quad\left(\begin{array}{l}
\left(e^{-x}\right)^{\prime}=-e^{-x} \\
\left(e^{x^{2}}\right)^{1}=2 x e^{x^{2}}
\end{array}\right.
\end{aligned}
$$

Example: Differentiate $y=a^{x}, a>0$.
Recall: $a=e^{\ln a}$

$$
\begin{aligned}
a^{x} & =\left(e^{\ln a}\right)^{x}=e^{x \ln a} \\
\left(a^{x}\right)^{\prime} & =\left(e^{x \ln a}\right)^{\prime}=e^{x \ln a} \cdot(x \ln a)^{\prime} \\
& =\ln a \cdot\left(e^{\ln a}\right)^{x} \\
& =a^{x} \ln a
\end{aligned}
$$

$$
\left(a^{x}\right)^{\prime}=a^{x} \ln a
$$

Example: $y=3^{x}$

$$
a=3
$$

$$
y^{\prime}=3^{x} \ln 3
$$

Chain rule for three functions and more:

$$
\begin{aligned}
& (f \circ g \circ h)^{\prime}(x)=[f(g(h(x)))]^{\prime}=f^{\prime}(g(h(x))) \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x) \\
& \left.\frac{\text { Proof: }}{F}(x)=f(g(h(x)))\right)=f(G(x)) \\
& G(x)=g(h(x)) \\
& F^{\prime}(x)=f^{\prime}(G(x)) \cdot G^{\prime}(x) \\
& G^{\prime}(x)=g^{\prime}(h(x)) \cdot h^{\prime}(x) \\
& F^{\prime}(x)=f^{\prime}(g(h(x))) \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x)
\end{aligned}
$$

Example: Differentiate $F(x)=e^{\sin \left(x^{2}\right)}=f(g(h(x)))$

$$
\begin{aligned}
& h(x)=x^{2} \Rightarrow h^{\prime}(x)=2 x \\
& g(x)=\sin x \Rightarrow g^{\prime}(x)=\cos x \\
& f(x)=e^{x} \Rightarrow f^{\prime}(x)=e^{x}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{F}^{\prime}(x) & =f^{\prime}(g(h(x))) \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x) \\
& =e^{g(h(x))} \cdot \cos (h(x)) \cdot 2 x \\
& =e^{\sin \left(x^{2}\right)} \cdot \cos \left(x^{2}\right) \cdot 2 x
\end{aligned}
$$

Example: Find the derivative of $y=\cos \left(\tan \left(5^{x}\right)\right)=f(g(h(x)))$

$$
\begin{gathered}
h(x)=5^{x} \Rightarrow h^{\prime}(x)=5^{x} \ln 5 \\
g(x)=\tan x \Rightarrow g^{\prime}(x)=\sec ^{2} x \\
f(x)=\cos x \Rightarrow f^{\prime}(x)=-\sin x \\
y^{\prime}=-\sin \left(\tan \left(5^{x}\right)\right) \cdot \sec ^{2}\left(5^{x}\right) \cdot 5^{x} \ln 5
\end{gathered}
$$

$$
\begin{gathered}
\text { Example: Find } \left.\frac{d}{d x}\left(e^{2^{3}}\right)\right)=f(y(h(x))) \\
h(x)=x^{3} \Rightarrow h^{\prime}(x)=3 x^{2} \\
g(x)=2^{x} \Rightarrow g^{\prime}(x)=2^{x} \ln 2 \\
f(x)=e^{x} \Rightarrow f^{\prime}(x)=e^{x} \\
\left(e^{2^{x^{3}}}\right)^{\prime}=e^{2^{x^{3}}} \cdot 2^{x^{3}} \ln 2 \cdot 3 x^{2}
\end{gathered}
$$

What if we have a composition of four functions?

$$
\begin{aligned}
& (f \circ g \circ h \circ k)^{\prime}(x) \\
& =f^{\prime}(g(h(k(x)))) \cdot g^{\prime}\left(h(k(x)) \cdot h^{\prime}(k(x)) k^{\prime} k\right)
\end{aligned}
$$

$$
\begin{gathered}
\text { Example: } y=\left(\tan \left(\frac{1}{\sin }\right)\right)^{3}=f(g(h(k(x)))) \\
k(x)=\sin x \Rightarrow k^{\prime}(x)=\cos x \\
h(x)=\frac{1}{x} \Rightarrow h^{\prime}(x)=-\frac{1}{x^{2}} \\
g(x)=\operatorname{tar} x \Rightarrow g^{\prime}(x)=\sec ^{2} x \\
f(x)=x^{3} \Rightarrow f^{\prime}(x)=3 x^{2} \\
y^{\prime}=3\left(\tan \frac{1}{\sin x}\right)^{2} \cdot \sec ^{2}\left(\frac{1}{\sin x}\right) \cdot\left(-\frac{1}{\sin ^{2} x}\right) \cdot \cos x
\end{gathered}
$$

More examples:
(a) $y=\sqrt{x+\sqrt{x+\sqrt{x}}}=\sqrt{f(x)}$

$$
\begin{aligned}
& f(x)=x+\sqrt{x+\sqrt{x}}=x+g(x) \\
& g(x)=\sqrt{x+\sqrt{x}}=\sqrt{h(x)} \\
& h(x)=x+\sqrt{x} \\
& y^{\prime}=[\sqrt{f(x)}]^{\prime}=\frac{1}{2}[f(x)]^{-\frac{1}{2}} \cdot f^{\prime}(x) \\
& f^{\prime}(x)=[x+g(x)]^{\prime}=1+g^{\prime}(x) \\
& g^{\prime}(x)=[\sqrt{h(x)}]^{\prime}=\frac{1}{2}[h(x)]^{-1 / 2} \cdot h^{\prime}(x)=\frac{1}{2}(x+\sqrt{x})^{-1 / 2}\left(1+\frac{1}{2 \sqrt{2}}\right) \\
& y^{\prime}=\frac{1}{2 \sqrt{x+\sqrt{x+1}}} \cdot\left(1+\frac{1}{2} \frac{1}{\sqrt{x+\sqrt{x}}} \cdot\left(1+\frac{1}{2 \sqrt{x}}\right)\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } y=\left(e^{-x}+x\right)\left(1-x^{2}\right)^{4} \\
& y^{\prime}=\left(e^{-x}+x\right)^{\prime}\left(1-x^{2}\right)^{4}+\left(e^{-x}+x\right)\left[\left(1-x^{2}\right)^{4}\right]^{\prime} \\
& \text { producte } \\
& \text { vowrornule } \\
& \text { chouin rule } \\
&=\left(-e^{-x}+1\right)\left(1-x^{2}\right)^{4}+\left(e^{-x}+x\right) \cdot 4\left(1-x^{2}\right)^{3} \cdot(-2 x) \\
&=\left(1-e^{-x}\right)\left(1-x^{2}\right)^{4}-2 x\left(e^{-x}+x\right)\left(1-x^{2}\right)^{3}
\end{aligned}
$$

Implicit Differentiation
Often we cannot express our function y in terms of x explicitly. In this case to find the derivative of y, we need to differentiate implicitly.

Let's look at the following examples.
Example: Given $x^{2}+y^{2}=25$, find y^{\prime}.

$$
\begin{gathered}
\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}(25) \\
2 x+2 y \cdot y^{\prime}=0 \\
y^{\prime}=-\frac{x}{y}
\end{gathered}
$$

$$
\begin{aligned}
& y=f(x) \\
& y^{2}=[f(x)]^{2} \\
& {\left[y^{2}\right]^{\prime}=2 f(x) \cdot f^{\prime}(x)} \\
& =2 y \cdot y^{\prime}
\end{aligned}
$$

Find the equation of the tangent line at point $(4,3)$

$$
\begin{aligned}
& y=f(a)+f^{\prime}(a)(x-a)=3+\left(-\frac{4}{3}\right)(x-4) \\
& \left.\left.f^{\prime}(d)=\left.\frac{d y}{d x}\right|_{\substack{x=4 \\
y=3}}=-\frac{4}{3} \right\rvert\, \begin{array}{|l|}
\left\lvert\, \frac{y x+3 y=25}{3}\right.
\end{array}\right) . \frac{16}{3}
\end{aligned}
$$

Example: Find y^{\prime} if $3 x^{4} y^{2}-y^{4}+y+1=x y-x$

$$
\begin{aligned}
& \frac{d}{d x}\left(3 x^{4} y^{2}-y^{4}+y+1\right)=\frac{d}{d x}(x y-x) \\
& 3 \cdot 4 x^{3} y^{2}+3 x^{4} \cdot 2 y y^{\prime}-4 y^{3} \cdot y^{\prime}+y^{\prime}+0=1 \cdot y+x y^{\prime}-1 \\
& \text { product rule }
\end{aligned}
$$

$$
\begin{aligned}
& 6 x^{4} y y^{\prime}-4 y^{3} y^{\prime}+y^{\prime}-x y^{\prime}=y-12 x^{3} y^{2}-1 \\
& y^{\prime}\left(6 x^{4} y-4 y^{3}+1-x\right)=y-12 x^{3} y^{2}-1 \\
& y^{\prime}=\frac{y-12 x^{3} y^{2}-1}{6 x^{4} y-4 y^{3}-x+1}
\end{aligned}
$$

Example: Given $\sin (x y)+e^{y}=x \tan (y-1)$, find $\frac{d y}{d x}$

$$
\begin{aligned}
& \frac{d}{d x}\left(\sin (x y)+e^{y}\right)=\frac{d}{d x}(x \tan (y-1)) \\
& \cos (x y) \cdot(x y)^{\prime}+e^{y} \cdot y^{\prime}=1 \cdot \tan (y-1)+x \sec ^{2}(y-1) y^{\prime} \\
& \cos ^{\prime} \\
& y \cos (x y)+\frac{x y^{\prime} \cos (x y)}{(x)}+\underline{e^{y} y^{\prime}}=\tan (y-1)+x y^{\prime} \sec ^{2}(y-1) \\
& y^{\prime}\left(x \cos (x y)+e^{y}-x \sec ^{2}(y-1)\right)=\tan (y-1)-y \cos (x y) \\
& y^{\prime}=\frac{\tan (y-1)-y \cos (x y)}{x \cos (x y)+e^{y}-x \sec ^{2}(x y)}
\end{aligned}
$$

Example: Find $y^{\prime \prime}$ if we are given that $x^{3}+y^{3}=1$

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}} \\
& \frac{d}{d x}\left(x^{3}+y^{3}\right)=\frac{d}{d x}(1) \\
& \psi x^{2}+\ngtr y^{2} \cdot y^{\prime}=0 \Rightarrow y^{\prime}=-\frac{x^{2}}{y^{2}} \\
& \frac{d^{2} y}{d x^{2}}=y^{\prime \prime}=\left(-\frac{x^{2}}{y^{2}}\right)^{\prime}=-\frac{2 x y^{2}-x^{2} \cdot 2 y y^{\prime}}{y^{4}} \\
& =-\frac{2 x y^{2}-2 x^{2} y \cdot\left(-\frac{x^{2}}{y^{2}}\right)}{2 x y^{4}+2 x^{4} y} \\
& =-\frac{y^{4}}{y^{6}}=-\frac{2 x y^{3}+2 x^{4}}{y^{5}}
\end{aligned}
$$

Derivatives of Inverse Trigonometric Functions
Recall the function $y=\sin ^{-1} x$.

$$
\sin y=x \quad, \quad-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
$$

Now let's differentiate $\sin y=x$ implicitly with respect to x :

$$
\begin{array}{ll}
\frac{d}{d x}(\sin y)=\frac{d}{d x}(x) & \sin ^{2} \theta+\cos ^{2} \theta=1 \\
\cos y \cdot y^{\prime}=1 & \cos \theta=\sqrt{1-\sin ^{2}} \\
y^{\prime}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-\sin ^{2} y}}=\frac{1}{\sqrt{1-x^{2}}}
\end{array}
$$

So,

$$
\left(\sin ^{-1} x\right)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}
$$

What about $y=\tan ^{-1} x$?

$$
\begin{aligned}
& \tan y=x \\
& \frac{d}{d x}(\tan y)=\frac{d}{d x}(x) \\
& \sec ^{2} y \cdot y^{\prime}=1 \\
& y^{\prime}=\frac{1}{\sec ^{2} y}=\frac{1}{1+\tan ^{2} y}=\frac{1}{1+x^{2}} \\
& \quad\left(\tan ^{-1} x\right)^{\prime}=\frac{1}{1+x^{2}}
\end{aligned}
$$

Derivatives of Inverse Trigonometric Functions:

$$
\begin{array}{ll}
\left(\sin ^{-1} x\right)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} & \left(\cos ^{-1} x\right)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \\
\left(\tan ^{-1} x\right)^{\prime}=\frac{1}{1+x^{2}} & \left(\cot ^{-1} x\right)^{\prime}=-\frac{1}{1+x^{2}} \\
\left(\sec ^{-1} x\right)^{\prime}=\frac{1}{x \sqrt{x^{2}-1}} & \left(\csc ^{-1} x\right)^{\prime}=-\frac{1}{x \sqrt{x^{2}-1}}
\end{array}
$$

Example: Find the derivative of $y=x^{2} \sin ^{-1}\left(e^{-x}\right)$

$$
\begin{aligned}
y^{\prime} & =2 x \sin ^{-1}\left(e^{-x}\right)+x^{2} \cdot \frac{1}{\sqrt{1-\left(e^{-x}\right)^{2}}} \cdot\left(e^{-x}\right) \\
& =2 x \sin ^{-1}\left(e^{-x}\right)-\frac{x^{2} e^{-x}}{\sqrt{1-e^{-2 x}}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example: } y=\tan ^{-1} \sqrt{\frac{1-x}{1+x}} \\
& y^{\prime}=\frac{1}{1+\left(\sqrt{\frac{1-x}{1+x}}\right)^{2}},\left(\sqrt{\frac{1-x}{1+x}}\right)^{\prime} \\
& {\left[\left(\frac{1-x}{1+x}\right)^{1 / 2}\right]^{1}=\frac{1}{2}\left(\frac{1-x}{1+x}\right)^{-1 / 2} \cdot\left(\frac{1-x}{1+x}\right)^{1}} \\
& =\frac{1}{2} \sqrt{\frac{1+x}{1-x}} \cdot \frac{(-1)(1+x)-(1-x)}{(1+x)^{2}} \\
& =\frac{1}{7} \sqrt{\frac{1-x}{1-x}} \cdot \frac{-2}{(1+x)^{2}}=-\sqrt{\frac{1+x}{1-x}} \cdot \frac{1}{(1+x)^{2}} \\
& \begin{array}{l}
y^{\prime}=-\frac{1}{1+\frac{1-x}{1+x}} \cdot \frac{\sqrt{1+x}}{\sqrt{1-x}} \cdot \frac{1}{(1+x)^{2}}=-\frac{1+x}{2} \cdot \frac{(1+x)^{1 / 2}}{(1-y)^{1 / 2}(1+x)}
\end{array} \\
& =-\frac{1}{2 \sqrt{(1-x \mid 1-x)}}=\frac{1}{2 \sqrt{1-x^{2}}}
\end{aligned}
$$

Derivatives of Logarithmic Functions
Fact:

$$
\left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a}
$$

Proof:

$$
y=\log _{a} x
$$

$$
\begin{gathered}
a^{y}=x \\
\frac{d}{d x}\left(a^{y}\right)=\frac{d}{d x}(x) \\
a^{y} \ln a \cdot y^{\prime}=1 \\
y^{\prime}=\frac{1}{a^{y} \ln a}=\frac{1}{x \ln a} \\
a=e \quad(\ln x)^{\prime}=\frac{1}{x \ln e}=\frac{1}{x}
\end{gathered}
$$

In particular,

$$
(\ln x)^{\prime}=\frac{1}{x}
$$

Example: Differentiate $y=\ln \left(x^{2}-2 x+1\right)$

$$
\begin{aligned}
& y^{\prime}=\frac{1}{x^{2}-2 x+1}\left(x^{2}-2 x+1\right)^{\prime} \\
& =\frac{1}{(x-1)^{2}}(2 x-2) \\
& =\frac{2(x-1)}{(x-1)^{2}}=\frac{2}{x-1}
\end{aligned}
$$

Example: Find the derivative of $f(x)=\left(\log _{2} x^{2}\right)^{3}$

$$
\begin{aligned}
& f^{\prime}(x)=3\left(\log _{2} x^{2}\right)^{2} \cdot\left(\log _{2} x^{2}\right)^{\prime} \\
&\left(\log _{2} x^{2}\right)^{\prime}=\frac{1}{x^{2} \ln 2} \cdot 2 x \\
& f^{\prime}(x)=3\left(\log _{2} x^{2}\right)^{2} \cdot \frac{2 x}{x^{2} \ln 2} \\
&=\frac{6\left(\log _{2} x^{2}\right)^{2}}{x \ln 2}
\end{aligned}
$$

Example: Given $f(x)=\ln |x|$, find $f^{\prime}(x)$.

$$
\begin{aligned}
& f(x)= \begin{cases}\ln x, & x>0 \\
\ln (-x), & x<0\end{cases} \\
& f^{\prime}(x)= \begin{cases}\frac{1}{x}, & x>0 \\
\frac{1}{-x}(-1)=\frac{1}{x}, & x<0 \\
f^{\prime}(x) & =\frac{1}{x}, x \neq 0\end{cases}
\end{aligned}
$$

Logarithmic Differentiation
Sometimes taking logarithms of functions can simplify the calculation of derivatives.

Example: Differentiate $y=\frac{\sqrt[3]{x-1}}{x^{2}(x+2)^{7}}$

$$
\begin{aligned}
\ln y & =\ln \left(\frac{\sqrt[3]{x-1}}{x^{2}(x+2)^{7}}\right) \\
(\ln y)^{\prime} & =\left(\ln (x-1)^{1 / 3}-\ln x^{2}-\ln (x+2)^{7}\right)^{\prime} \\
& =\left(\frac{1}{3} \ln (x-1)-2 \ln x-7 \ln (x+2)\right)^{\prime} \\
\frac{1}{y} \cdot y^{\prime} & \left.=\frac{1}{3} \frac{1}{x-1} \cdot 1-2 \frac{1}{x}-7 \frac{1}{x+2} \cdot \right\rvert\, \\
y^{\prime} & =\left[\frac{1}{3(x-1)}-\frac{2}{x}-\frac{7}{x+2}\right] y=\left[\frac{1}{3(x-1)}-\frac{2}{x}-\frac{7}{x+2}\right] \cdot \frac{\sqrt[3]{x-1}}{x^{2}(x+2)^{7}}
\end{aligned}
$$

Logarithmic Differentiation:

- Take natural logarithms of both sides of an equation $y=f(x)$. Simplify if possible.
- Differentiate implicitly with respect to x.
- Solve for y^{\prime}.

Example: Differentiate $y=x^{\ln x}$

$$
\begin{aligned}
& \ln y=\ln x^{\ln x}=(\ln x)(\ln x)=(\ln x)^{2} \\
& \frac{d}{d x}(\ln y)=\frac{d}{d x}\left[(\ln x)^{2}\right] \\
& \frac{1}{y} y^{\prime}=2 \ln x \cdot \frac{1}{x} \\
& y^{\prime}=\frac{2 \ln x}{x} y=\frac{2 \ln x}{x} x^{\ln x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Back to number } \boldsymbol{e} \\
& f(x)=\ln x \Rightarrow f^{\prime}(x)=\frac{1}{x} \Rightarrow f^{\prime}(1)=1 \\
& f^{\prime}(1)=\lim _{h \rightarrow \infty} \frac{f(1+h)-f(1)}{h} \\
& 1=\lim _{h \rightarrow 0} \frac{\ln (1+h)-\ln 1}{h}=\lim _{h \rightarrow 0} \frac{\ln (1+h}{h} \\
& l=e^{\prime}=e^{\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}}=e^{\lim _{x \rightarrow 0} \frac{1}{x} \ln (1+x)} \\
& =e^{\lim _{x \rightarrow 0} \ln (1+x)^{1 / x}}=\lim _{x \rightarrow 0} e^{\ln (1+x)^{1 / x}}=\lim _{x \rightarrow 0}(1+x)^{1 / x}
\end{aligned}
$$

$$
e=\lim _{x \rightarrow 0}(1+x)^{1 / x}
$$

$$
\text { Take } n=\frac{1}{x} \Rightarrow n \underset{x \rightarrow 0^{+}}{ }
$$

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Example: Show that $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$ for any $x>0$.

$$
\begin{aligned}
& \left(\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{k}\right)^{x}=e^{x} \\
& \quad \lim ^{x}\left(1+\frac{1}{k}\right)^{k x}=e^{x} \\
& \text { Take } \begin{aligned}
n=k x
\end{aligned} k=\frac{n}{x} \rightarrow \infty \\
& \frac{x}{h}=\frac{1}{k} \\
& \lim _{n \rightarrow \infty}\left(1+\frac{x}{h}\right)^{n}=\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{k x}=e^{x}
\end{aligned}
$$

