Lecture 4 (Differentiation Rules)

Recall:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

What is the derivative of a constant? I.e. let $f(x)=c$ for all x.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{c-c}{h}=\lim _{h \rightarrow 0} 0=0
$$

Thus,

$$
\frac{d}{d x}(c)=0
$$

What about $f(x)=x$?

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} \frac{h}{h} \\
& =\lim _{h \rightarrow 0}=1
\end{aligned}
$$

$$
\frac{d}{d x}(x)=1
$$

We can show that

$$
\frac{d}{d x}\left(x^{2}\right)=2 x \quad<\quad Q \times e
$$

$$
\begin{aligned}
& \text { What if } f(x)=x^{3} ? \\
& \begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h} \\
= & \lim _{h \rightarrow x^{2}} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{h}-x^{3}}{x} \\
= & \lim _{h \rightarrow 0}\left[3 x^{2}+3 x h+h^{2}\right]=3 x^{2} \\
& \frac{d}{d x}\left(x^{3}\right)=3 x^{2} \quad\left(x^{h}\right)=h x^{n-1}
\end{aligned}
\end{aligned}
$$

In general, if $n \in \mathbb{Z}^{+}$, then

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

Proof: Binomial formula

$$
\begin{aligned}
& \text { Proof: Binomial formula } \\
&(x+y)^{n}=x^{n}+n x^{n-1} y+\frac{n(h+1)}{2} x^{n-2} y^{2}+\ldots n x y^{n-1}+y^{n} \\
& f^{\prime}(x)= \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim \frac{(x+h)^{n}-x^{n}}{h} \\
&= \lim _{h \rightarrow 0} \frac{x^{n}+n x^{n-1} h^{n-1}+\frac{n(n+1)}{2} x^{n-2} h^{x}+\ldots+n x h^{n-1}+x^{n}}{k} \\
&= \lim _{h \rightarrow 0}\left[n x^{n-1}+\frac{n(n+1)}{2} x^{n-2} h++h x h^{n-2}+h^{n-1}\right] \\
&=n x^{n-1}
\end{aligned}
$$

$$
n=5
$$

Example: Given $f(x)=x^{5}$, find $f^{\prime \prime \prime}(2)$.
$f^{\prime}(x)=5 x^{5-1}=5 x^{4}$

$$
\begin{aligned}
f^{\prime}(x) & =3 x=3 x \\
f^{\prime \prime}(x)=\left(5 x^{4}\right)^{\prime}=5\left(x^{4}\right)^{\prime} & =5 \cdot 4 x^{3} \\
& =20 x^{3}
\end{aligned}
$$

$$
[c g(x)]^{\prime}=c g^{\prime}(x)
$$

$$
\begin{aligned}
f^{\prime \prime \prime}(x)=\left(20 x^{3}\right)^{\prime} & =20\left(x^{3}\right)^{\prime} \\
& =203 x^{2} \\
& =60 x^{2} \\
f^{\prime \prime \prime}(2)=60 \cdot 2^{2} & =60.4=240
\end{aligned}
$$

General Power Rule: If $n \in \mathbb{R}$ (any real number), then $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right.$

$$
\begin{aligned}
& -(a-b)\left(a^{2}+a b+b^{2}\right) \\
& (\sqrt[3]{x}-\sqrt[3]{x+h})\left(\sqrt[{(\sqrt[3]{x})^{2}}]{ }+\sqrt[3]{x(x+h)}+(\sqrt{x+h}) \frac{d}{d x}\right) \frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
\end{aligned}
$$

$$
\begin{aligned}
\left(x^{-\frac{1}{3}}\right)^{\prime} & =-\frac{1}{3} \cdot x^{-\frac{1}{3}-1} \\
& =-\frac{1}{3} x^{-\frac{4}{3}} \\
& =\frac{-1}{3 \sqrt[3]{x^{4}}}
\end{aligned}
$$

Example: Find derivative of $f(x)=\frac{1}{\sqrt[3]{x}}=x^{-1 / 3}$

$$
\begin{aligned}
& \text { Example: Find derivative of } f(x)=\frac{1}{\sqrt[3]{x}}=x^{-13} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt[3]{x+h}}-\frac{1}{\sqrt[3]{x}}}{h}=\lim _{h \rightarrow 0} \frac{3 \sqrt[3]{x^{4}}}{h} \\
&=\lim _{h \rightarrow 0} \frac{\sqrt[3]{x}-\sqrt[3]{x+h}}{h \sqrt[3]{x} \sqrt[3]{x+h}} \frac{\left((\sqrt[3]{x})^{2}+\sqrt[3]{x} \sqrt[3]{x+h}+(\sqrt[3]{x+h})^{2}\right)}{(\sqrt[3]{x})^{2}+\sqrt[3]{x} \sqrt[3]{x+h}+(\sqrt[3]{x+h})^{2}} \\
&=\lim _{h \rightarrow 0} \frac{x-(x+h)}{\sqrt{h \sqrt[3]{x} \sqrt[3]{x+h}\left((\sqrt[3]{x})^{2}+\sqrt[3]{x} \sqrt[3]{x+h}+(\sqrt[3]{x+h})^{2}\right)}} \\
&=\lim _{h \rightarrow 0} \frac{-1}{\sqrt[3]{x} \sqrt[3]{x+h}\left((\sqrt[3]{x})^{2}+\sqrt[3]{x} \sqrt[3]{x+h}+(\sqrt[6]{x+h})^{2}\right)^{2}=\frac{-1}{3 \sqrt[3]{x^{4}}}}
\end{aligned}
$$

Basic Rules of Differentiation:

- Constant multiple rule:

$$
[c f(x)]^{\prime}=c f^{\prime}(x)
$$

Proof:

$$
\left[c f(x)=\lim _{h \rightarrow 0} \frac{c f(x+h)-c f(x)}{h}=c f^{\prime}(x)\right.
$$

- Sum/difference rule:

$$
[f(x) \pm g(x)]^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)
$$

$$
\begin{aligned}
& \text { Proof: } \\
& \\
& {[f(x)+g(x)]^{\prime}=\lim _{h \rightarrow 0} \frac{f(x+h)+g(x+h)-(f(x)+g(x)]}{h}} \\
& = \\
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)+g(x+h)-g(x)}{h} \\
& = \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =f^{\prime}(x)+g^{\prime}(x)
\end{aligned}
$$

Example: Given $f(x)=2 x^{2}-\frac{1}{x^{3}}-1$. Find $f^{\prime}(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\left(2 x^{2}\right)^{\prime}-\left(\frac{1}{x^{3}}\right)^{\prime}-(1)^{\prime} \\
& =2 \cdot 2 x-\left(x^{-3}\right)^{\prime}-0 \\
& =4 x+3 x^{-3-1} \\
& =4 x+3 \frac{1}{x^{4}}
\end{aligned}
$$

Example: Given $f(x)=x^{3}-2 x^{2}+3 x-1$, find $f^{(4)}(x)$.

$$
\begin{aligned}
& f^{\prime}(x)= 3 x^{2}-2 \cdot 2 x+3 \cdot 1-0 \\
&=3 x^{2}-4 x+3 \\
& f^{\prime \prime}(x)=3 \cdot 2 x-4 \cdot 1+0 \\
&=6 x-4 \\
& f^{\prime \prime \prime}(x)=6 \cdot 1-0 \\
&=6 \\
& f^{(4)}(x)=0
\end{aligned}
$$

Now consider exponential function $f(x)=a^{x}$. What is $f^{\prime}(x)$?

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x}\left(a^{h}-1\right)}{h}=a^{x} \lim _{h \rightarrow 0} \frac{a^{h}-1}{h} \\
& =a^{x} f^{\prime}(0)
\end{aligned}
$$

Consider two cases: $a=2$ and $a=3$.

$$
\begin{aligned}
& e=2.7 \\
& \begin{array}{|c|c|c|}
\hline h & \frac{2^{h}-1}{h} & \frac{3^{h}-1}{h} \\
\hline 0.1 & 0.7177 & 1.1612 \\
\hline 0.01 & 0.6956 & 1.1047 \\
\hline 0.001 & 0.6934 & 1.0992 \\
\hline 0.0001 & 0.6932 & 1.0987 \\
\hline
\end{array} \\
& <1>1 \\
& \text { If } f(x)=e^{x} \\
& f^{\prime}(x)=e^{x} f^{\prime}(0)=e^{x}
\end{aligned}
$$

Definition of Number e :

e is the number such that

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

Thus,

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

Example: Find the tangent line to $y=2 x^{2}+e^{x}$ at $(0,1)$.

$$
\left.\begin{array}{rl}
y & =f(a)+f^{\prime}(a)(x-a) \\
& =1+f^{\prime}(0)(x-0) \\
& =1+f^{\prime}(0) x
\end{array}\right\} \begin{aligned}
& f^{\prime}(x)=\left(2 x^{2}+e^{x}\right)=2 \cdot 2 x+e^{x} \\
&=4 x+e^{x} \\
& f^{\prime}(0)=4 \cdot 0+e^{0}=1
\end{aligned}
$$

So, $y=1+f^{\prime}(0) x=1+1 \cdot x=1+x$

$$
y=x+1
$$

$$
\begin{aligned}
& \text { Example: } f(x)=3, g(x)=x^{2} \text {. Does }[f(x) g(x)]^{\prime}=f^{\prime}(x) g^{\prime}(x) ? ~ N u \\
& f^{\prime}(x)=(3)^{\prime}=0 \\
& g^{\prime}(x)=\left(x^{2}\right)^{\prime}=2 x \\
& f^{\prime}(x) g^{\prime}(x)=0 \cdot 2 x=0 \times \\
& {[f(x) g(x)]^{\prime}=\left(3 x^{2}\right)^{\prime}=3 \cdot 2 x=6 x}
\end{aligned}
$$

- Product rule:

$$
[f(x) g(x)]^{\prime}=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)
$$

$$
\begin{aligned}
& \text { Proof: } \\
& \begin{aligned}
{[f(x) g(x)]^{\prime} } & =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h} \quad \pm f(x+h) g(x) \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x+h) g(x))+f(x+h) g(x)-f(x) g(x)}{h} \\
= & \lim _{h \rightarrow 0} \underbrace{h}_{(f(x+h)[g(x+h)-g(x)]}+\lim _{h \rightarrow 0} \frac{g(x)[f(x+h)-f(x)]}{h} \\
= & f(x) g^{\prime}(x)+f^{\prime}(x) g(x)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example: Given } f(x)=(4) \cdot(x) x \text { find } f^{(n)}(x) \\
& f^{\prime}(x)=x \cdot e^{x}+1 \cdot e^{x}=e^{x}(x+1) \\
& f^{\prime \prime}(x)=e^{x} \cdot 1+e^{x}(x+1)=e^{x},(x+2) \\
& f^{\prime \prime \prime}(x)=e^{x} \cdot 1+e^{x}(x+2)=e^{x}(x+3) \\
& f^{(4)}(x)=e^{x}(x+4) \\
& f^{(n)}(x)=e^{x}(x+n)
\end{aligned}
$$

- Quotient rule: $\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g \prime(x)}{[g(x)]^{2}}$

$$
\begin{aligned}
& {\left[\frac{\text { Proof: }}{\left[\frac{f(x)}{g(x)}\right.}\right]^{\prime}=\lim _{h \rightarrow 0} \frac{\frac{f(x+h)}{g(x+h)}-\frac{f(x)}{g(x)}}{h}=} \\
& \\
& =\lim _{h \rightarrow 0}^{\left[\frac{f(x+h)] g(x)-f(x) g(x+h)}{h g(x) g(x+h)} \pm f(x) g(x)\right.} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x)-f(x) g(x+h)+f(x) g(x)}{h(x) g(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{1}{g(x) g(x+h)}\left[g(x) \frac{f(x+h)-f(x)}{h}-f(x) \frac{g(x+h)-g(x)}{h}\right] \\
& =\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g^{2}(x)}
\end{aligned}
$$

Example: Let $y=\frac{x^{2}-1}{\sqrt{x}}$, find $\frac{d y}{d x} . \quad y=\frac{x^{2}}{\sqrt{x}}-\frac{1}{\sqrt{x}}=x^{\frac{3}{2}}-x^{-\frac{1}{2}}$

$$
\begin{aligned}
& y^{\prime}=\frac{3}{2} x^{\frac{3}{2}-1}+\frac{1}{2} x^{-\frac{1}{2}-1}=\frac{3}{2} x^{\frac{1}{2}}+\frac{1}{2} x^{-\frac{3}{2}} \\
& f(x)=x^{2}-1, g(x)=\sqrt{x} \\
& y^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}=\frac{2 x \sqrt{x}-\left(x^{2}-1\right) \frac{1}{2} \frac{1}{\sqrt{x}}}{(\sqrt{x})^{2}} \\
& =\frac{4 x^{2}-\left(x^{2}-1\right)}{2 x \sqrt{x}}=\frac{3 x^{2}+1}{2 x \sqrt{x}}
\end{aligned}
$$

Example: Find the derivative of $h(x)=\frac{e^{x}-x^{2}}{e^{x}} .=1-\frac{x^{2}}{e^{x}}$

$$
\begin{aligned}
h^{\prime}(x) & =0-\left(\frac{x^{2}}{e^{x}}\right)^{\prime} \\
& =-\frac{2 x e^{x}-x^{2} \cdot e^{x}}{e^{2 x}}=\frac{e^{x} x(x-2)}{e^{2 x}} \\
& =\frac{x(x-2)}{e^{x}}
\end{aligned}
$$

Example: If $h(2)=4$ and $h^{\prime}(2)=-3$, find $\left.\frac{d}{d x}\left(\frac{h(x)}{x}\right)\right|_{x=2}$.

$$
\begin{aligned}
{\left[\frac{h(x)}{x}\right]^{\prime} } & \left.=\frac{h^{\prime}(x) x-h(x) \cdot 1}{x^{2}} \right\rvert\, x=2 \\
& =\frac{h^{\prime}(2) \cdot 2-h(2)}{2^{2}} \\
& =\frac{-3 \cdot 2-4}{4}=-\frac{10}{4}=-2.5
\end{aligned}
$$

Differentiating Trigonometric Functions

Let's consider $f(x)=\sin x$

What does the graph of its derivative look like?

The graph of $f^{\prime}(x)=\sin x$ looks like $\cos x$.

Let's try to prove that!

Before we do that, we shall need the following limits:

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
$$

and

$$
\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=0
$$

Fact 1: $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$
Proof: Wrsider an are of circle with $r=1$

$$
O B=O C=1
$$

Area of circle $=\pi r^{2}=\pi$
Area of sector $(130 C)=\frac{1}{2} r^{2} \theta=\frac{\theta}{2}$

$$
\begin{aligned}
& O A=O B \cos \theta=\cos \theta \\
& A B=O B \sin \theta=\sin \theta \\
& C D=O C \tan \theta=\tan \theta
\end{aligned}
$$

Area $\triangle A O B<$ area of sector area of sector $<$ area $\triangle C O D$

$$
\begin{aligned}
& \frac{1}{2} O A \cdot A B<\frac{\theta}{2} \\
& \frac{1}{2} \cos \theta \sin \theta<\frac{\theta}{2} \\
& \frac{\sin \theta}{\theta}<\frac{1}{\cos \theta}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\theta}{2}<\frac{1}{2} C D \cdot O C \\
& \frac{\theta}{2}<\frac{1}{2} \tan \theta=\frac{1}{2} \frac{\sin \theta}{\cos \theta} \\
& \cos \theta<\frac{\sin \theta}{\theta}
\end{aligned}
$$

Fact 2: $\quad \lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=0$
Proof:

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta} \cdot \frac{\cos \theta+1}{\cos \theta+1} \\
& =\lim _{\theta \rightarrow 0} \frac{\cos ^{2} \theta-1}{\theta(\cos \theta+1)}=\lim _{\theta \rightarrow 0} \frac{-\sin ^{2} \theta}{\theta(\cos \theta+1)} \\
& =-\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \cdot \frac{\sin \theta}{\cos \theta+1} \\
& =-\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \cdot \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\cos \theta+1}=-1 \cdot \frac{0}{2}=0
\end{aligned}
$$

Claim: $(\sin x)^{\prime}=\cos x$

$$
\text { Proof: } \begin{aligned}
(\sin x)^{\prime} & =\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin x \cos h+\cos x \sin h-\sin x}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{\sin x(\cos h-1)}{h}+\cos x\left[\frac{\sin h}{h}\right]\right. \\
& =\sin x \cdot 0+\cos x \cdot 1=\cos x
\end{aligned}
$$

Similarly, we can show that

$$
(\cos x)^{\prime}=-\sin x
$$

What about $f(x)=\tan x ? \quad \tan x=\frac{\sin x}{\cos x}$

$$
\begin{aligned}
& (\tan x)^{\prime}=\left(\frac{\sin x}{\cos x}\right)^{\prime}=\frac{(\sin x)^{\prime} \cos x-\sin x(\cos x)}{\cos ^{2} x} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x} \\
& =\sec ^{2} x
\end{aligned}
$$

\[

\]

Example: Differentiate $f(x)=\frac{\tan x}{1+\sec x}$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\sec ^{2} x(1+\sec x)-\tan x \cdot \sec x \cdot \tan x}{(1+\sec x)^{2}} \\
& =\frac{\sec ^{2} x+\sec ^{3} x-\sec x \cdot \tan ^{2} x}{(1+\sec x)^{2}} \\
& =\frac{\sec ^{2} x+\sec x\left(\sec ^{2} x-\tan ^{2} x\right)}{(1+\sec x)^{2}}=\frac{\sec ^{2} x+\sec x}{(1+\sec x)^{2}}=\frac{\sec x}{1+\sec x}
\end{aligned}
$$

Example: Find $32^{\text {th }}$ derivative of $\sin x=f(x)$

$$
\begin{aligned}
& f^{\prime}(x)=\cos x \\
& f^{\prime \prime}(x)=-\sin x \quad \text { so, } f^{(32)}(x)=\sin x \\
& f^{\prime \prime \prime}(x)=-\cos x \\
& f^{(4)}(x)=\sin x \\
& f^{(5)}(x)=\cos x \\
& f^{(6)}(x)=-\sin x \\
& f^{(7)}(x)=-\cos x \\
& f^{(8)}(x)=\sin x
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cc}
\text { Example: Find } \lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin 2 x} \\
\sin 5 x & \begin{array}{l}
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}
\end{array} \\
J
\end{array} \\
& \lim _{\theta \rightarrow 0} \frac{\theta}{\sin \theta}=1 \\
& \theta=2 x \quad \frac{2 x}{\sin 2 x} \cdot \frac{1}{2 x} \\
& \lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin 2 x}=\lim _{x \rightarrow 0} \frac{\sin 5 x}{5 x} \cdot \frac{2 x}{\sin 2 x} \cdot \frac{5 x}{2 x} \\
& =\frac{5}{2} \lim _{\substack{5 x \rightarrow 0 \\
\theta=5 x}} \frac{\sin 5 x}{5 x} \lim _{\substack{x \rightarrow 0 \\
\theta=2 x}} \frac{2 x}{\sin 2 x}=\frac{5}{2} \cdot 1 \cdot 1
\end{aligned}
$$

