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1. Relation to the Cohen-Merhav bound. Let fi(B) > 0 and mi(ωB) be non-
negative real functions. Then by the Cauchy-Schwarz inequality,[ ∑

B:i∈B
fi(B)pB

][ ∑
B:i∈B

pB
fi(B)

m2
i (ωB)

]
≥

[ ∑
B:i∈B

pBmi(ωB)

]2
. (1)

Thus, using

P

(
N⋃
i=1

Ai

)
=
∑
B∈B

(
N∑
i=1

fi(B)

)
pB =

N∑
i=1

∑
B∈B:i∈B

fi(B)pB . (2)

we have

P

(
N⋃
i=1

Ai

)
=

N∑
i=1

∑
B:i∈B

fi(B)pB ≥
N∑
i=1

[∑
B:i∈B pBmi(ωB)

]2∑
B:i∈B

pB
fi(B)m

2
i (ωB)

. (3)

If we define fi(B) by

fi(B) =

{ 1
|B| = 1

deg(ωB) if i ∈ B
0 if i /∈ B (4)

so that

P

(
N⋃
i=1

Ai

)
=

N∑
i=1

∑
B∈B:i∈B

pB
deg(ωB)

=

N∑
i=1

∑
ω∈Ai

p(ω)

deg(ω)
. (5)

then the inequality reduces to

P

(
N⋃
i=1

Ai

)
≥

N∑
i=1

[∑
B:i∈B pBmi(ωB)

]2∑
B:i∈B pBm

2
i (ωB)|B|

=
∑
i

[∑
ω∈Ai

p(ω)mi(ω)
]2∑

j

∑
ω∈Ai∩Aj

p(ω)m2
i (ω)

, (6)

where the equality holds when mi(ω) = 1
deg(ω) (i.e., mi(ωB) = 1

|B| ), which was first

shown by Cohen and Merhav [1, Theorem 2.1].
When mi(ω) = ci > 0, (6) reduces to the DC bound

P

(
N⋃
i=1

Ai

)
≥
∑
i

[ciP (Ai)]
2∑

j c
2
iP (Ai ∩Aj)

=
∑
i

P (Ai)
2∑

j P (Ai ∩Aj)
= `DC. (7)

Note that as remarked in [2], the DC bound can be seen as a special case of the
lower bound

P

(
N⋃
i=1

Ai

)
≥

[
∑
i ciP (Ai)]

2∑
i

∑
j c

2
iP (Ai ∩Aj)

, (8)

1



2 JUN YANG AND FADY ALAJAJI AND GLEN TAKAHARA

when ci = P (Ai)∑
j P (Ai∩Aj)

. This is because[∑
i

(
P (Ai)∑

j P (Ai∩Aj)

)
P (Ai)

]2
∑
i

∑
j

(
P (Ai)∑

j P (Ai∩Aj)

)2
P (Ai ∩Aj)

=

(∑
i

P (Ai)
2∑

j P (Ai∩Aj)

)2
∑
i

{(
P (Ai)∑

j P (Ai∩Aj)

)2∑
j P (Ai ∩Aj)

}
=
`2DC

`DC
= `DC.

(9)

Note that although ci > 0 is not assumed in (8), one can always replace ci by |ci|
in (8) if ci < 0 to get a sharper bound.

However, the lower bound in (8) is looser than the following two (left-most) lower
bounds (which we later derive in (16) and (18)):

N∑
i=1

c2iP (Ai)
2

ci
∑
k ckP (Ai ∩Ak)

≥
[
∑
i ciP (Ai)]

2∑
i

∑
k cickP (Ai ∩Ak)

≥
[
∑
i ciP (Ai)]

2∑
i

∑
j c

2
iP (Ai ∩Aj)

, (10)

where ci > 0 for all i and the last inequality can be proved using 2cicj ≤ c2i + c2j .

2. Relation to the Gallot-Kounias bound. By the Cauchy-Schwarz inequality,
or assuming mi(ω) = 1 in (1), we have[ ∑

B:i∈B
fi(B)pB

][ ∑
B:i∈B

pB
fi(B)

]
≥

[ ∑
B:i∈B

pB

]2
= P (Ai)

2. (11)

Using fi(B) defined using c (note that fi(B) > 0 is equivalent to ci > 0 for all i),
we have [ ∑

B:i∈B

cipB∑
k∈B ck

][ ∑
B:i∈B

(∑
k∈B ck

ci

)
pB

]
≥ P (Ai)

2. (12)

Note that∑
B:i∈B

(∑
k∈B ck

ci

)
pB =

1

ci

N∑
k=1

∑
B:i∈B,k∈B

ckpB =

∑
k ckP (Ai ∩Ak)

ci
. (13)

Therefore, we have[ ∑
B:i∈B

cipB∑
k∈B ck

] [∑
k ckP (Ai ∩Ak)

ci

]
≥ P (Ai)

2. (14)

Then for all i, ∑
B:i∈B

cipB∑
k∈B ck

≥ c2iP (Ai)
2

ci
∑
k ckP (Ai ∩Ak)

(15)

By summing (15) over i, we get another new lower bound:

P

(⋃
i

Ai

)
≥

N∑
i=1

c2iP (Ai)
2

ci
∑
k ckP (Ai ∩Ak)

. (16)

Note that we can use Cauchy-Schwarz inequality again:[
N∑
i=1

c2iP (Ai)
2

ci
∑
k ckP (Ai ∩Ak)

][∑
i

ci
∑
k

ckP (Ai ∩Ak)

]
≥

[∑
i

ciP (Ai)

]2
, (17)
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which yields

P

(⋃
i

Ai

)
≥

N∑
i=1

c2iP (Ai)
2

ci
∑
k ckP (Ai ∩Ak)

≥
[
∑
i ciP (Ai)]

2∑
i

∑
k cickP (Ai ∩Ak)

. (18)

Since the above inequality holds for any positive c, we have

P

(⋃
i

Ai

)
≥ max

c∈RN
+

N∑
i=1

c2iP (Ai)
2

ci
∑
k ckP (Ai ∩Ak)

≥ max
c∈RN

+

[
∑
i ciP (Ai)]

2∑
i

∑
k cickP (Ai ∩Ak)

. (19)

One can show that by computing the partial derivative with respect to ci and
set it to zero that

max
c∈RN

N∑
i=1

c2iP (Ai)
2

ci
∑
k ckP (Ai ∩Ak)

= max
c∈RN

[
∑
i ciP (Ai)]

2∑
i

∑
k cickP (Ai ∩Ak)

=: `GK, (20)

where `GK is the Gallot-Kounias bound (see [2]), and the optimal c̃ can be obtained
from

Σc̃ = α, (21)

where α = (P (A1), P (A2), . . . , P (AN ))T and Σ is a N ×N matrix whose (i, j)-th
element equals to P (Ai ∩Aj). Thus, we conclude that the lower bounds in (19) are
equal to the GK bound as shown in [2] if c̃ ∈ RN+ ; otherwise, the lower bounds in
(19) are weaker than the GK bound.

3. Complete Results and Proof of Theorem 1.

Theorem. For any given c that satisfies∑
k∈B

ck 6= 0, for all B ∈ B (22)

a new lower bound on the union probability is given by

P

(
N⋃
i=1

Ai

)
≥

N∑
i=1

`i(c) =: `NEW-I(c), (23)

where

`i(c) = P (Ai)

(
ci∑

k∈B(i)
1
ck

+
ci∑

k∈B(i)
2
ck
−

ci
∑
k ckP (Ai ∩Ak)

P (Ai)
(∑

k∈B(i)
1
ck

)(∑
k∈B(i)

2
ck

)
 ,

(24)

where B
(i)
1 and B

(i)
2 are subsets of {1, . . . , N} that satisfy the following conditions.

1. If
∑

k ckP (Ai∩Ak)

ciP (Ai)
≥ 0 and min{B:i∈B}

∑
k∈B ck
ci

< 0, then

B
(i)
1 = arg max

{B:i∈B}

∑
k∈B ck

ci
s.t.

∑
k∈B ck

ci
< 0,

B
(i)
2 = arg max

{B:i∈B}

∑
k∈B ck

ci
.

(25)
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2. If
∑

k ckP (Ai∩Ak)

ciP (Ai)
≥ 0 and min{B:i∈B}

∑
k∈B ck
ci

≥ 0, then

B
(i)
1 = arg max

{B:i∈B}

∑
k∈B ck

ci
s.t.

∑
k∈B ck

ci
≤
∑
k ckP (Ai ∩Ak)

ciP (Ai)
,

B
(i)
2 = arg min

{B:i∈B}

∑
k∈B ck

ci
s.t.

∑
k∈B ck

ci
≥
∑
k ckP (Ai ∩Ak)

ciP (Ai)
.

(26)

3. If
∑

k ckP (Ai∩Ak)

ciP (Ai)
< 0 and

∑
k ckP (Ai∩Ak)

ciP (Ai)
<

{
max

{B:i∈B,
∑

k∈B ck
ci

<0}

∑
k∈B ck
ci

,

}
,

then

B
(i)
1 = arg max

{B:i∈B}

∑
k∈B ck

ci
, s.t.

∑
k∈B ck

ci
< 0,

B
(i)
2 = arg min

{B:i∈B}

∑
k∈B ck

ci
.

(27)

4. If
∑

k ckP (Ai∩Ak)

ciP (Ai)
< 0 and

∑
k ckP (Ai∩Ak)

ciP (Ai)
≥
{

max
{B:i∈B,

∑
k∈B ck

ci
<0}

∑
k∈B ck
ci

}
,

then

B
(i)
1 = arg max

{B:i∈B}

∑
k∈B ck

ci
,

B
(i)
2 = arg max

{B:i∈B}

∑
k∈B ck

ci
s.t.

∑
k∈B ck

ci
≤
∑
k ckP (Ai ∩Ak)

ciP (Ai)
.

(28)

Proof. Note that for the third and fourth cases, under the condition
∑

k ckP (Ai∩Ak)

ciP (Ai)
<

0, the elements of c cannot be all positive or negative, so the set {B : i ∈ B,
∑

k∈B ck
ci

<

0} is not empty. Therefore, the solutions of B
(i)
1 and B

(i)
2 always exist.

We note that `i(c) is the solution of

min
{pB :i∈B}

∑
B:i∈B

cipB∑
k∈B ck

s.t.
∑
B:i∈B

pB = P (Ai),

∑
B:i∈B

(∑
k∈B ck

ci

)
pB =

1

ci

∑
k

ckP (Ai ∩Ak),

pB ≥ 0, for all B ∈ B such that i ∈ B.

(29)

From (29) we have that ∑
B:i∈B

cipB∑
k∈B ck

≥ `i(c). (30)

Summing (30) over i and using

P

(
N⋃
i=1

Ai

)
=

N∑
i=1

∑
B∈B:i∈B

cipB∑
k∈B ck

=

N∑
i=1

∑
ω∈Ai

cip(ω)∑
{k:ω∈Ak} ck

. (31)

we directly obtain P
(⋃N

i=1Ai

)
≥
∑N
i=1 `i(c).

Note that we can solve (29) using the same technique used in [4, 5]. Consider
two subsets B1 and B2 such that pB1 ≥ 0 and pB2 ≥ 0, then denoting

b :=

∑
k ckP (Ai ∩Ak)

ciP (Ai)
, b1 :=

∑
k∈B1

ck

ci
, b2 :=

∑
k∈B2

ck

ci
, (32)
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then problem (29) reduces to

`i(c) = min
{pB1

,pB2
}

pB1

b1
+
pB2

b2
s.t. pB1

+ pB2
= P (Ai),

b1pB1 + b2pB2 = bP (Ai),

pB1 ≥ 0, pB2 ≥ 0.

(33)

According to [4, Appendix B], one can get that

`i(c) = min
{b1,b2:b1≤b≤b2}

P (Ai)

(
1

b1
+

1

b2
− b

b1b2

)
, (34)

and the partial derivative of P (Ai)
(

1
b1

+ 1
b2
− b

b1b2

)
with respect to b1 and b2 are

(see [4, Appendix B, Eq. (B.3)]):

∂
[
P (Ai)

(
1
b1

+ 1
b2
− b

b1b2

)]
∂b1

=
P (Ai)

b21

(
b− b2
b2

)
,

∂
[
P (Ai)

(
1
b1

+ 1
b2
− b

b1b2

)]
∂b2

=
P (Ai)

b22

(
b− b1
b1

)
.

(35)

Note that the partial derivatives are not continuous at b1 = 0 and b2 = 0. Therefore,
the solution depends on the following different scenarios.

1. If b ≥ 0 and min{B:i∈B}

∑
k∈B ck
ci

< 0, the solutions of (34) are given by

b1 = max
{B:i∈B}

∑
k∈B ck

ci
s.t.

∑
k∈B ck

ci
< 0,

b2 = max
{B:i∈B}

∑
k∈B ck

ci
.

(36)

2. If b ≥ 0 and min{B:i∈B}

∑
k∈B ck
ci

≥ 0, the solutions of (34) are given by

b1 = max
{B:i∈B}

∑
k∈B ck

ci
s.t.

∑
k∈B ck

ci
≤ b,

b2 = min
{B:i∈B}

∑
k∈B ck

ci
s.t.

∑
k∈B ck

ci
≥ b.

(37)

3. If b < 0 and b <
{

max{B:i∈B}

∑
k∈B ck
ci

, s.t.
∑

k∈B ck
ci

< 0
}
,, the solutions of

(34) are given by

b1 = max
{B:i∈B}

∑
k∈B ck

ci
, s.t.

∑
k∈B ck

ci
< 0,

b2 = min
{B:i∈B}

∑
k∈B ck

ci
.

(38)

4. If b < 0 and b ≥
{

max{B:i∈B}

∑
k∈B ck
ci

, s.t.
∑

k∈B ck
ci

< 0
}
,, the solutions of

(34) are given by

b1 = max
{B:i∈B}

∑
k∈B ck

ci
,

b2 = max
{B:i∈B}

∑
k∈B ck

ci
s.t.

∑
k∈B ck

ci
≤ b.

(39)
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4. Proof of Lemma 2.

Lemma. When c ∈ RN+ , the lower bound `NEW-I(c) can be computed in pseudo-
polynomial time, and can be arbitrarily closely approximated by an algorithm run-
ning in polynomial time.

Proof. The problems in (25) to (28) are exactly the 0/1 knapsack problem with mass
equals to value (see [3], the corresponding decision problem is also called subset sum
problem). Unfortunately, the 0/1 knapsack problem is NP-hard in general.

However, if c ∈ RN+ , i.e, the case (26), there exists a dynamic programming solu-
tion which runs in pseudo-polynomial time, i.e., polynomial in N , but exponential

in the number of bits required to represent
∑

k ckP (Ai∩Ak)

ciP (Ai)
(see [3]). Furthermore,

there is a fully polynomial-time approximation scheme (FPTAS), which finds a so-
lution that is correct within a factor of (1 − ε) of the optimal solution (see [3]).
The running time is bounded by a polynomial and 1/ε where ε is a bound on the
correctness of the solution.

Therefore, if c ∈ RN+ , one can get a lower bound for `i(c) in polynomial time
which can be arbitrarily close to `i(c) by setting ε small enough, i.e.,

`i(c) ≥ `Li (c, ε), lim
ε→0+

`Li (c, ε) = `i(c). (40)

The details are as follows. First, assume B̂1 and B̂2 are obtained by the FPTAS
which satisfy

(1− ε)
∑
k∈B(i)

1

ck ≤
∑
k∈B̂(i)

1

ck ≤
∑
k∈B(i)

1

ck,
∑
k∈B(i)

2

ck ≤
∑
k∈B̂(i)

2

ck ≤ (1 + ε)
∑
k∈B(i)

2

ck.

(41)
Then we have∑

k∈B(i)
1

ck ≤ min

{∑
k∈B̂(i)

1
ck

1− ε
,

∑
k ckP (Ai ∩Ak)

P (Ai)

}
=: b

(i)
1 ,

∑
k∈B(i)

2

ck ≥ max

{∑
k∈B(i)

2
ck

1 + ε
,

∑
k ckP (Ai ∩Ak)

P (Ai)

}
=: b

(i)
2 .

(42)

Then one can get the arbitrarily close lower bound for `i(c) as

`i(c) ≥ `Li (c, ε) := P (Ai)

(
ci

b
(i)
1

+
ci

b
(i)
2

−
ci
∑
k ckP (Ai ∩Ak)

P (Ai)b
(i)
1 b

(i)
2

)
. (43)

Therefore, we can get a lower bound for P
(⋃N

i=1Ai

)
that is arbitrarily close to

`NEW-I(c) in polynomial time: P
(⋃N

i=1Ai

)
≥
∑
i `i(c) ≥

∑
i `
L
i (c, ε).

5. Proof of Corollary 1.

Corollary. (New class of upper bounds ~NEW-I(c)): We can derive an upper bound
for any given c ∈ RN+ by

P

(⋃
i

Ai

)
≤
(

1

mink ck
+

1∑
k ck

)∑
i

ciP (Ai)

− 1

(mink ck)
∑
k ck

∑
i

∑
k

cickP (Ai ∩Ak) =: ~NEW-I(c).

(44)
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Proof. We get the upper bound by maximizing, instead of minimizing, the objective
function of (29). More specifically, for any given c ∈ R+, a upper bound can be
obtained by

~(c) =

N∑
i=1

~i(c), (45)

where ~i(c) is defined by

~i(c) := max
{pB :i∈B}

∑
B:i∈B

cipB∑
k∈B ck

s.t.
∑
B:i∈B

pB = P (Ai),

∑
B:i∈B

(∑
k∈B ck

ci

)
pB =

1

ci

∑
k

ckP (Ai ∩Ak),

pB ≥ 0, for all B ∈ B such that i ∈ B.
(46)

The resulting upper bound is given by

P

(⋃
i

Ai

)
≤

∑
i

{
P (Ai)

[
ci

mink ck
+

ci∑
k ck

− c2i
(mink ck)

∑
k ck

∑
k ckP (Ai ∩Ak)

ciP (Ai)

]}
=

(
1

mink ck
+

1∑
k ck

)∑
i

ciP (Ai)

− 1

(mink ck)
∑
k ck

∑
i

∑
k

cickP (Ai ∩Ak). (47)

6. Proof of Theorem 2.

Theorem. Defining B− = B \ {1, . . . , N}, γ̃i :=
∑
k ckP (Ai ∩ Ak), α̃i := P (Ai)

and

δ̃ := max
i

[
γ̃i − (

∑
k ck −mink ck) α̃i
mink ck

]+
, (48)

where c ∈ RN+ , another class of lower bounds is given by

P

(
N⋃
i=1

Ai

)
≥ δ̃ +

N∑
i=1

`′i(c, δ̃) =: `NEW-II(c), (49)

where

`′i(c, x) = [P (Ai)− x] · ci∑
k∈B(i)

1
ck

+
ci∑

k∈B(i)
2
ck
−

ci
∑
k ck [P (Ai ∩Ak)− x]

[P (Ai)− x]
(∑

k∈B(i)
1
ck

)(∑
k∈B(i)

2
ck

)
 ,

(50)
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and

B
(i)
1 = arg max

{B∈B−:i∈B}

∑
k∈B ck

ci
s.t.

∑
k∈B ck

ci
≤
∑
k ck [P (Ai ∩Ak)− x]

ci [P (Ai)− x]
,

B
(i)
2 = arg min

{B∈B−:i∈B}

∑
k∈B ck

ci
s.t.

∑
k∈B ck

ci
≥
∑
k ck [P (Ai ∩Ak)− x]

ci [P (Ai)− x]
.

(51)

Proof. Let x = p{1,2,...,N} and consider
∑
i `
′
i(c, x) + x as a new lower bound where

where `′i(c, x) equals to the objective value of the problem

min
{pB :i∈B,B∈B−}

∑
B:i∈B,B∈B−

cipB∑
k∈B ck

s.t.
∑

B:i∈B,B∈B−

pB = P (Ai)− x,

∑
B:i∈B,B∈B−

(∑
k∈B ck

ci

)
pB =

1

ci

∑
k

ck [P (Ai ∩Ak)− x] ,

pB ≥ 0, for all B ∈ B− such that i ∈ B.

(52)

The solution of (52) exists if and only if mink ck ≤
γ̃i−(

∑
k ck)x

α̃i−x ≤
∑
k ck −mink ck,

which gives maxi

[
γ̃i−(

∑
k ck−mink ck)α̃i

mink ck

]+
≤ x ≤ mini

[
γ̃i−(mink ck)α̃i∑

k ck−mink ck

]
. Therefore,

the new lower bound can be written as

min
x

[
x+

N∑
i=1

`′i(c, x)

]
s.t.

[
γ̃i − (

∑
k ck −mink ck) α̃i
mink ck

]+
≤ x ≤ γ̃i − (mink ck)α̃i∑

k ck −mink ck
,∀i.

(53)

Next, we can prove that the objective function of (53) is non-decreasing with x.

First, we prove `′i(c, x) is continuous when ∃B′ ∈ B− such that
∑

k ck[P (Ai∩Ak)−x]
ci[P (Ai)−x] =∑

k∈B′ ck
ci

. This can be proved by limh→0+ `
′
i(c, x + h) = limh→0+ `

′
i(c, x − h) =

ci∑
k∈B′ ck

. Then one can prove that when

∑
k∈B(i)

2

ck

ci
<

∑
k ck[P (Ai∩Ak)−x]
ci[P (Ai)−x] <

∑
k∈B(i)

1

ck

ci
,

the partial derivative of `′i(c, x) + ci∑
k ck

x w.r.t. x is non-negative:

∂
(
`′i(c, x) + ci∑

k ck
x
)

∂x
=

ci∑
k ck
− ci∑

k∈B(i)
1
ck
− ci∑

k∈B(i)
2
ck

+
ci
∑
k ck(∑

k∈B(i)
1
ck

)(∑
k∈B(i)

2
ck

)
=
ci

(∑
k ck −

∑
k∈B(i)

1
ck

)(∑
k ck −

∑
k∈B(i)

2
ck

)
(
∑
k ck)

(∑
k∈B(i)

1
ck

)(∑
k∈B(i)

2
ck

)
=

ci

(∑
k/∈B(i)

1
ck

)(∑
k/∈B(i)

2
ck

)
(
∑
k ck)

(∑
k∈B(i)

1
ck

)(∑
k∈B(i)

2
ck

) ≥ 0.

(54)

Therefore, the objective function of (53),
∑
i `
′
i(c, x) + x =

∑
i

(
`′i(c, x) + ci∑

k ck
x
)

,

is non-decreasing with x.
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Finally, defining δ̃ as in (48), the new lower bound can be written as P
(⋃N

i=1Ai

)
≥

δ̃ +
∑N
i=1 `

′
i(c, δ̃), where `′i(c, δ̃) can be obtained using the solution for `i(c) with

b =
∑

k ckP (Ai∩Ak)

ciP (Ai)
replaced by b̃ =

∑
k ck[P (Ai∩Ak)−δ̃]
ci[P (Ai)−δ̃]

.

7. Proof of Corollary 2.

Corollary. (Improved class of upper bounds ~NEW-II(c)): We can improve the
upper bound ~NEW-I(c) in (44) by

P

(⋃
i

Ai

)
≤ min

i

{∑
k ckP (Ai ∩Ak)− (mink ck)P (Ai)∑

k ck −mink ck

}
+

(
1

mink ck
+

1∑
k ck −mink ck

)∑
i

ciP (Ai)

− 1

(mink ck)(
∑
k ck −mink ck)

∑
i

∑
k

cickP (Ai ∩Ak),

=: ~NEW-II(c).

(55)

Note that the upper bound ~NEW-II(c) in (55) is always sharper than ~NEW-I in
(44).

Proof. Letting x = p{1,...,N}. Defining B− = B \ {1, . . . , N}, then

~′(c) = max
x

[
x+

N∑
i=1

~′i(c, x)

]
, (56)

where ~′i(c, x) is defined by

~′i(c, x) := max
{pB :i∈B,B∈B−

∑
B:i∈B,B∈B−

cipB∑
k∈B ck

s.t.
∑

B:i∈B,B∈B−

pB = P (Ai)− x,

∑
B:i∈B,B∈B−

(∑
k∈B ck

ci

)
pB =

1

ci

∑
k

ck [P (Ai ∩Ak)− x] ,

pB ≥ 0, for all B ∈ B− such that i ∈ B.
(57)

The solution of ~′i(c, x) is independent with x:

~′i(c, x) = (P (Ai)− x)

(
ci

mink ck
+

ci∑
k ck −mink ck

)
− ci

(mink ck)(
∑
k ck −mink ck)

∑
k

ck (P (Ai ∩Ak)− x) ,

= P (Ai)

(
ci

mink ck
+

ci∑
k ck −mink ck

)
− ci

(mink ck)(
∑
k ck −mink ck)

∑
k

ckP (Ai ∩Ak),

(58)
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and the solution exists if and only if for all i

min
k
ck ≤

∑
k ckP (Ai ∩Ak)− (

∑
k ck)x

P (Ai)− x
≤
∑
k

ck −min
k
ck. (59)

Thus, we get {
max
i

∑
k ckP (Ai ∩Ak)− (

∑
k ck −mink ck)P (Ai)

mink ck

}+

≤ x ≤ min
i

∑
k ckP (Ai ∩Ak)− (mink ck)P (Ai)∑

k ck −mink ck

(60)

Therefore, we get the upper bound

P

(⋃
i

Ai

)
≤ min

i

{∑
k ckP (Ai ∩Ak)− (mink ck)P (Ai)∑

k ck −mink ck

}
+

(
1

mink ck
+

1∑
k ck −mink ck

)∑
i

ciP (Ai)

− 1

(mink ck)(
∑
k ck −mink ck)

∑
i

∑
k

cickP (Ai ∩Ak).

(61)

REFERENCES

[1] A. Cohen and N. Merhav, Lower bounds on the error probability of block codes based on

improvements on de Caen’s inequality, IEEE Transactions on Information Theory, 50 (2004),

290–310.
[2] C. Feng, L. Li and J. Shen, Some inequalities in functional analysis, combinatorics, and prob-

ability theory, The Electronic Journal of Combinatorics, 17 (2010), 1.
[3] V. V. Vazirani, Approximation Algorithms, Springer-Verlag New York, Inc., New York, NY,

USA, 2001.

[4] J. Yang, F. Alajaji and G. Takahara, Lower bounds on the probability of a finite union of
events, URL http://arxiv.org/abs/1401.5543, Submitted, 2014.

[5] J. Yang, F. Alajaji and G. Takahara, New bounds on the probability of a finite union of events,

in 2014 IEEE International Symposium on Information Theory (ISIT), 2014, 1271–1275.

E-mail address: jun@utstat.toronto.edu

E-mail address: fady@mast.queensu.ca

E-mail address: takahara@mast.queensu.ca

http://arxiv.org/abs/1401.5543
mailto:jun@utstat.toronto.edu
mailto:fady@mast.queensu.ca
mailto:takahara@mast.queensu.ca

	1. Relation to the Cohen-Merhav bound
	2. Relation to the Gallot-Kounias bound
	3. Complete Results and Proof of Theorem 1
	4. Proof of Lemma 2
	5. Proof of Corollary 1
	6. Proof of Theorem 2
	7. Proof of Corollary 2
	REFERENCES

