Lecture 2 (Limits)

We shall start with the tangent line problem.
Definition: A tangent line (Latin word 'touching') to the function $f(x)$ at the point $x=a$ is a line that touches the graph of the function at that point.

A secant line (Latin word 'cutting') is a line that cuts a curve more than once.

Example $^{1}:$ Let's find a tangent line $(y=m x+b)$ to the parabola $f(x)=15-2 x^{2}$ at $x=1$

$$
\begin{aligned}
& P(1,13) \\
& Q(2,7)
\end{aligned}
$$

$$
\begin{aligned}
& m_{P Q}=\frac{f(2)-f(1)}{2-1}=\frac{7-13}{2-1}=-6 \\
& \triangle \text { slope of secant line } P Q
\end{aligned}
$$

We can use it as an estimate of m.
But we com do better than that
${ }^{1}$ Source: http://tutorial.math.lamar.edu/Classes/CalcI/Tangents_Rates.aspx
Consider $Q(x, f(x)), \quad m_{P Q} \rightarrow m \begin{aligned} & \text { as } Q \rightarrow P \\ & \text { ill. } x \rightarrow 1\end{aligned}$

We can get a formula by finding the slope between P and Q using the general form of $Q=(x, f(x))$, ie.
$m_{P Q}=\frac{f(x)-f(1)}{x-1}=$

$$
\frac{15-2 x^{2}-13}{x-1}=\frac{2-2 x^{2}}{x-1}=\frac{-2 \sqrt{x-1}(x+1)}{x-1}
$$

Now we pick some values of x getting closer and closer to $x=1$, plug in and get slopes for secant lines:

We say that the slope of the tangent line, m, is the limit of the slopes of the secant lines:

$$
\lim _{Q \rightarrow P} m_{P Q}=m=-4
$$

The equation of the line that goes through $(a, f(a))$ is given by

$$
y=f(a)+m(x-a)
$$

Thus, the equation of the tangent line to $f(x)=15-2 x^{2}$ at $x=1$ is

$$
\begin{aligned}
& m=-4, \quad a=1, \quad f(a)=13 \\
& \begin{aligned}
y & =13-4(x-1) \\
& =13-4 x+4
\end{aligned}
\end{aligned}
$$

Limit of Function

Definition: Let $f(x)$ be defined on some open interval that contains number a (except possibly at a itself). Then

$$
\lim _{x \rightarrow a} f(x)=L
$$

if we can make the values of $f(x)$ arbitratrily close to L by taking x to be sufficiently close to a (on either side of a) but not equal to a.

Example: Given graph of $y=f(x)$ find the following limits:
(a) $\lim _{x \rightarrow 1} f(x)$

$$
=2
$$

(b) $\lim _{x \rightarrow 2} f(x)$

$$
=3
$$

a) though $f(x)$ is not defined at $x=2$
(c) $\lim _{x \rightarrow 3} f(x)$

$$
=1
$$

although $f(3)=2$
(d) $\lim _{x \rightarrow 4} f(x)$ does not exsist (dye)
although $f(4)=1$

Example 2 : Determine the value of $\lim _{x \rightarrow 3} \frac{2 x^{2}-x-1}{x-1}=\frac{2 \cdot 3^{2}-3-1}{3-1}=7$
Construct the table of values:

	$\mathrm{f}(\mathrm{x})$
2.9	6.82
2.9997	6.9994
2.999993	6.999986
2.9999999	6.9999998
\downarrow	\downarrow
3	$\mathbf{7}$

	$\mathrm{f}(\mathrm{x})$
3.1	7.2
3.004	7.008
3.0001	7.0002
3.000002	7.000004
\downarrow	\downarrow
	$\mathbf{7}$

Thus,

$$
\lim _{x \rightarrow 3} \frac{2 x^{2}-x-1}{x-1}=7
$$

[^0]\[

$$
\begin{aligned}
& \text { Example (continued): } \lim _{x \rightarrow 1} \frac{x^{2}-x-1}{x-1}
\end{aligned}
$$
\]

$$
\begin{aligned}
& \rightarrow \text { (applying limit laws to be definao } \\
&
\end{aligned}
$$

Example: What can you say about $\lim _{x \rightarrow 0} \sin \frac{\pi}{x}$?

$$
f(x)=\sin \frac{\pi}{x}
$$

$\stackrel{x}{x}$ not defined at 0

$$
\begin{aligned}
& f(1)=\sin \pi=0 \\
& f\left(\frac{1}{2}\right)=\sin 2 \pi=0 \\
& f\left(\frac{1}{4}\right)=\sin 4 \pi=0 \\
& f\left(\frac{1}{100}\right)=\sin 100 \pi=0
\end{aligned}
$$

So, is limit zero?

Values of $f(x)$ oscillate between 1 and -1 infinitely often. Thus, limit die.

Example (famous limit): $\lim _{x \rightarrow 0} \frac{\sin x}{x}$
Table of values:

x (radians)	-0.7	-0.2	-0.05	0	0.01	0.03	0.3	1.4
$\sin x / x$	0.92031	0.993347	0.999583	***	0.999983	0.99985	0.98506	0.703893

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

One-Sided Limits

Definition: We write

$$
\lim _{\substack{x \rightarrow a^{-} \\ x<a}} f(x)=L
$$

to denote the limit of $f(x)$ as x approaches a from the left (left-hand limit).
We write

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

to denote the limit of $f(x)$ as x approaches a from the right (right-hand limit).

Theorem: $\lim _{x \rightarrow a} f(x)=L$ if and only if $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L$

Corollary: If $\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$, then $\lim _{x \rightarrow a} f(x)=L$ does not exist.

Example: Let $f(x)=\left\{\begin{array}{rr}1, & x<1 \\ x, & 1 \leq x \leq 3 \\ 2, & 3<x\end{array}\right.$.
Find the one and two-sided limits of f at 1 and 3 .

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=1=\lim _{x \rightarrow 1^{+}} f(x) \\
& \Rightarrow \lim _{x \rightarrow 1} f(x)=1 \\
& \lim _{x \rightarrow 3^{-}} f(x)=3 \neq 2=\lim _{x \rightarrow 3^{+}} f(x) \sim 1 \\
& \\
& \Rightarrow \lim _{x \rightarrow 3} f(x) d \ln \rightarrow
\end{aligned}
$$

Infinite Limits $\pm \infty$
Consider $\quad \lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$

Table of values:

x	$\frac{1}{x^{2}}$
± 1	1
± 0.5	4
± 0.2	25
± 0.1	100
± 0.05	400
± 0.01	10,000
± 0.001	$1,000,000$

Definition: Let f be a function defined on both sides of a, except possible at a itself. Then

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

means that the values of $f(x)$ can be made arbitrarily large by taking x sufficiently close to a, but not equal to a.

Another notation: $f(x) \rightarrow \infty$ as $x \rightarrow a$
Similarly, let f be a function defined on both sides of a, except possible at a itself. Then

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

means that the values of $f(x)$ can be made arbitrarily large negative by taking x sufficiently close to a, but not equal to a.
Example: $\lim _{x \rightarrow 0}\left(-\frac{1}{x^{2}}\right)=-\infty$

Example: Consider function $f(x)=\frac{1}{x-3}$.

Note: When x gets closer to 3, then the points on the graph get closer to the (dashed) vertical line $x=3$. Such a line is called a vertical asymptote. ($\vee \mathbb{A}$)

For a given function $f(x)$, there are four cases, in which vertical asymptotes can present themselves:
(i) $\quad \lim _{x \rightarrow a^{-}} f(x)=-\infty ; \lim _{x \rightarrow a^{+}} f(x)=-\infty$;
(ii) $\quad \lim _{x \rightarrow a^{-}} f(x)=-\infty ; \lim _{x \rightarrow a^{+}} f(x)=+\infty$;
(iii) $\quad \lim _{x \rightarrow a^{-}} f(x)=+\infty ; \lim _{x \rightarrow a^{+}} f(x)=-\infty$;
(iv) $\quad \lim _{x \rightarrow a^{-}} f(x)=+\infty ; \lim _{x \rightarrow a^{+}} f(x)=+\infty$;

Example: $y=\ln x$

$$
\begin{aligned}
& \lim _{x \rightarrow 0+} \ln x=-\infty \\
& \quad x=0 \quad \text { is } V A
\end{aligned}
$$

Example: $y=\cot x$

$$
\begin{gathered}
=\frac{\cos \vec{x}^{\prime}}{\sin x} \underset{x \rightarrow 0^{-}}{\longrightarrow}-\infty \\
\\
\sin x \rightarrow 0
\end{gathered}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} \cot x=-\infty \\
& \lim _{x \rightarrow 0^{+}} \cot x=\infty \\
& x=0 \text { is VA } \\
&
\end{aligned}
$$

Ir general,

$$
\begin{aligned}
x= & k \pi \text { is } V A \\
& k \in \mathbb{Z}
\end{aligned}
$$

Limit Laws

Suppose that c is a constant and the limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist. Then
$\longrightarrow 1 . \lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
$\longrightarrow 2 \cdot \lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
$\longrightarrow 3 . \lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)$
$\longrightarrow 4 . \lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
$\longrightarrow 5 . \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$

$$
\begin{aligned}
& \text { Example: } \operatorname{Given}_{\lim _{x \rightarrow 1} f(x)=3 \text { and } \lim _{x \rightarrow 1} g(x)=-2 \text {, find }} \begin{array}{c}
\lim _{x \rightarrow 1}[2 f(x)-5 g(x)] \\
=2 \lim _{x \rightarrow 1} f(x)-5 \lim _{x \rightarrow 1} g(x) \\
=2 \cdot 3-5(-2)=16
\end{array}
\end{aligned}
$$

Example: Use the limit laws and the graphs of f and g to evaluate the following limits, if they exist.

$$
\begin{aligned}
& \text { (a) } \lim _{x \rightarrow-1}[f(x)-2 g(x)] \\
&=\lim _{x \rightarrow-1} f(x)-2 \lim _{x \rightarrow 1} g(x)=-1-20 \\
&=-1
\end{aligned}
$$

(b) $\lim _{x \rightarrow-1}[f(x) g(x)]$

$$
=\lim _{x \rightarrow-1} f(x) \lim _{x \rightarrow-1} g(x)=-1 \cdot 0=0
$$

(c) $\lim _{x \rightarrow 2}[f(x) g(x)]$ die

$$
\begin{gathered}
=\lim _{x \rightarrow 2} f(x) \lim _{x \rightarrow 2} g(x) \\
3
\end{gathered}
$$

$$
\begin{gathered}
\lim _{x \rightarrow 2} f(x)=3 \\
\lim _{x \rightarrow 2^{-}} g(x)=3 \neq \lim _{x \rightarrow 2+} g(x)=2
\end{gathered}
$$

Limit Laws (continued)

$\longrightarrow 6 \cdot \lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}, n \in \mathbb{Z}^{+}$
$\longrightarrow 7 . \lim _{x \rightarrow a} c=c$
\longrightarrow
8. $\lim _{x \rightarrow a} x=a$

$\overrightarrow{6+8}$
9. $\lim _{x \rightarrow a} x^{n}=a^{n}, n \in \mathbb{Z}^{+}$

$$
\stackrel{\left(\lim _{x \rightarrow a} x\right)^{n}=a^{n} a^{n}}{ }
$$

10. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}, n \in \mathbb{Z}^{+}$(if n is even, we assume that $a>0$)
11. In general: $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}, n \in \mathbb{Z}^{+}$
12. If f is a continuous function (to be studied in the next lecture) at a (i.e. polynomial or a rational function defined at a), then

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Example: Evaluate $\lim _{x \rightarrow 0}\left(x^{2}-3 x+5\right)=f(0)$

$$
=0^{2}-3 \cdot 0+5=5
$$

Example: Find $\lim _{x \rightarrow 2} \frac{1+x}{1-x}=f(2)=\frac{1+2}{1-2}=-3$
Note: not all limits can be evaluated by direct substitution.

$$
\binom{\left.x^{3}-y^{3}\right)=(x-y)\left(x^{2}+x y+y^{2}\right)}{+}
$$

Example: $\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+25-5}}{x^{2}}$
not defiled at $x=0$

$$
\begin{aligned}
& \frac{\sqrt{x^{2}+25}-5}{x^{2}} \cdot \frac{\sqrt{x^{2}+25}+5}{\sqrt{x^{2}+25}+5} \\
&= \frac{\left(\sqrt{\left(x^{2}+25\right)}\right)^{2}-55^{2}}{x^{2}\left(\sqrt{x^{2}+25}+5\right)}=\frac{x^{2}+27-25}{x^{2}\left(\sqrt{x^{2}+25}+5\right)} \\
&= \frac{x^{2}}{x^{2}\left(\sqrt{x^{2}+25}+5\right)}=\frac{1}{\sqrt{x^{2}+25}+5} \\
& \lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+25}-5}{x^{2}}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x^{2}+25}+5}=\frac{1}{\sqrt{0^{2}+25}+5} \\
&=\frac{1}{10}=0.1
\end{aligned}
$$

Fact: If $f(x)=g(x)$ when $x \neq a$, then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$ (provided that limits exist).
Example: Find $\lim _{x \rightarrow 2} g(x)$ given $g(x)= \begin{cases}x, & x \neq 2 \\ 4, & x=2\end{cases}$
Define $f(x)=x$

$$
T \operatorname{Len} f(x)=g(x), x \neq 2
$$

$$
\begin{array}{lll}
x \rightarrow 2 \quad & \operatorname{ll}_{x \rightarrow 2} \rightarrow a_{c} t \\
& \lim _{x \rightarrow 2} g(x)
\end{array}
$$

Theorem:

$$
\lim _{x \rightarrow a} f(x)=L
$$

if and only if

$$
\lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x)
$$

Example: Investigate $\lim _{x \rightarrow 0} \frac{|x|}{x}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{-}} \frac{-x}{x}=\lim _{x \rightarrow 0^{-}}(-1)=-1 \\
& \lim _{x \rightarrow 0^{+}, x \rightarrow 0} \frac{|x|}{x}=\lim _{x \rightarrow 0^{+}} \frac{x}{x}=\lim _{x \rightarrow 0^{+}}(1)=1
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} \frac{|x|}{x} d n e
$$

Example: If $f(x)=\left\{\begin{array}{cc}\sqrt{x-1}, & x>1 \\ 1-x, & x<1\end{array}\right.$, determine whether $\lim _{x \rightarrow 1} f(x)$ exists.

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(1-x)=1-1=0 \\
& x<1 \\
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \sqrt{x-1}=\sqrt{1-1}=0 \\
& \lim _{x \rightarrow 1} f(x)=0
\end{aligned}
$$

The Squeeze Theorem: If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possible at a) and

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L
$$

then

$$
\lim _{x \rightarrow a} g(x)=L
$$

Theorem of two policemen

$$
f(x) \leq g(x) \leq h(x)
$$

Example: Show that $\lim _{x \rightarrow 0} \underbrace{x^{2} \sin \frac{1}{x}}_{g(x)}=0$

$$
-1 \leq \sin \frac{1}{x} \leq 1 \quad-x^{2} \geqslant 0
$$

Precise Definition of Limit

The previous definition of a limit that we used is quite intuitive. We say 'as x is close to $a, f(x)$ gets closer and closer to L^{\prime}. What does this mean?

Example: $f(x)=2 x+3$. What happens if x gets close to 2 ?
Intuitively we know that $\lim _{x \rightarrow 2}(2 x+3)=7$.
What if we want to know how close x must be to 2 so that $f(x)$ differs from 7 by less than 0.1 ?

We denote by $|x-2|$ the distance from x to 2 and $|f(x)-7|$ the distance from $f(x)$ to 7 .

Problem: Find a number $\delta>0$ such that $|f(x)-7|<0.1$ if $|x-2|<\delta$.

$$
\begin{aligned}
& |f(x)-7|<0 . \mid \\
& |2 x+3-7|<0.1 \\
& |2 x-4|<0.1 \\
& |2||x-2|<0.1 \\
& 2|x-2|<0.1
\end{aligned}
$$

$$
f(x)=2 x+3
$$

$$
|x-2|<0.05
$$

$$
\text { Choose } \delta=0.05
$$

Problem: Find a number $\delta>0$ such that $|f(x)-7|<0.01$ if $|x-2|<, \delta$.

$$
\begin{aligned}
& |f(x)-7|<0.0 \mid \\
& |2 x-3-7|<0.0 \mid \\
& |x-2|<\frac{0.01}{2}=0.005 \\
& \text { Choose } \delta=0.005
\end{aligned}
$$

Problem: Find a number $\delta>0$ such that $|f(x)-7|<\varepsilon$ if $|x-2|<\delta$, for any arbitrarily small $\varepsilon>0$.

$$
\begin{aligned}
& |f(x)-7|<\varepsilon \\
& |2 x+3-7|<\varepsilon \\
& |2 x-4|<\varepsilon \\
& 2|x-2|<\varepsilon \\
& |x-2|<\varepsilon / 2
\end{aligned}
$$

$$
\text { Choose } \delta=\frac{\varepsilon}{2}
$$

So, we can make the values of $f(x)$ within an arbitrary distance ε from 7 by taking x within distance $\varepsilon / 2$ from 2

Definition: Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then we say that the limit of $f(x)$ as x approaches \boldsymbol{a} is \boldsymbol{L}, and we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \quad \text { then } \quad|f(x)-L|<\varepsilon
$$

Example: Use ε, δ definition to show that $\lim _{x \rightarrow 3}(7 x+2)=23$.
$\delta(\varepsilon)$
Need to show
for any $\{>0$, there is $\delta>0$ st

$$
\text { if } 0<|x-3|<S \Rightarrow|f(x)-23|<\varepsilon
$$

$$
|f(x)-23|<\varepsilon
$$

2. Show this δ works

$$
|7 x+2-23|<\varepsilon
$$

$$
\begin{aligned}
|7 x-2| & <\varepsilon \\
7|x-3| & <\varepsilon \\
|x-3| & <\frac{\varepsilon}{7}
\end{aligned}
$$

$$
|x-3|<S=\frac{5}{7}
$$

$\sim \begin{gathered}\text { repeat } \\ \text { steps }\end{gathered} \downarrow$

1. Choose $\delta=\frac{\varepsilon}{7}$

Similarly we can define:

- Left-hand limit: $\lim _{x \rightarrow a^{-}} f(x)=L$ if for every number $\varepsilon>0$ there is a number $\delta>0$ such that if $a-\delta<x<a$ then $|f(x)-L|<\varepsilon$
- Right-hand limit: $\lim _{x \rightarrow a^{+}} f(x)=L$ if for every number $\varepsilon>0$ there is a number $\delta>0$ such that if $a<x<a+\delta$ then $|f(x)-L|<\varepsilon$

Example: Prove that $\lim _{x \rightarrow 0^{+}} \sqrt{x}=0$
for every $\varepsilon>0$, there is $\delta>0$ st $\Rightarrow \quad u<x_{0}^{x}<x<\delta+\delta \Rightarrow|\sqrt{x}-0|<\varepsilon$

$$
\begin{gathered}
|\sqrt{x}-0|<\varepsilon \\
|\sqrt{x}|^{2}<\varepsilon^{2} \\
x<\varepsilon^{2} \\
\text { Choose } \delta=\varepsilon^{2}
\end{gathered}
$$

$$
\begin{gathered}
\text { Show than } \delta=\varepsilon^{2} \text { works } \\
\text { If } 0<x<\delta \\
\Rightarrow 0<x<\varepsilon^{2} \\
\sqrt{x}<\varepsilon \\
\Rightarrow|\sqrt{x}-0|<\varepsilon \\
\Rightarrow \lim _{x \rightarrow 0+} \sqrt{x}=0
\end{gathered}
$$

- Infinite limits: Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)=+\infty \\
& \left(\lim _{x \rightarrow a} f(x)=-\infty\right)
\end{aligned}
$$

means that for every positive number M (negative number N) there is a positive number δ such that if

$$
\begin{array}{r}
0<|x-a|<\delta \text { then } f(x)>M \\
(f(x)<N)
\end{array}
$$

Example: Use the definition of the limit to show that

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}=+\infty
$$

Given any $M>0$, there is $\delta>0 \mathrm{~s}$, t whenever $0<|x-0|<\delta \Rightarrow \frac{1}{x^{2}}>\mu$

$$
\begin{aligned}
& \frac{1}{x^{2}}>M \\
& x^{2}<\frac{1}{M} \\
& |x|<\sqrt{\frac{1}{M}}=\frac{1}{\sqrt{M}}
\end{aligned}
$$

$$
\text { Choose } \delta=\frac{1}{\sqrt{M}}
$$

Show that $\delta=\frac{1}{\sqrt{m}}$ works
If $\quad|x|<\delta=\frac{1}{\sqrt{M}}$

$$
\begin{aligned}
& x^{2}<\frac{1}{M} \\
& \frac{1}{x^{2}}>M
\end{aligned}
$$

(for any $M>0$)

$$
\Rightarrow \lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty
$$

Ex
Dirichlet function

$$
\begin{aligned}
& D(x)= \begin{cases}0, & x \in \mathbb{Q} \\
1, & x \in \mathbb{R} \backslash \mathbb{Q}\end{cases} \\
& \lim D(x)=L=\underset{\text { exists }}{\text { assume }} \operatorname{limit} \text {. Then }
\end{aligned}
$$

$$
x \rightarrow 0
$$

for any $\varepsilon>0$ there is $\delta>0$ sol

Choose $\varepsilon=\frac{1}{2} \quad \quad 0<|\vec{x}|<\delta \Rightarrow|D(x)-L|<\frac{1}{2}$ Take any rational $r \in \mathbb{Q}$ St. $\quad 0<|r|<\delta$ Then $D(r)=0 \Rightarrow|0-L|<\frac{1}{2} \Rightarrow L \leq|L|<\frac{1}{2}$ Now take any irrational $s \in \mathbb{R} \backslash \mathbb{Q}$ st. $0<|s|<\delta$ Then $D(s)=1 \Rightarrow|1-L|<\frac{1}{2} \Rightarrow\left|-L \leq|1-L|<\frac{1}{2}\right.$ $\Rightarrow L>1-\frac{1}{2} \Rightarrow L>\frac{1}{2} \Rightarrow$ contradiction. Thus, 'limit d ne

[^0]: ${ }^{2}$ http://www.saylor.org/site/wp-content/uploads/2011/11/2-2FunctionLimit.pdf

