Lecture 1 (Review of High School Math: Functions and Models)

Introduction: Numbers and their properties

Addition:

(1) (Associative law) If a, b, and c are any numbers, then

$$
a+(b+c)=(a+b)+c
$$

(2) (Existence of an additive identity) If a is any number, then

$$
a+0=0+a=a
$$

(3) (Existence of additive inverses) For every number a, there is a number $-a$ such that

$$
a+(-a)=(-a)+a=0
$$

(4) (Commutative law) If a and b are any numbers, then

$$
a+b=b+a
$$

Multiplication:

(5) (Associative law) If a, b, and c are any numbers, then

$$
a \cdot(b \cdot c)=(a \cdot b) \cdot c
$$

(6) (Existence of an multiplicative identity) If a is any number, then

$$
a \cdot 1=1 \cdot a=a
$$

(7) (Existence of multiplicative inverses) For every number $a \neq 0$, there is a number a^{-1} such that

$$
a \cdot a^{-1}=a^{-1} \cdot a=1
$$

(Note: division by 0 is always undefined!)
(8) (Commutative law) If a and b are any numbers, then

$$
a \cdot b=b \cdot a
$$

(9) (Distributive law) If a, b, and c are any numbers, then

$$
a \cdot(b+c)=a \cdot b+a \cdot c
$$

Definition: The numbers a satisfying $a>0$ are called positive, while those numbers a satisfying $a<0$ are called negative.

For any number a, we define the absolute value $|a|$ of a as follows:

$$
|a|=\left\{\begin{array}{cc}
a, & a \geq 0 \\
-a, & a \leq 0
\end{array}\right.
$$

Note: $|a|$ is always positive, except when $a=0$
Example:

$$
\begin{gathered}
|-2|=2 \\
f(x)=|x|=\left\{\begin{array}{c}
x, x \geqslant 0 \\
-x, x \leq 0
\end{array}\right. \\
|x| \leq 2 \\
-2 \leq x \leq 2
\end{gathered}
$$

Theorem (Triangle Inequality): For all numbers a and b, we have

$$
|a+b| \leq|a|+|b|
$$

Proof:
Note: $a \leq|a|$

$$
\begin{aligned}
& \sqrt{|a+b|^{2}}=(a+b)^{2}=a^{2}+2 a b+b^{2} \\
& =|a|^{2}+2 a b+|b|^{2} \\
& \leq|a|^{2}+2|a||b|+|b|^{2} \\
& =\sqrt{(|a|+|b|)^{2}} \\
& |a+b| \leq|a|+|b|
\end{aligned}
$$

Exercises

1. Prove the following:
(a) $x^{2}-y^{2}=(x-y)(x+y)$
(b) $(x \pm y)^{2}=x^{2} \pm 2 x y+y^{2}$
(c) $x^{3} \pm y^{3}=(x \pm y)\left(x^{2} \mp x y+y^{2}\right)$
2. What is wrong with the following «proof»?

Let

$$
x=y
$$

then

$$
\begin{array}{cl}
x^{2}=x y \\
x^{2}-y^{2}=x y-y^{2} \\
(x+y)(x-y)=y(x-y) \\
x+y=y & \text { wrong. } \\
2 y=y & \text { cannot } \\
2=1
\end{array}
$$

What types of numbers are there?...

The simplest numbers are the «counting numbers»:

$$
1,2,3, \ldots
$$

We call them natural numbers and denote by \mathbb{N}.

The most basic property of \mathbb{N} is the principle of «mathematical induction».

Mathematical Induction: Suppose $\mathrm{P}(n)$ means that the property P holds for the number n. Then $\mathrm{P}(n)$ is true for all natural numbers n provided that
(1) $\mathrm{P}(1)$ is true
(2) Whenever $\mathrm{P}(k)$ is true, $\mathrm{P}(k+1)$ is true.

A standard analogy is a string of dominoes which are arranged in such a way that if any given domino is knocked over then it in turn knocks over the next one.

This analogy is a good one but it is only an analogy, and we have to remember that in the domino situation there is only a finite number of dominoes.

Example: Show that $1+\cdots+n=\frac{n(n+1)}{2}$
Solution:
(1) Show (*) is true for $n=1$

$$
\frac{n(n+1)}{2}=\frac{1(1+1)}{2}=1
$$

(2) Assume (*) is true for $n=k$, i.e.

$$
1+\ldots+k=\frac{k(k+1)}{2}
$$

Need to prove for $n=k+1$, i. e

$$
\begin{align*}
& \text { Ied to prove for } n=k+1, l e l \\
& \frac{1+\ldots+k}{11}+(k+1) \stackrel{?}{=} \frac{(k+1)(k+1+1)}{2}=\frac{(k+1)(k+2)}{2} \tag{3}\\
& \frac{k(k+1)}{2}+(k+1)=\frac{k(k+1)+2(k+1)}{2}=\frac{(k+1)(k+2)}{2}
\end{align*}
$$

Exercise

Prove by induction on n that

$$
1+r+r^{2}+\cdots+r^{n}=\frac{1-r^{n+1}}{1-r}
$$

if $r \neq 1$ (note that if $r=1$, you can easily calculate the sum)

Other numbers:
Integers: ..., $-2,-1,0,1,2, \ldots$. This set is denoted by \mathbb{Z}.
Rational numbers: $\frac{m}{n}, n \neq 0, m, n \in$. This set is denoted by \mathbb{Q}.
Real numbers: denoted by \mathbb{R}.
Real numbers include rational and irrational numbers (e.g. π or $\sqrt{2}$, ie. numbers that can be represented by infinite decimals).
Why is $\sqrt{2}$ irrational? Assume it is rational.

$$
\begin{aligned}
& \sqrt{2}=\frac{a}{b} \rightarrow \text { irreducible REAL NUMBERS } \\
& \sqrt{2} b=a \\
& 2 b^{2}=a^{2} \\
& \text { So a is even, ie RUM ERS } \\
& a=2 k, k \in R \\
& 2 b^{2}=4 k^{2} \Rightarrow b^{2}=2 k^{2} \Rightarrow b \text { is even, ie. } b=2 \mathrm{~m} .
\end{aligned}
$$

Set notation and set operations

Definition: A set A is a collection of objects which are called elements or members.

Example: $A=\{-1,0,1,2\}$
Symbols that we shall use:
$x \in A$ (x belongs to A)
\nearrow

$$
-1 \in A
$$

$x \notin A$ (x does not belong to A)
\nrightarrow

$$
5 \notin A
$$

Subset: $A \subset B$

$$
\text { any } x \in A \Rightarrow x \in B
$$

Venn Diagram:

Complement: A^{c}

$$
x \in A^{c} \Rightarrow x \notin A
$$

$$
\begin{aligned}
A & =\{-1,0,1,2\} \\
A^{c} & =\mathbb{R} \backslash\{-1,0,1,2\}
\end{aligned}
$$

Union: $A \cup B=\{x: x \in A$ or $x \in B\}$

$$
\begin{aligned}
A & =\{1,2,3,4\} \\
B & =\{3,4,5,6\} \\
A \cup B= & \{1,2,3,4,5,6\}
\end{aligned}
$$

Intersection: $A \cap B=\{x: x \in A$ and $x \in B\}$

$$
A \cap B=\{3,4\}
$$

Empty set: \varnothing

$A \cap B=\phi$
disjoint

Intervals: $[a, b],(a, b), \quad[a, b),(a, b]$

closed interval $[a, b] \quad$ open interval (a, b)

half-closed interval $[a, b)$ half-closed interval $(a, b]$

Ex

$$
x \in[-1,3]
$$

$$
x \in[-1,2)
$$

Example:

$$
(-1,4) \cap(0,12)=(0,4)
$$

$$
\begin{aligned}
& (-\infty,-3) \cup(-4, \infty)=\mid R=(-\infty, \infty) \\
& \forall \lambda \lambda \ggg><\times \times \times \times \times \lll \lll \lll \\
& -4-3
\end{aligned}
$$

$$
(0,7]^{c}=(-\infty, 0] \cup(7, \infty)
$$

Solving inequalities
Example: Solve $2-3 x>8$.

$$
\begin{aligned}
2-8 & >3 x \\
3 x & <-6 \\
x & <-2
\end{aligned}
$$

Express the answer as an interval and graphically.

$$
(-\infty,-2)
$$

Example: $x^{2}-3 x+3 \geq 1$

$$
\begin{aligned}
& x^{2}-3 x+2 \geqslant 0 \\
& (x-2)(x-1) \geqslant 0
\end{aligned}
$$

$$
x-2<0
$$

$$
\begin{aligned}
& x-2<0 \\
& x-1<0
\end{aligned}
$$

$x-2<0$
$x-2>0$
$x-1>0$
$x-1>0$

$$
x \in(-\infty, 1] \cup[2, \infty)
$$

Example: Solve $|x-3| \leq 2$

$$
\begin{gathered}
-2 \leq x-3 \leq 2+3 \\
1 \leq x \leq 5 \\
x \in[1,5]
\end{gathered}
$$

Functions

What is a function?

- A function is a rule which assigns, to each of certain real numbers, some other real number.

Notation: $f(x)$.

Example: The rule which assigns to each number the cube of that number:

$$
f(x)=x^{3}
$$

Using notations:

- A function f is a rule that assigns to each element x from some set D exactly one element, $f(x)$, in a set E.
- D is a set of real numbers, called the domain of the function.
- E is a set of real numbers, called the range of the function, it is the set of all possible values of $f(x)$ defined for every x in the domain.
- We call x an independent variable, and $y=f(x)$ a dependent variable.

Examples: Find domain and range in interval notation.
(1) $f(x)=x^{2}$

$$
\begin{aligned}
& x^{2}=R=[-\infty, \infty) \\
& D=-[0, \infty)
\end{aligned}
$$

(2) $f(x)=\frac{1}{x-1}$

$$
\begin{aligned}
& D=\frac{1}{x-1}=\{X \in \mid R: X \neq 1\}=(-\infty, 1) \cup(1, \infty) \\
& E=(-\infty, 0) \cup(0, \infty)
\end{aligned}
$$

Visualizing a function

There are different ways to picture a function. One of them is an arrow diagram:

Each arrow connects an element of D to an element of E.

The most common way to picture a function is by drawing a graph.
Definition: A graph is the set of ordered pairs $\{(x, f(x)) \mid x \in D\}$.

$$
y=x^{2}
$$

Example: Given $f(x)=x^{2}-2 x+1$, find $f(6)$.

$$
f(6)=6^{2}-2 \cdot 6+1=25
$$

Example: Graph $f(x)=x+2$

Example: Graph $f(x)=|x|$

When you look at the graph, how do you know you are looking at a function?

Vertical Line Test: A curve in the $x y$-plane is the graph of a function of x if and only if no vertical line intersects the curve more than once.

Cuts once, so graph represents a function.

Cuts twice, so graph does not represent a function.

Example: $x=y^{2}-1$

$$
\begin{aligned}
& y^{2}=x+1 \\
& y= \pm \sqrt{x+1}
\end{aligned}
$$

\downarrow
not a function

$$
\begin{aligned}
& y=\sqrt{x+1} \geq \\
& \text { or } \\
& y=-\sqrt{x+1}
\end{aligned}
$$

Mathematical models: What kind of functions are there?

A mathematical model is a mathematical description (function or equation) of a real-world phenomenon.

Example: There is a strong positive linear relationship between husband's age and wife's age.

We can use a linear model to describe this relationship!

Definition: We say y is a linear function of x if $y=f(x)=m x+b$

- equation of a line, where
- m is the slope of the line, the amount by which y changes when x increases by one unit.
- b is the y-intercept, the value of y when $x=0$.

Example: $y=-0.5 x+1$

Definition: A function f is a polynomial function if there are real numbers $a_{0}, a_{1}, \ldots, a_{n}$ such that $P(x)=f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, for all x, n is a nonnegative integer.

The numbers $a_{0}, a_{1}, \ldots, a_{n}$ are called coefficients of the polynomial. The highest power of x with a nonzero coefficient is called the degree of the polynomial.

Examples:

1) A polynomial of degree 0 is a constant function $f(x)=c$
e.g. $y=3$

2) A polynomial of degree 1 is a linear function $f(x)=m x+b$.
3) A polynomial of degree 2 is a quadratic function $f(x)=a x^{2}+b x+c$, e.g.

The graph is called a parabola.
4) A polynomial of degree 3 is a cubic function $f(x)=a x^{3}+b x^{2}+c x+d$, e.g. $y=x^{3}$

Definition: If $f(-x)=f(x)$ for every $x \in D$, then f is called an even function. If $f(-x)=-f(x)$ for every $x \in D$, then f is called an odd function.
Example:
$f(x)=x^{2}$ is an even polynomial function.

$$
f(-x)=(-x)^{2}=x^{2}=f(x)
$$

The graph of an even function is symmetric with respect to the y-axis.
$f(x)=x^{3}$ is an odd polynomial function.

$$
f(-x)=(-x)^{3}=-x^{3}=-f(x)
$$

The graph of an odd function is symmetric about the origin.

$$
\begin{aligned}
& \text { What about } f(x)=x^{2}-2 x+1 \text { ? } \\
& \qquad \begin{aligned}
f(-x)= & (-x)^{2}-2(-x)+1 \\
& =x^{2}+2 x+1
\end{aligned} \begin{array}{l}
\neq f(x) \\
\end{array}=-f(x)
\end{aligned}
$$

neither odd nor even

Definition: A function f is called increasing on an interval I if

$$
f\left(x_{1}\right)<f\left(x_{2}\right) \text { whenever } x_{1}<x_{2} \text { in } I
$$

It is called decreasing on I if

$$
f\left(x_{1}\right)>f\left(x_{2}\right) \text { whenever } x_{1}<x_{2} \text { in } I
$$

Example: Given $f(x)=-x^{2}+4 x-4$, find the intervals where $f(x)$ is increasing/decreasing.

$$
f(x)=-\left(x^{2}-4 x+4\right)=-(x-2)^{2}
$$

Definition: A function of the form $f(x)=x^{a}$, where a is a constant, is called a power function. We consider the following cases:

- If $a=n$, where n is a positive integer, then $f(x)=x^{n}$ is a polynomial function.
- If $a=1 / n$, where n is a positive integer, then $f(x)=\sqrt[n]{x}$ is a root function.

Example: $y=\sqrt{x}$

$$
a=\frac{1}{2}
$$

- If $a=-1$, then $f(x)=x^{-1}=\frac{1}{x}$ is a reciprocal function.

The graph is called a hyperbola with the coordinate axes as its asymptotes.

Definition: A function f is called a rational function, if it can be written as a ratio of two polynomials:

$$
f(x)=\frac{P(x)}{Q(x)} \quad Q(x) \neq 0
$$

Example: $f(x)=\frac{x^{2}-x+2}{x-3}$

Definition: A function f is called an algebraic function if it is constructed by applying algebraic operations (such as addition, subtraction, multiplication, division, and taking roots) to the polynomials.

Examples:

$$
f(x)=\sqrt{x^{2}+2}
$$

$$
f(x)=\frac{1-x}{x^{2}+1}
$$

$$
f(x)=\sqrt{x^{2}+2}+\frac{1-x}{x^{2}+1}
$$

Trigonometric functions (review):

$$
f(x)=\sin x
$$

$$
f(x)=\cos x
$$

$$
\begin{aligned}
& D=\mathbb{R} \\
& E=[-1,1] \\
& \text { period }=2 \pi
\end{aligned}
$$

$f(x)=\tan x=\frac{\sin \nless}{\cos \alpha}$

$$
\begin{aligned}
& D=\left\{x \in \mathbb{R}, \quad x \neq \frac{\pi}{2}+k \pi, \quad k \in \mathbb{R}\right\} \\
& E=\mathbb{R} \quad \text { period }=\pi
\end{aligned}
$$

The remaining functions: cosecant, secant, and cotangent, are the reciprocal of the ones above.

Partial table of values for trigonometric functions:

Angle θ				
Degrees	Radians	$\sin \theta$	$\cos \theta$	$\tan \theta$
0	0	0	1	0
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90	$\frac{\pi}{2}$	1	0	undefined
180	π	0	-1	0
270	$\frac{3 \pi}{2}$	-1	0	undefined
360	2π	0	1	0

Identities

Pythagorean Identities:

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \tan ^{2} \theta+1=\sec ^{2} \theta \\
& \cot ^{2} \theta+1=\csc ^{2} \theta
\end{aligned}
$$

Sum or Difference of Two Angles:
$\sin (\theta \pm \phi)=\sin \theta \cos \phi \pm \cos \theta \sin \phi$
$\cos (\theta \pm \phi)=\cos \theta \cos \phi \mp \sin \theta \sin \phi$
$\tan (\theta \pm \phi)=\frac{\tan \theta \pm \tan \phi}{1 \mp \tan \theta \tan \phi}$
Law of Cosines:
$a^{2}=b^{2}+c^{2}-2 b c \cos A$

Reduction Formulas:
$\sin (-\theta)=-\sin \theta$
$\cos (-\theta)=\cos \theta$
$\tan (-\theta)=-\tan \theta$
Half-Angle Formulas:
$\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$
$\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta)$

Reciprocal Identities.
$\csc \theta=\frac{1}{\sin \theta}$
$\sec \theta=\frac{1}{\cos \theta}$
$\cot \theta=\frac{1}{\tan \theta}$
$\sin \theta=-\sin (\theta-\pi)$
$\cos \theta=-\cos (\theta-\pi)$
$\tan \theta=\tan (\theta-\pi)$
Double-Angle Formulas:
$\sin 2 \theta=2 \sin \theta \cos \theta$

$$
\begin{aligned}
\cos 2 \theta & =2 \cos ^{2} \theta-1 \\
& =1-2 \sin ^{2} \theta \\
& =\cos ^{2} \theta-\sin ^{2} \theta
\end{aligned}
$$

Quotient Identities:
$\tan \theta=\frac{\sin \theta}{\cos \theta}$
$\cot \theta=\frac{\cos \theta}{\sin \theta}$

Exponential functions

Definition: The function of the form $f(x)=a^{x}$, where the base a is a positive constant, is called an exponential function.
Let's recall what that means.

Laws of Exponents: If a and b are positive numbers and x and y are any real numbers, then

1. $a^{x+y}=a^{x} a^{y}$
2. $a^{x-y}=\frac{a^{x}}{a^{y}}$
3. $\left(a^{x}\right)^{y}=a^{x y}$
4. $(a b)^{x}=a^{x} b^{x}$

Example: Simplify $\frac{\sqrt{a \sqrt[5]{b}}}{\sqrt[5]{a b}}$

$$
\begin{aligned}
& \qquad \begin{array}{l}
\text { Example: Simplify } \frac{\sqrt{a \sqrt{b}}}{\sqrt[5]{a b}} \\
\qquad=a^{\frac{1}{2}}\left(b^{\frac{1}{5}}\right)^{\frac{1}{2}}-\frac{1}{5} a^{\frac{1}{5}} b^{\frac{1}{5}}-\frac{1}{5}
\end{array}=\frac{a^{\frac{1}{2}} b^{\frac{1}{10}}}{a^{1 / 5} b^{1 / 5}} \\
& \qquad a^{\frac{3}{10} b^{-\frac{1}{10}}}
\end{aligned}
$$

$$
\begin{aligned}
e=1+\frac{1}{1}+\frac{1}{1 \cdot 2} & +\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\cdots \\
& \approx \sum_{n=0}^{\infty} \frac{1}{n!} \\
& 2.71828
\end{aligned}
$$

How can we get new functions from the ones we know?
Transformations of functions
Vertical and Horizontal Shifts: Suppose $c>0$. To obtain the graph of

- $y=f(x) \pm c$, shift the graph of $y=f(x)$ a distance c units upward/downward
- $y=f(x \pm c)$, shift the graph of $y=f(x)$ a distance c units to the left/right

Example: $f(x)=(x-2)^{2}+1$

$$
\begin{aligned}
& (2,1)-\text { vertex } \\
& (x-k)^{2}+h \\
& (k, h) \text {-vertex }
\end{aligned}
$$

Vertical and Horizontal Stretching: Suppose $c>0$. To obtain the graph of

- $y=c f(x)$, stretch the graph of $y=f(x)$ vertically by a factor of c
- $y=\frac{1}{c} f(x)$, shrink the graph of $y=f(x)$ vertically by a factor of c
- $y=f(c x)$, shrink the graph of $y=f(x)$ horizontally by a factor of c
- $y=f\left(\frac{x}{c}\right)$, stretch the graph of $y=f(x)$ horizontally by a factor of c

Example: $y=\sin 2 x$

Reflecting: To obtain the graph of

- $y=-f(x)$, reflect the graph of $y=f(x)$ about the x-axis
- $y=f(-x)$, reflect the graph of $y=f(x)$ about the y-axis

Combinations of functions

$$
\begin{aligned}
& (f \pm g)(x)=f(x) \pm g(x)(\text { sum/defference }) \\
& \quad(f g)(x)=f(x) g(x)(\text { product }) \\
& \quad\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0 \text { (quotient) } \quad f \circ g \neq g \circ f \\
& (f \circ g)(x)=f(g(x))(\text { composite function) }
\end{aligned}
$$

Example: If $f(x)=e^{x}$ and $g(x)=\sin ^{2} x$, find $f \circ g, g \circ f$, and $g+f \circ f$.

$$
\begin{aligned}
& f \circ g=f(g(x))=f\left(\sin ^{2} x\right)=e^{\sin ^{2} x} \\
& g \circ f=g(f(x))=g\left(e^{x}\right)=\sin ^{2}\left(e^{x}\right) \\
& g+f \circ f=\sin ^{2} x+e^{e^{x}} \\
& \text { What about } f \circ f \circ f ?=f(f(f(x)))=e^{e^{x}}
\end{aligned}
$$

Inverse functions
Definition: A function f is called a one-to-one function if it never takes on the same value twice, ie.

$$
f\left(x_{1}\right) \neq f\left(x_{2}\right) \text { whenever } x_{1} \neq x_{2}
$$

Example: $y=x^{2}$. Is it one-to-one?

$$
(-2)^{2}=4=(2)^{2}
$$

How to check?
Horizontal line test: A function is one-to-one if and only if no horizontal line intersects its graph more than once.

One-to-one Function: Yes

One-to-one Function: No

Definition: Let f be one-to-one function with domain A and range B. Then its inverse function f^{-1} has domain B and range A and is defined by

$$
f^{-1}(y)=x \Leftrightarrow f(x)=y \text { for any } y \in B
$$

$$
\text { Note: } f^{-1}(x) \neq \frac{1}{f(x)}
$$

Example: Given that $f(x)$ is one-to-one, and $f(0)=-1, f(2)=0, f(3)=2$. Find $f^{-1}(-1), f^{-1}(0)$, and $f\left(f^{-1}(2)\right)$.

$$
\begin{aligned}
& f^{-1}(-1)=x \\
& f(x)=-1 \Rightarrow x=0, \text { so } f^{-1}(-1)=0 \\
& f^{-1}(0)=2 \\
& f\left(f^{-1}(2)\right)=f(3)=2
\end{aligned}
$$

Note: Inverse functions have the unique property that, when composed with their original functions, both functions cancel out. Mathematically, this means that

$$
\begin{array}{ll}
f^{-1}(f(x))=x, & x \in A \\
f\left(f^{-1}(x)\right)=x, & x \in B
\end{array}
$$

Since functions and inverse functions contain the same numbers in their ordered pair, just in reverse order, their graphs will be reflections of one another across the line $y=x$:

Example: $f(x)=x^{3}$

$$
f^{-1}(x)=\sqrt[3]{x}
$$

How to find the inverse function?
To find the inverse function for a one-to-one function, follow these steps:

1. Rewrite the function using y instead of $f(x)$.
2. Solve the equation for x in term of y.
3. Switch the x and y variables
4. The resulting equation is $y=f^{-1}(x)$
5. Make sure that your resulting inverse function is one-to-one. If it isn't, restrict the domain to pass the horizontal line test.

Example: Given $f(x)=\sqrt{x+3}$, find $f^{-1}(x)$.

1. $y=\sqrt{x+3}$
2. $y^{2}=x+3$

$$
x=y^{2}-3
$$

3. $y=x^{2}-3$
$\begin{aligned} \text { 4. } & f^{-1}(x)=x^{2}-3 \rightarrow \operatorname{not} \\ & \text { restriction: } x \geq 0\end{aligned}$

Note: $x \geq 0$ for $f^{-1}(x)$. Without this restriction, $f^{-1}(x)$ would not pass the horizontal line test. It obviously must be one-to-one, since it must possess an inverse of $f(x)$. You should use that portion of the graph because it is the reflection of $f(x)$ across the line $y=x$, unlike the portion on $x<0$.

Examples of inverse functions you need to know

- Logarithmic functions

If $a>0$ and $a \neq 1$, the exponential function $f(x)=a^{x}$ is one-to-one, so it has an inverse function f^{-1} called the logarithmic function with base \boldsymbol{a}.

Notation: $\log _{a}$
Thus,

$$
f^{-1}(x)=\log _{a} x=y \Leftrightarrow f(y)=a^{y}=x
$$

Cancellation property:

$$
\begin{gathered}
f^{-1}(f(x))=\log _{a}\left(a^{x}\right)=x, \quad x \in \mathbb{R} \\
f\left(f^{-1}(x)\right)=a^{\log _{a} x}=x, \quad x \in \mathbb{R}
\end{gathered}
$$

Laws of logarithms: Given $x, y \in \mathbb{Z}^{+}$(positive integers)

$$
\begin{aligned}
& 1 . \log _{a}(x y)=\log _{a} x+\log _{a} y \\
& \text { 2. } \log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y \\
& \text { 3. } \log _{a} x^{r}=r \log _{a} x, r \in \mathbb{R}
\end{aligned}
$$

Note: $\log _{a} a=1$

Example: Evaluate $\log _{2} 5-\log _{2} 40-\log _{2} 1$

$$
\begin{aligned}
=\log _{2} \frac{5}{40} & -0 \\
=\log _{2} \frac{1}{8}=\log _{2} 2^{-3} & =-3 \underbrace{\log _{2} 2}_{1} \\
& =-3
\end{aligned}
$$

Definition: The logarithm with base e is called the natural logarithm.
Notation: $\log _{e} x=\ln x$
So,

$$
\begin{gathered}
\ln x=y \Leftrightarrow e^{y}=x \\
\ln e^{x}=x, \quad x \in \mathbb{R} \\
e^{\ln x}=x, \quad x>0 \\
\ln e=1
\end{gathered}
$$

Example: Solve $e^{3-x}=7$

$$
\begin{gathered}
\ln e^{3-x}=\ln 7 \\
3-x=\ln 7 \\
x=3-\ln 7
\end{gathered}
$$

Change of base formula:

$$
\log _{a} x=\frac{\ln x}{\ln a}, \quad a>0, a \neq 1
$$

Example: Evaluate $\log _{8} 3$

$$
=\frac{\ln 3}{\ln 8}=0.528
$$

- Inverse trigonimetric functions

Inverse sine function or acrsine function: $\sin ^{-1} x$

$y=\sin x$ is not one-to-one, but for $-\pi / 2 \leq x \leq \pi / 2$ it is.

So we have

$$
\begin{gathered}
\sin ^{-1} x=y \Leftrightarrow \sin y=x \text { and }-\pi / 2 \leq y \leq \pi / 2 \\
\sin ^{-1}(\sin x)=x,-\pi / 2 \leq x \leq \pi / 2 \\
\sin \left(\sin ^{-1} x\right)=x,-1 \leq x \leq 1
\end{gathered}
$$

Example: Evaluate

$$
\begin{aligned}
& \text { (a) } \sin ^{-1} 1 / 2=x \\
& \sin \left(\sin ^{-1} \frac{1}{2}\right)=\sin x \\
& \frac{1}{2}=\sin x \Rightarrow x=\frac{\pi}{6}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \cos \sin ^{-1} \frac{1}{\sqrt{2}}=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}} \\
& \sin ^{-1} \frac{1}{\sqrt{2}}=x \\
& \frac{1}{\sqrt{2}}=\sin x \Rightarrow x=\frac{\pi}{4}
\end{aligned}
$$

Similarly we can define inverse functions for other trigonometric functions:

$$
y=\cot ^{-1} x, x \in \mathbb{R} \Leftrightarrow \cot y=x, \quad y \in(0, \pi)
$$

$$
y=\sec ^{-1} x,|x| \geq 1 \quad \Leftrightarrow \quad \sec y=x, y \in[0, \pi / 2) \cup[\pi, 3 \pi / 2)
$$

$$
y=\csc ^{-1} x,|x| \geq 1 \quad \Leftrightarrow \csc y=x, y \in(0, \pi / 2] \cup(\pi, 3 \pi / 2]
$$

General solutions

Note: trigonometric functions are periodic.
This periodicity is reflected in the general inverses:

$$
\begin{aligned}
& \sin (y)=x \Leftrightarrow y=\arcsin (x)+2 k \pi \text { or } y=\pi-\arcsin (x)+2 k \pi, k \in \mathbb{Z} \\
& \text { or } \\
& \sin (y)=x \Leftrightarrow y=(-1)^{k} \arcsin (x)+k \pi \\
& \cos (y)=x \Leftrightarrow y=\arccos (x)+2 k \pi \text { or } y=2 \pi-\arccos (x)+2 k \pi \\
& \text { or } \\
& \cos (y)=x \Leftrightarrow y= \pm \arccos (x)+2 k \pi \\
& \tan (y)=x \Leftrightarrow y=\arctan (x)+k \pi \\
& \cot (y)=x \Leftrightarrow y=\operatorname{arccot}(x)+k \pi \\
& \sec (y)=x \Leftrightarrow y=\operatorname{arcsec}(x)+2 k \pi \text { or } y=2 \pi-\operatorname{arcsec}(x)+2 k \pi \\
& \csc (y)=x \Leftrightarrow y=\operatorname{arccsc}(x)+2 k \pi \text { or } y=\pi-\operatorname{arccsc}(x)+2 k \pi
\end{aligned}
$$

Example: Solve equation $2 \sin 2 x+1=0$

$$
\sin 2 x=-\frac{1}{2}
$$

$$
\theta=2 x
$$

$$
x=\begin{aligned}
& \frac{11 \pi}{6}+2 k \pi, k \in \mathbb{R} \\
& \frac{7 \pi}{12}+k \pi, k \in \mathbb{R} \\
& \frac{11 \pi}{12}+k \pi, k \in \mathbb{R}
\end{aligned}
$$

