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1. Relation to the Cohen-Merhav bound. Let f;(B) > 0 and m;(wg) be non-
negative real functions. Then by the Cauchy-Schwarz inequality,

[Z fi(B)p [Z 0 )] > [Z meow)r. (1)

BB Bi:icB Bi:icB
Thus, using
N N N
P (U Ai> =Y (Z fAB)) pe=Y_ Y fiB)ps. (2)
i=1 Be# \i=1 i=1 Be#:icB
we have
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i=1 B:i€B ZBZGB fi(B)

If we define f;(B) by

so that

PUs)-X 8 ho-Sx o

i=1 BeA:ieB i=1 weA,
then the inequality reduces to

N [Sicppomi(en)] p(w)mi(w)]’
P A'L B:eB ? UJEA , (6)
<Z_U1 ) Z EB icp PBM; (wp)|B| Z Z Dwea, NA; p(w)m3 (w)
where the equality holds when m;(w) = m

shown by Cohen and Merhav [1, Theorem 2.1].
When m;(w) = ¢; > 0, (6) reduces to the DC bound

(i.e., m;(wp) = W)’ which was first

P(A;)?
A | > = .
(U ) ZZ ZZPAQA) fpc (7)
Note that as remarked in [2], the DC bound can be seen as a special case of the

lower bound
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P(A;)

when ¢; = S P(AnAy)- This is because
P(A; 2 P(A;)? 2
{Zi (W%Aj)) P(Aiﬂ B (E 5 P((A P ))
i WA%A) P(Az‘ﬂAj) D % ZP(AQA) 9
>, P )
Ipe

Note that although ¢; > 0 is not assumed in (8), one can always replace ¢; by |¢;]
n (8) if ¢; < 0 to get a sharper bound.

However, the lower bound in (8) is looser than the following two (left-most) lower
bounds (which we later derive in (16) and (18)):

N

S _@PAr | [SePG)R [SeP
— C; Zk CkP(Ai ﬂAk) - Zz Zk CiCkP(Ai ﬁAk) - Zz Ej CZZP(AZ' ﬁz‘lj)7

where ¢; > 0 for all 7 and the last inequality can be proved using 2c;c; < e+ c?.

(10)

2. Relation to the Gallot-Kounias bound. By the Cauchy-Schwarz inequality,
or assuming m;(w) =1 in (1), we have

X s | 3 e

B:ieB B:ieB

= P(A)~ (11)

2
ZPB

B:ueB

fi(B

Using f;(B) defined using ¢ (note that f;(B) > 0 is equivalent to ¢; > 0 for all ),
we have
CiPB 2 keB Ck
> o |5 (L),
BiieB ~k€BF | | picp g
Note that

N
Ck 1 cP(A;NA
v i o “EB,kEB v

B:ieB

> P(4;)°. (12)

Therefore, we have

[Z CiPB 1 [Zk cP(A; N Ay)

Ci

A;)2.
P S } > P(A;) (14)

Then for all 4,

CPB c2P(A;)?
B:ieB ZkEB Ck G Zk CkP(Ai N Ak)
By summing (15) over i, we get another new lower bound:

P(w) Samtitin g

i=1

(15)

Note that we can use Cauchy-Schwarz inequality again:

al cP(
[2 > ckPA A Ay XZ:@Z%PA A Ag)

%

=z [Z & (Al)
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which yields

A;)? 30 eiP(A))
P (LZJ Al) Z C; Zk Ckp A; ﬂAk) 2 Zi Zk CiCkP(Ai OAk)' (18)

Since the above inequality holds for any positive ¢, we have

P <UA¢> P’ [ ciP(A)]”

> > 19
o gél]l%}f( P C; Zk CkP(AZ ﬂAk) - fel]]%X Z Zk CZCkP(A ﬂAk) ( )

One can show that by computing the partial derivative with respect to ¢; and
set it to zero that
N 2 2 2
2P(A,) (5, ciP(A)]

= = g 2
5161]1%}1\(’ P C; Zk CkP(Ai N Ak) 52%1)\(’ Z Zk CZCkP(A n Ak) GK> ( 0)

where {gxk is the Gallot-Kounias bound (see [2]), and the optimal & can be obtained
from

¥e=aq, (21)

where a = (P(A;), P(Ay),...,P(Ax))T and X is a N x N matrix whose (i, j)-th
element equals to P(A; N A;). Thus, we conclude that the lower bounds in (19) are
equal to the GK bound as shown in [2] if ¢ € RY; otherwise, the lower bounds in
(19) are weaker than the GK bound.

3. Complete Results and Proof of Theorem 1.

Theorem. For any given c that satisfies

Z ¢y, #0, forall Be A (22)

keB

a new lower bound on the union probability is given by

N N
P (U Al> Z Z&(C) =: ZNEW—I(C)a (23)
i=1 i=1

where

C; n C; B C; Zk CkP(Ai N Ak)
S S e )
(

)

24)

where B(i) and B(i) are subsets of {1,..., N} that satisfy the following conditions.

1. If 2k Ckpgiﬁ ?A’“) > 0 and mingp.;cpy Z’“EB %k <0, then

&(C) = P(AZ) (

. c c
Bgz) =arg max 721“63 K s.t. 72%3 K
{B:i€B} C; Ci

; c
Bél) = arg max Lren heB Tk
{B:ieB} C;

<0,
(25)
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2. If W > 0 and mingp.;cpy Z’“i_Bck >0, then
B(Z) = arg max ZkEB G s.t. ZkEB Ch < 2k R P(Ai Ak),
{B:ieB} Ci Ci c;iP(A;) (26)
B(Z) = arg min ZkeB G s.t. ZkeB Ch > Zk ckP(Ai A Ak).
{B:i€B} C Ci ;i P(A;)
cpP(A;NA cpP(A;NAg c
3. If >k CkP(A ? k) < 0 and >k ZLPEA;; k) < {maX{B:iGB,EkECP ck <0} Zki}g k, }7
then
B(l) = arg max 7Zk63 Ck, s.t. 72]“6]3 G <0,
{B:ieB} Ci Ci (27)
: c
Béz) =arg min @.
{B:icB} Ci
cr P(A;NA crP(A;NA c
4.1 fiz’“ ctPEA; 1) < () gnd ZaeelA0Ar) C’;PEA; £ > {maX{B:ieB,Z'“ifck@} ZkiB : } )
then
B(Z) = arg max w,
{B:i€B} Ci (28)
B( 0= = arg max ZkEB Ch s.t. ZkEB G < Zk ek P(4; N Ak).
{B:icB} C; C; CiP(Ai)

Zk CkP(AiﬁAk)
ci P(A;)

0, the elements of ¢ cannot be all positive or negative, so theset {B : i € B, @ <

Proof. Note that for the third and fourth cases, under the condition

0} is not empty. Therefore, the solutions of Bii) and Béi) always exist.
We note that ¢;(c) is the solution of

CiPB
min = s.t. pp = P(4;)
{pp:i€B} BZGB 2 ken Ck B;B

Z <Zk€B ck) == Z e P(A; N Ay), (29)
BieB i
pp >0, forall Be % such that i€ B.

From (29) we have that
P> pi(e). (30)
Bricn 2keB Ch

Summing (30) over ¢ and using

N N
GiPB cip(w
PlUa) =2 ¥ (o oy (3D)
<¢_1 > i=1 BER:EB 2 ke Ck i=1 wEA; Z{k WAL} -
we directly obtain P (Ulj\il Ai> > Zivzl AR
Note that we can solve (29) using the same technique used in [4, 5]. Consider
two subsets By and Bj such that pp, > 0 and pp, > 0, then denoting

b dorceP(A; N Ay) by = > keB, Ck’bQ :: > keBs C’f’ (32)

ciP(Ai) T Ci ci
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then problem (29) reduces to

. PB, PB,
f;(¢) = min +
( ) {rB;PBy} b1 b

s.t. pp, +pB, = P(A)),
blpB1 + b2pB2 = bP(Az)a (33)
PB, > 0, DB, > 0.

According to [4, Appendix B], one can get that

t(c)=  min P(Ay) <b1+1 b > (34)
b

" {b1,ba:by<b<bo} 1 by biby
2

and the partial derivative of P(A;) (i + é — blT) with respect to by and by are
(see [4, Appendix B, Eq. (B.3)]):

o) (F+&—5%)] Py (b-@)

by T b

(35)

1 b

0 |P(A) (& + & — 55 )] _ P(A) (b—b
by B b3 b1 '

Note that the partial derivatives are not continuous at by = 0 and by = 0. Therefore,

the solution depends on the following different scenarios.

1. If b > 0 and mingp.;cpy E’“EB % <0, the solutions of (34) are given by
b= max kEBCR (o 2ken®h
Bi€B i Ci
{B:i€B} - (36)
c
by = max ﬂ.
{B:ieB} C;
2. If b > 0 and mingp.;cpy Z’“i? % >0, the solutions of (34) are given by
by = max 2kenCh st 2renCh <b
i c; Ci
{Bri€B} - - (37)
c c
by= min kB o ZkeBTE oy
{B:ieB} Ci Ci

2ken Ck
ci

3. Ifb<0and b< {maX{B;ieg}
(34) are given by

s.t. Zhep %k < O} ,, the solutions of

) C;

D ke Ck 2 keB Ck
bi— max kB Zkenh
{B:ieB} Ci Ci
by = min Lken
{B:ieB} C;

<0,
(38)

4. Ifb<0and b > {maX{B:ieB} Zkeifck, s.t. @ < 0} ,, the solutions of

C.

(34) are given by

= g, 2
e C;
3 o 5 o (39)
bo = max keB oy, keB P <b.

{B:i€B} ¢ Ci O
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4. Proof of Lemma 2.

Lemma. When c € Rf, the lower bound {ngw.1(c) can be computed in pseudo-
polynomial time, and can be arbitrarily closely approximated by an algorithm run-
ning in polynomial time.

Proof. The problems in (25) to (28) are exactly the 0/1 knapsack problem with mass
equals to value (see [3], the corresponding decision problem is also called subset sum
problem). Unfortunately, the 0/1 knapsack problem is NP-hard in general.

However, if ¢ € Rf , i.e, the case (26), there exists a dynamic programming solu-
tion which runs in pseudo-polynomial time, i.e., polynomial in NV, but exponential
in the number of bits required to represent W (see [3]). Furthermore,
there is a fully polynomial-time approximation scheme (FPTAS), which finds a so-
lution that is correct within a factor of (1 — €) of the optimal solution (see [3]).
The running time is bounded by a polynomial and 1/e where € is a bound on the
correctness of the solution.

Therefore, if ¢ € Rf , one can get a lower bound for ¢;(c) in polynomial time
which can be arbitrarily close to ¢;(¢) by setting e small enough, i.e.,

ti(e) > tE(c,e), 61_1{& tE(c,€) = ti(c). (40)

The details are as follows. First, assume B; and Bg are obtained by the FPTAS
which satisfy

(1—6)ch§ch§ch, chSch§(1+e)ch.
keB ke B keB keBSY ke B keBY
(41)
Then we have

D ke Ch P(A;N A :
Z ckgmin{ ke B! Y>orckP(A;iN Ayg) ),

X 1—e¢ ’ P(Al)
keB{?
> (42)
keBS) k>, e P(A; N Ay) (i)
> 2 =:by .
Z k= ma"{ l+e P(4;) 2
keBSY
Then one can get the arbitrarily close lower bound for ¢;(c) as
i i s PA;NA
li(e) > tF(e,e) = P(Ay) | 5 + 5 — 2t Ch ((.) - ) (43)
bi” by P(A;)by" by

Therefore, we can get a lower bound for P (Ufil Ai) that is arbitrarily close to
Ingw-1(c) in polynomial time: P (Uf: ) A,») > S 4i(e) > 3, £ (e o). O

5. Proof of Corollary 1.

Corollary. (New class of upper bounds hygw-1(c)): We can derive an upper bound
for any given c € Rf by

P (U Ai> < (minlk " Zi Ck) zi:CiP(Ai)

1
_—— E E C,;CkP(Ai N Ak) =: hNEW—I(C)-
i k

(ming ¢x) Yy k

(44)
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Proof. We get the upper bound by maximizing, instead of minimizing, the objective
function of (29). More specifically, for any given ¢ € RT, a upper bound can be
obtained by

N
o) =3 hile). (45)
i=1
where h;(c) is defined by
CiPB
hi(c) == max = st pp = P(4;),
{peii€B} Jo2p > ken Ok B%:B
Ck 1
Z (ZkEB )PB = — ZCkP(Ai NAg),
- C; C;
B:ieB k
pp >0, forall Be % suchthat i€ B.

(46)

The resulting upper bound is given by

P(a) = Trfaia s £n

012 Zk e P(A; ﬂAk):| }
(ming ci) Zk Ck ciP(4;)

1 1
- (o = -) S ep()
szqckp(AmAk). (47)
i k

O

6. Proof of Theorem 2.

Theorem. Defining = = B\ {1,...,N}, % = > cxP(A; N Ay), &; := P(4;)
and

s _ . ~ —+
o= mp [% S (48)
A minyg Cg
where ¢ € Rf, another class of lower bounds is given by
N N 3
P (U Ai> >0+ Y li(c,0) = npw-n(e), (49)
i=1 i=1
where
ti(e,x) =[P(4;) — a]-
C; C; C; Zk Ck [P(AlﬂAk) 71’]

+ - )
S S e
(50)
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and
Bgi) =arg  max Lrep s.1. ke O < 2 x [PLA0 Av) = x],
{Be®—:i€B}y ¢ Ci ¢ [P(A;) — ] (51)
Béi) = arg min Lk s.1. L O > 2k [P(Ai 0 Ay) — 2]
{Be#—:i€B} ¢ Ci ¢ [P(A;) — ]

Proof. Let © = pg1,2,... ny and consider ), £i(c, z) + 2 as a new lower bound where
where ¢ (c, x) equals to the objective value of the problem

. GipPB
55 2 > wen Ck
:i€B,BEB~ c
{psii } BucB pes- 2okeB Ok

s.t. Z pp = P(4;) — =z,

B:i€B,BE%A~ (52)
S (Fe )= LS alPan A ),
B:i€B,BEB~ “
pp >0, forall Be % suchthat i€ B.

The solution of (52) exists if and only if ming ¢ < ’Y’(azik;")x < >, Ck — ming cg,

+
. . Fi— (2o ck—ming cx )& . . —(ming Ay
which gives max; | — (s - )as < z < min; M . Therefore
? miny cg v >0k ck—ming ¢k ’

the new lower bound can be written as

; ming c
i=1

& (ming ¢ )&

Z ¢ — ming ¢’
(53)

Next, we can prove that the objective function of (53) is non-decreasing with x.

First, we prove ¢;(c, z) is continuous when 3B’ € %~ such that 2k O F;E’: )QA;]) i
ZkEB’ Ck

min
xT

->—. This can be proved by limy, ,o+ ¢;(c,z + h) = limy_,o+ £i(c;x — h) =
> (i) Ck ) _ > (i) Ck
ﬁ Then one can prove that when kEcB2 i Cc’z %};EX;Y‘;]) 2] kefil
the partial derivative of £(¢, z) + mx w.r.t. = is non-negative:
/! i
0 (Ki(c, x) + Zi o :c) o G ¢

O Yk - ZkeBg) o ZkEBg-) Ch
Ci )y Ck
(Sicsp o) (Seewsy )
‘i (Zk Ck — Zker) ck) (Zk Ck — ZkeB;i) Ck) (54)
(Xkex) (ZkeBi“ Ck) (ZkeB;w Ck)
G (Zkngf') Ck) (Zk@éw Ck)
: (Zk ) (ZkGBgi) Ck) (ZkeB§i> ck)

Therefore, the objective function of (53), >, li(c,z) +x =), (f’i(c, x) + == )7

_|_

>0

2k Ck z
is non-decreasing with z.

, Vi.
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Finally, defining 4 as in (48), the new lower bound can be written as P (vazl Ai) >

o+ vazl (¢, 8), where ¢/(c,8) can be obtained using the solution for /;(¢) with

> e ckP(AiNAL) s S en[P(4nA )75
b= =T pay  replaced by b= == cﬂmt)—;] } 0

7. Proof of Corollary 2.

Corollary. (Improved class of upper bounds hygpw.i(c)): We can improve the
upper bound hygw-r(c) in (44) by

P (U Ai) < min { >k kP (Ai N Ag) — (miny, ck)P(AZ-)}

>k Ck — ming ¢y,

1 1
i P(A;
+ (mink Cr. + > Ck — miny ck) Xi:c (4:) (55)
1
B (ming ¢ ) (>, ¢k — ming ci) ; ; cicxP (A 0 Ay),
=: hypw-11(c).

Note that the upper bound hAngpw.ri(c) in (55) is always sharper than hAngpw.; in

(44)-
Proof. Letting x = pyy,... ny. Defining 2~ = #Z\ {1,..., N}, then

R () = max

N
z+ Y hie, x)} : (56)

i=1
where #}(c, x) is defined by

CiPB
Ri(e,z) := max E 217
€B,BE B~ c
{ppii BiieB,Beg- “vkeB “k

s.t. Z B = P(Ai) -z,

B:i€B,B€ B~
2 _keB Ck 1
> ()= L Y alran Ay -l
B:i€B,BE%B~ k
pp >0, forall Be % suchthat i€ B.

(57)
The solution of 7j(c, x) is independent with x:
: — (P(A;) — Ci ¢
hi(e,x) = (P(4;) — =) (mink P Ck>
c:
_ ) P Al A |
(miny, ) (>°, cx — ming ) ch( ( k) — )
k (58)

C; C;
:PAZ % %
(42 (mink Ck - > ) Ck — minyg Ck)

C;
B (ming ¢ ) (30, ¢k — ming cx) ; ok P(Ai 0 Ar),
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and the solution exists if and only if for all ¢

YopceP(Ai NV AR) — (O, ck)z

i < < — mi .
mincy, < PA) —= < zk:ck min cy (59)
Thus, we get
{max Zk CkP(Ai n Ak) - (Zk ¢, — miny Ck) P(AZ) }+
% mink Ck (60)
<2 < min Zk Ck;P(Ai N Ak) — (mink Ck)P(Al)
] >k Cr —ming ¢

Therefore, we get the upper bound

P UAi < min { Do P (A N Ag) — .(mlnk Ck)P(Ai)}
@ ’ Zk C — MmNy Ck

+< L ! );ciP(Ai) (61)

ming ¢ Y, Cp — ming ¢

! 3 cionP(A; N Ay).
k

B (ming cx) (3, cx — ming cx) -
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