ON BOUNDING THE UNION PROBABILITY USING PARTIAL WEIGHTED INFORMATION – SUPPLEMENTARY MATERIAL

Jun Yang, Fady Alajaji, and Glen Takahara

1. Relation to the Cohen-Merhav bound. Let $f_i(B) > 0$ and $m_i(\omega_B)$ be non-negative real functions. Then by the Cauchy-Schwarz inequality,

$$\left[\sum_{B:i\in B} f_i(B)p_B\right] \left[\sum_{B:i\in B} \frac{p_B}{f_i(B)} m_i^2(\omega_B)\right] \ge \left[\sum_{B:i\in B} p_B m_i(\omega_B)\right]^2. \tag{1}$$

Thus, using

$$P\left(\bigcup_{i=1}^{N} A_i\right) = \sum_{B \in \mathscr{B}} \left(\sum_{i=1}^{N} f_i(B)\right) p_B = \sum_{i=1}^{N} \sum_{B \in \mathscr{B}: i \in B} f_i(B) p_B.$$
 (2)

we have

$$P\left(\bigcup_{i=1}^{N} A_{i}\right) = \sum_{i=1}^{N} \sum_{B: i \in B} f_{i}(B) p_{B} \ge \sum_{i=1}^{N} \frac{\left[\sum_{B: i \in B} p_{B} m_{i}(\omega_{B})\right]^{2}}{\sum_{B: i \in B} \frac{p_{B}}{f_{i}(B)} m_{i}^{2}(\omega_{B})}.$$
 (3)

If we define $f_i(B)$ by

$$f_i(B) = \begin{cases} \frac{1}{|B|} = \frac{1}{\deg(\omega_B)} & \text{if } i \in B\\ 0 & \text{if } i \notin B \end{cases}$$
 (4)

so that

$$P\left(\bigcup_{i=1}^{N} A_i\right) = \sum_{i=1}^{N} \sum_{B \in \mathscr{B}: i \in B} \frac{p_B}{\deg(\omega_B)} = \sum_{i=1}^{N} \sum_{\omega \in A_i} \frac{p(\omega)}{\deg(\omega)}.$$
 (5)

then the inequality reduces to

$$P\left(\bigcup_{i=1}^{N} A_i\right) \ge \sum_{i=1}^{N} \frac{\left[\sum_{B:i \in B} p_B m_i(\omega_B)\right]^2}{\sum_{B:i \in B} p_B m_i^2(\omega_B)|B|} = \sum_{i} \frac{\left[\sum_{\omega \in A_i} p(\omega) m_i(\omega)\right]^2}{\sum_{j} \sum_{\omega \in A_i \cap A_j} p(\omega) m_i^2(\omega)}, \quad (6)$$

where the equality holds when $m_i(\omega) = \frac{1}{\deg(\omega)}$ (i.e., $m_i(\omega_B) = \frac{1}{|B|}$), which was first shown by Cohen and Merhav [1, Theorem 2.1].

When $m_i(\omega) = c_i > 0$, (6) reduces to the DC bound

$$P\left(\bigcup_{i=1}^{N} A_{i}\right) \ge \sum_{i} \frac{\left[c_{i} P(A_{i})\right]^{2}}{\sum_{j} c_{i}^{2} P(A_{i} \cap A_{j})} = \sum_{i} \frac{P(A_{i})^{2}}{\sum_{j} P(A_{i} \cap A_{j})} = \ell_{DC}.$$
 (7)

Note that as remarked in [2], the DC bound can be seen as a special case of the lower bound

$$P\left(\bigcup_{i=1}^{N} A_i\right) \ge \frac{\left[\sum_{i} c_i P(A_i)\right]^2}{\sum_{i} \sum_{j} c_i^2 P(A_i \cap A_j)},\tag{8}$$

when $c_i = \frac{P(A_i)}{\sum_j P(A_i \cap A_j)}$. This is because

$$\frac{\left[\sum_{i} \left(\frac{P(A_{i})}{\sum_{j} P(A_{i} \cap A_{j})}\right) P(A_{i})\right]^{2}}{\sum_{i} \sum_{j} \left(\frac{P(A_{i})}{\sum_{j} P(A_{i} \cap A_{j})}\right)^{2} P(A_{i} \cap A_{j})} = \frac{\left(\sum_{i} \frac{P(A_{i})^{2}}{\sum_{j} P(A_{i} \cap A_{j})}\right)^{2}}{\sum_{i} \left\{\left(\frac{P(A_{i})}{\sum_{j} P(A_{i} \cap A_{j})}\right)^{2} \sum_{j} P(A_{i} \cap A_{j})\right\}}$$

$$= \frac{\ell_{DC}^{2}}{\ell_{DC}} = \ell_{DC}.$$
(9)

Note that although $c_i > 0$ is not assumed in (8), one can always replace c_i by $|c_i|$ in (8) if $c_i < 0$ to get a sharper bound.

However, the lower bound in (8) is looser than the following two (left-most) lower bounds (which we later derive in (16) and (18)):

$$\sum_{i=1}^{N} \frac{c_i^2 P(A_i)^2}{c_i \sum_k c_k P(A_i \cap A_k)} \ge \frac{\left[\sum_i c_i P(A_i)\right]^2}{\sum_i \sum_k c_i c_k P(A_i \cap A_k)} \ge \frac{\left[\sum_i c_i P(A_i)\right]^2}{\sum_i \sum_j c_i^2 P(A_i \cap A_j)}, (10)$$

where $c_i > 0$ for all i and the last inequality can be proved using $2c_i c_j \le c_i^2 + c_j^2$.

2. Relation to the Gallot-Kounias bound. By the Cauchy-Schwarz inequality, or assuming $m_i(\omega) = 1$ in (1), we have

$$\left[\sum_{B:i\in B} f_i(B)p_B\right] \left[\sum_{B:i\in B} \frac{p_B}{f_i(B)}\right] \ge \left[\sum_{B:i\in B} p_B\right]^2 = P(A_i)^2. \tag{11}$$

Using $f_i(B)$ defined using c (note that $f_i(B) > 0$ is equivalent to $c_i > 0$ for all i), we have

$$\left[\sum_{B:i\in B} \frac{c_i p_B}{\sum_{k\in B} c_k}\right] \left[\sum_{B:i\in B} \left(\frac{\sum_{k\in B} c_k}{c_i}\right) p_B\right] \ge P(A_i)^2. \tag{12}$$

Note that

$$\sum_{B:i \in B} \left(\frac{\sum_{k \in B} c_k}{c_i} \right) p_B = \frac{1}{c_i} \sum_{k=1}^{N} \sum_{B:i \in B, k \in B} c_k p_B = \frac{\sum_{k} c_k P(A_i \cap A_k)}{c_i}.$$
 (13)

Therefore, we have

$$\left[\sum_{B:i\in B} \frac{c_i p_B}{\sum_{k\in B} c_k}\right] \left[\frac{\sum_k c_k P(A_i \cap A_k)}{c_i}\right] \ge P(A_i)^2. \tag{14}$$

Then for all i,

$$\sum_{B:i \in B} \frac{c_i p_B}{\sum_{k \in B} c_k} \ge \frac{c_i^2 P(A_i)^2}{c_i \sum_k c_k P(A_i \cap A_k)} \tag{15}$$

By summing (15) over i, we get another new lower bound:

$$P\left(\bigcup_{i} A_{i}\right) \ge \sum_{i=1}^{N} \frac{c_{i}^{2} P(A_{i})^{2}}{c_{i} \sum_{k} c_{k} P(A_{i} \cap A_{k})}.$$

$$(16)$$

Note that we can use Cauchy-Schwarz inequality again:

$$\left[\sum_{i=1}^{N} \frac{c_i^2 P(A_i)^2}{c_i \sum_k c_k P(A_i \cap A_k)}\right] \left[\sum_i c_i \sum_k c_k P(A_i \cap A_k)\right] \ge \left[\sum_i c_i P(A_i)\right]^2, \quad (17)$$

which yields

$$P\left(\bigcup_{i} A_{i}\right) \geq \sum_{i=1}^{N} \frac{c_{i}^{2} P(A_{i})^{2}}{c_{i} \sum_{k} c_{k} P(A_{i} \cap A_{k})} \geq \frac{\left[\sum_{i} c_{i} P(A_{i})\right]^{2}}{\sum_{i} \sum_{k} c_{i} c_{k} P(A_{i} \cap A_{k})}.$$
 (18)

Since the above inequality holds for any positive c, we have

$$P\left(\bigcup_{i} A_{i}\right) \geq \max_{\boldsymbol{c} \in \mathbb{R}_{+}^{N}} \sum_{i=1}^{N} \frac{c_{i}^{2} P(A_{i})^{2}}{c_{i} \sum_{k} c_{k} P(A_{i} \cap A_{k})} \geq \max_{\boldsymbol{c} \in \mathbb{R}_{+}^{N}} \frac{\left[\sum_{i} c_{i} P(A_{i})\right]^{2}}{\sum_{i} \sum_{k} c_{i} c_{k} P(A_{i} \cap A_{k})}. \tag{19}$$

One can show that by computing the partial derivative with respect to c_i and set it to zero that

$$\max_{\boldsymbol{c} \in \mathbb{R}^N} \sum_{i=1}^N \frac{c_i^2 P(A_i)^2}{c_i \sum_k c_k P(A_i \cap A_k)} = \max_{\boldsymbol{c} \in \mathbb{R}^N} \frac{\left[\sum_i c_i P(A_i)\right]^2}{\sum_i \sum_k c_i c_k P(A_i \cap A_k)} =: \ell_{GK}, \quad (20)$$

where $\ell_{\rm GK}$ is the Gallot-Kounias bound (see [2]), and the optimal \tilde{c} can be obtained from

$$\Sigma \tilde{c} = \alpha, \tag{21}$$

where $\boldsymbol{\alpha} = (P(A_1), P(A_2), \dots, P(A_N))^T$ and $\boldsymbol{\Sigma}$ is a $N \times N$ matrix whose (i, j)-th element equals to $P(A_i \cap A_j)$. Thus, we conclude that the lower bounds in (19) are equal to the GK bound as shown in [2] if $\tilde{\boldsymbol{c}} \in \mathbb{R}^N_+$; otherwise, the lower bounds in (19) are weaker than the GK bound.

3. Complete Results and Proof of Theorem 1.

Theorem. For any given c that satisfies

$$\sum_{k \in B} c_k \neq 0, \quad \text{for all} \quad B \in \mathcal{B}$$
 (22)

a new lower bound on the union probability is given by

$$P\left(\bigcup_{i=1}^{N} A_i\right) \ge \sum_{i=1}^{N} \ell_i(\boldsymbol{c}) =: \ell_{NEW-I}(\boldsymbol{c}), \tag{23}$$

where

$$\ell_{i}(\mathbf{c}) = P(A_{i}) \left(\frac{c_{i}}{\sum_{k \in B_{1}^{(i)}} c_{k}} + \frac{c_{i}}{\sum_{k \in B_{2}^{(i)}} c_{k}} - \frac{c_{i} \sum_{k} c_{k} P(A_{i} \cap A_{k})}{P(A_{i}) \left(\sum_{k \in B_{1}^{(i)}} c_{k}\right) \left(\sum_{k \in B_{2}^{(i)}} c_{k}\right)} \right), \tag{24}$$

where $B_1^{(i)}$ and $B_2^{(i)}$ are subsets of $\{1, \ldots, N\}$ that satisfy the following conditions.

1. If
$$\frac{\sum_{k} c_k P(A_i \cap A_k)}{c_i P(A_i)} \ge 0$$
 and $\min_{\{B: i \in B\}} \frac{\sum_{k \in B} c_k}{c_i} < 0$, then

$$B_{1}^{(i)} = \arg \max_{\{B:i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \quad s.t. \quad \frac{\sum_{k \in B} c_{k}}{c_{i}} < 0,$$

$$B_{2}^{(i)} = \arg \max_{\{B:i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}}.$$
(25)

2. If
$$\frac{\sum_{k} c_{k} P(A_{i} \cap A_{k})}{c_{i} P(A_{i})} \ge 0$$
 and $\min_{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \ge 0$, then
$$B_{1}^{(i)} = \arg \max_{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} s.t. \quad \frac{\sum_{k \in B} c_{k}}{c_{i}} \le \frac{\sum_{k} c_{k} P(A_{i} \cap A_{k})}{c_{i} P(A_{i})},$$

$$B_{2}^{(i)} = \arg \min_{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} s.t. \quad \frac{\sum_{k \in B} c_{k}}{c_{i}} \ge \frac{\sum_{k} c_{k} P(A_{i} \cap A_{k})}{c_{i} P(A_{i})}.$$
(26)

3. If
$$\frac{\sum_{k} c_{k} P(A_{i} \cap A_{k})}{c_{i} P(A_{i})} < 0$$
 and $\frac{\sum_{k} c_{k} P(A_{i} \cap A_{k})}{c_{i} P(A_{i})} < \left\{ \max_{\{B: i \in B, \frac{\sum_{k \in B} c_{k}}{c_{i}} < 0\}} \frac{\sum_{k \in B} c_{k}}{c_{i}}, \right\}$

$$B_{1}^{(i)} = \arg \max_{\{B:i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}}, \quad s.t. \quad \frac{\sum_{k \in B} c_{k}}{c_{i}} < 0,$$

$$B_{2}^{(i)} = \arg \min_{\{B:i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}}.$$

$$(27)$$

4. If
$$\frac{\sum_{k} c_{k} P(A_{i} \cap A_{k})}{c_{i} P(A_{i})} < 0$$
 and $\frac{\sum_{k} c_{k} P(A_{i} \cap A_{k})}{c_{i} P(A_{i})} \ge \left\{ \max_{\{B: i \in B, \frac{\sum_{k \in B} c_{k}}{c_{i}} < 0\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \right\}$,

$$B_{1}^{(i)} = \arg \max_{\{B:i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}},$$

$$B_{2}^{(i)} = \arg \max_{\{B:i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} s.t. \quad \frac{\sum_{k \in B} c_{k}}{c_{i}} \le \frac{\sum_{k} c_{k} P(A_{i} \cap A_{k})}{c_{i} P(A_{i})}.$$
(28)

Proof. Note that for the third and fourth cases, under the condition $\frac{\sum_k c_k P(A_i \cap A_k)}{c_i P(A_i)} < 0$, the elements of \boldsymbol{c} cannot be all positive or negative, so the set $\{B: i \in B, \frac{\sum_{k \in B} c_k}{c_i} < 0\}$ is not empty. Therefore, the solutions of $B_1^{(i)}$ and $B_2^{(i)}$ always exist. We note that $\ell_i(\boldsymbol{c})$ is the solution of

$$\min_{\{p_B:i\in B\}} \sum_{B:i\in B} \frac{c_i p_B}{\sum_{k\in B} c_k} \quad \text{s.t.} \quad \sum_{B:i\in B} p_B = P(A_i),$$

$$\sum_{B:i\in B} \left(\frac{\sum_{k\in B} c_k}{c_i}\right) p_B = \frac{1}{c_i} \sum_k c_k P(A_i \cap A_k), \quad (29)$$

$$p_B \ge 0, \quad \text{for all} \quad B \in \mathscr{B} \quad \text{such that} \quad i \in B.$$

From (29) we have that

$$\sum_{B:i \in B} \frac{c_i p_B}{\sum_{k \in B} c_k} \ge \ell_i(\mathbf{c}). \tag{30}$$

Summing (30) over i and using

$$P\left(\bigcup_{i=1}^{N} A_i\right) = \sum_{i=1}^{N} \sum_{B \in \mathcal{B}: i \in B} \frac{c_i p_B}{\sum_{k \in B} c_k} = \sum_{i=1}^{N} \sum_{\omega \in A_i} \frac{c_i p(\omega)}{\sum_{\{k: \omega \in A_k\}} c_k}.$$
 (31)

we directly obtain $P\left(\bigcup_{i=1}^{N} A_i\right) \ge \sum_{i=1}^{N} \ell_i(\boldsymbol{c})$.

Note that we can solve (29) using the same technique used in [4, 5]. Consider two subsets B_1 and B_2 such that $p_{B_1} \ge 0$ and $p_{B_2} \ge 0$, then denoting

$$b := \frac{\sum_{k} c_k P(A_i \cap A_k)}{c_i P(A_i)}, b_1 := \frac{\sum_{k \in B_1} c_k}{c_i}, b_2 := \frac{\sum_{k \in B_2} c_k}{c_i}, \tag{32}$$

then problem (29) reduces to

$$\ell_{i}(\mathbf{c}) = \min_{\{p_{B_{1}}, p_{B_{2}}\}} \quad \frac{p_{B_{1}}}{b_{1}} + \frac{p_{B_{2}}}{b_{2}} \quad \text{s.t.} \quad p_{B_{1}} + p_{B_{2}} = P(A_{i}),$$

$$b_{1}p_{B_{1}} + b_{2}p_{B_{2}} = bP(A_{i}),$$

$$p_{B_{1}} \geq 0, \quad p_{B_{2}} \geq 0.$$

$$(33)$$

According to [4, Appendix B], one can get that

$$\ell_i(\mathbf{c}) = \min_{\{b_1, b_2 : b_1 \le b \le b_2\}} \quad P(A_i) \left(\frac{1}{b_1} + \frac{1}{b_2} - \frac{b}{b_1 b_2}\right), \tag{34}$$

and the partial derivative of $P(A_i)\left(\frac{1}{b_1} + \frac{1}{b_2} - \frac{b}{b_1b_2}\right)$ with respect to b_1 and b_2 are (see [4, Appendix B, Eq. (B.3)]):

$$\frac{\partial \left[P(A_i) \left(\frac{1}{b_1} + \frac{1}{b_2} - \frac{b}{b_1 b_2} \right) \right]}{\partial b_1} = \frac{P(A_i)}{b_1^2} \left(\frac{b - b_2}{b_2} \right),
\frac{\partial \left[P(A_i) \left(\frac{1}{b_1} + \frac{1}{b_2} - \frac{b}{b_1 b_2} \right) \right]}{\partial b_2} = \frac{P(A_i)}{b_2^2} \left(\frac{b - b_1}{b_1} \right).$$
(35)

Note that the partial derivatives are not continuous at $b_1 = 0$ and $b_2 = 0$. Therefore, the solution depends on the following different scenarios.

1. If $b \ge 0$ and $\min_{\{B: i \in B\}} \frac{\sum_{k \in B} c_k}{c_i} < 0$, the solutions of (34) are given by

$$b_{1} = \max_{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \quad \text{s.t.} \quad \frac{\sum_{k \in B} c_{k}}{c_{i}} < 0,$$

$$b_{2} = \max_{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}}.$$
(36)

2. If $b \ge 0$ and $\min_{\{B: i \in B\}} \frac{\sum_{k \in B} c_k}{c_i} \ge 0$, the solutions of (34) are given by

$$b_{1} = \max_{\{B:i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \quad \text{s.t.} \quad \frac{\sum_{k \in B} c_{k}}{c_{i}} \leq b,$$

$$b_{2} = \min_{\{B:i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \quad \text{s.t.} \quad \frac{\sum_{k \in B} c_{k}}{c_{i}} \geq b.$$

$$(37)$$

3. If b < 0 and $b < \left\{ \max_{\{B: i \in B\}} \frac{\sum_{k \in B} c_k}{c_i}, \text{ s.t. } \frac{\sum_{k \in B} c_k}{c_i} < 0 \right\}$,, the solutions of (34) are given by

$$b_{1} = \max_{\{B:i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}}, \quad \text{s.t. } \frac{\sum_{k \in B} c_{k}}{c_{i}} < 0,$$

$$b_{2} = \min_{\{B:i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}}.$$
(38)

4. If b < 0 and $b \ge \left\{ \max_{\{B: i \in B\}} \frac{\sum_{k \in B} c_k}{c_i}, \text{ s.t. } \frac{\sum_{k \in B} c_k}{c_i} < 0 \right\}$,, the solutions of (34) are given by

$$b_{1} = \max_{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}},$$

$$b_{2} = \max_{\{B: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} \quad \text{s.t.} \quad \frac{\sum_{k \in B} c_{k}}{c_{i}} \leq b.$$
(39)

4. Proof of Lemma 2.

Lemma. When $\mathbf{c} \in \mathbb{R}^N_+$, the lower bound $\ell_{NEW-I}(\mathbf{c})$ can be computed in pseudo-polynomial time, and can be arbitrarily closely approximated by an algorithm running in polynomial time.

Proof. The problems in (25) to (28) are exactly the 0/1 knapsack problem with mass equals to value (see [3], the corresponding decision problem is also called subset sum problem). Unfortunately, the 0/1 knapsack problem is NP-hard in general.

However, if $\mathbf{c} \in \mathbb{R}^N_+$, i.e, the case (26), there exists a dynamic programming solution which runs in pseudo-polynomial time, i.e., polynomial in N, but exponential in the number of bits required to represent $\frac{\sum_k c_k P(A_i \cap A_k)}{c_i P(A_i)}$ (see [3]). Furthermore, there is a fully polynomial-time approximation scheme (FPTAS), which finds a solution that is correct within a factor of $(1 - \epsilon)$ of the optimal solution (see [3]). The running time is bounded by a polynomial and $1/\epsilon$ where ϵ is a bound on the correctness of the solution.

Therefore, if $c \in \mathbb{R}^N_+$, one can get a lower bound for $\ell_i(c)$ in polynomial time which can be arbitrarily close to $\ell_i(c)$ by setting ϵ small enough, i.e.,

$$\ell_i(\mathbf{c}) \ge \ell_i^L(\mathbf{c}, \epsilon), \quad \lim_{\epsilon \to 0^+} \ell_i^L(\mathbf{c}, \epsilon) = \ell_i(\mathbf{c}).$$
 (40)

The details are as follows. First, assume \hat{B}_1 and \hat{B}_2 are obtained by the FPTAS which satisfy

$$(1 - \epsilon) \sum_{k \in B_1^{(i)}} c_k \le \sum_{k \in \hat{B}_1^{(i)}} c_k \le \sum_{k \in B_1^{(i)}} c_k, \quad \sum_{k \in B_2^{(i)}} c_k \le \sum_{k \in \hat{B}_2^{(i)}} c_k \le (1 + \epsilon) \sum_{k \in B_2^{(i)}} c_k.$$

$$(41)$$

Then we have

$$\sum_{k \in B_1^{(i)}} c_k \le \min \left\{ \frac{\sum_{k \in \hat{B}_1^{(i)}} c_k}{1 - \epsilon}, \frac{\sum_k c_k P(A_i \cap A_k)}{P(A_i)} \right\} =: b_1^{(i)},
\sum_{k \in B_2^{(i)}} c_k \ge \max \left\{ \frac{\sum_{k \in B_2^{(i)}} c_k}{1 + \epsilon}, \frac{\sum_k c_k P(A_i \cap A_k)}{P(A_i)} \right\} =: b_2^{(i)}.$$
(42)

Then one can get the arbitrarily close lower bound for $\ell_i(c)$ as

$$\ell_i(\mathbf{c}) \ge \ell_i^L(\mathbf{c}, \epsilon) := P(A_i) \left(\frac{c_i}{b_1^{(i)}} + \frac{c_i}{b_2^{(i)}} - \frac{c_i \sum_k c_k P(A_i \cap A_k)}{P(A_i) b_1^{(i)} b_2^{(i)}} \right). \tag{43}$$

Therefore, we can get a lower bound for $P\left(\bigcup_{i=1}^N A_i\right)$ that is arbitrarily close to $\ell_{\text{NEW-I}}(\boldsymbol{c})$ in polynomial time: $P\left(\bigcup_{i=1}^N A_i\right) \geq \sum_i \ell_i(\boldsymbol{c}) \geq \sum_i \ell_i^L(\boldsymbol{c}, \epsilon)$.

5. Proof of Corollary 1.

Corollary. (New class of upper bounds $h_{NEW-I}(\mathbf{c})$): We can derive an upper bound for any given $\mathbf{c} \in \mathbb{R}^N_+$ by

$$P\left(\bigcup_{i} A_{i}\right) \leq \left(\frac{1}{\min_{k} c_{k}} + \frac{1}{\sum_{k} c_{k}}\right) \sum_{i} c_{i} P(A_{i})$$

$$-\frac{1}{(\min_{k} c_{k}) \sum_{k} c_{k}} \sum_{i} \sum_{k} c_{i} c_{k} P(A_{i} \cap A_{k}) =: \hbar_{NEW-I}(\boldsymbol{c}).$$

$$(44)$$

Proof. We get the upper bound by maximizing, instead of minimizing, the objective function of (29). More specifically, for any given $c \in \mathbb{R}^+$, a upper bound can be obtained by

$$\hbar(\mathbf{c}) = \sum_{i=1}^{N} \hbar_i(\mathbf{c}),\tag{45}$$

where $h_i(\mathbf{c})$ is defined by

$$\begin{split} \hbar_i(\boldsymbol{c}) := \max_{\{p_B: i \in B\}} \sum_{B: i \in B} \frac{c_i p_B}{\sum_{k \in B} c_k} \quad \text{s.t.} \quad \sum_{B: i \in B} p_B = P(A_i), \\ \sum_{B: i \in B} \left(\frac{\sum_{k \in B} c_k}{c_i}\right) p_B = \frac{1}{c_i} \sum_{k} c_k P(A_i \cap A_k), \\ p_B \ge 0, \quad \text{for all} \quad B \in \mathscr{B} \quad \text{such that} \quad i \in B. \end{split}$$

The resulting upper bound is given by

$$P\left(\bigcup_{i} A_{i}\right) \leq \sum_{i} \left\{P(A_{i}) \left[\frac{c_{i}}{\min_{k} c_{k}} + \frac{c_{i}}{\sum_{k} c_{k}}\right] - \frac{c_{i}^{2}}{\left(\min_{k} c_{k}\right) \sum_{k} c_{k}} \frac{\sum_{k} c_{k} P(A_{i} \cap A_{k})}{c_{i} P(A_{i})}\right]\right\}$$

$$= \left(\frac{1}{\min_{k} c_{k}} + \frac{1}{\sum_{k} c_{k}}\right) \sum_{i} c_{i} P(A_{i})$$

$$-\frac{1}{\left(\min_{k} c_{k}\right) \sum_{k} c_{k}} \sum_{i} \sum_{k} c_{i} c_{k} P(A_{i} \cap A_{k}). \quad (47)$$

6. Proof of Theorem 2.

Theorem. Defining $\mathscr{B}^- = \mathscr{B} \setminus \{1, \dots, N\}, \ \tilde{\gamma}_i := \sum_k c_k P(A_i \cap A_k), \ \tilde{\alpha}_i := P(A_i)$ and

$$\tilde{\delta} := \max_{i} \left[\frac{\tilde{\gamma}_{i} - \left(\sum_{k} c_{k} - \min_{k} c_{k} \right) \tilde{\alpha}_{i}}{\min_{k} c_{k}} \right]^{+}, \tag{48}$$

where $c \in \mathbb{R}^N_+$, another class of lower bounds is given by

$$P\left(\bigcup_{i=1}^{N} A_i\right) \ge \tilde{\delta} + \sum_{i=1}^{N} \ell'_i(\boldsymbol{c}, \tilde{\delta}) =: \ell_{NEW-II}(\boldsymbol{c}), \tag{49}$$

where

 $\ell_i'(\boldsymbol{c},x) = [P(A_i) - x] \cdot$

$$\left(\frac{c_{i}}{\sum_{k \in B_{1}^{(i)}} c_{k}} + \frac{c_{i}}{\sum_{k \in B_{2}^{(i)}} c_{k}} - \frac{c_{i} \sum_{k} c_{k} \left[P(A_{i} \cap A_{k}) - x\right]}{\left[P(A_{i}) - x\right] \left(\sum_{k \in B_{1}^{(i)}} c_{k}\right) \left(\sum_{k \in B_{2}^{(i)}} c_{k}\right)}\right),$$
(50)

and

$$B_{1}^{(i)} = \arg \max_{\{B \in \mathscr{B}^{-}: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} s.t. \quad \frac{\sum_{k \in B} c_{k}}{c_{i}} \le \frac{\sum_{k} c_{k} \left[P(A_{i} \cap A_{k}) - x \right]}{c_{i} \left[P(A_{i}) - x \right]},$$

$$B_{2}^{(i)} = \arg \min_{\{B \in \mathscr{B}^{-}: i \in B\}} \frac{\sum_{k \in B} c_{k}}{c_{i}} s.t. \quad \frac{\sum_{k \in B} c_{k}}{c_{i}} \ge \frac{\sum_{k} c_{k} \left[P(A_{i} \cap A_{k}) - x \right]}{c_{i} \left[P(A_{i}) - x \right]}.$$
(51)

Proof. Let $x = p_{\{1,2,\dots,N\}}$ and consider $\sum_i \ell_i'(\boldsymbol{c},x) + x$ as a new lower bound where where $\ell_i'(\boldsymbol{c},x)$ equals to the objective value of the problem

$$\min_{\{p_B: i \in B, B \in \mathcal{B}^-\}} \sum_{B: i \in B, B \in \mathcal{B}^-} \frac{c_i p_B}{\sum_{k \in B} c_k}$$
s.t.
$$\sum_{B: i \in B, B \in \mathcal{B}^-} p_B = P(A_i) - x,$$

$$\sum_{B: i \in B, B \in \mathcal{B}^-} \left(\frac{\sum_{k \in B} c_k}{c_i}\right) p_B = \frac{1}{c_i} \sum_{k} c_k \left[P(A_i \cap A_k) - x\right],$$

$$p_B \ge 0, \quad \text{for all} \quad B \in \mathcal{B}^- \quad \text{such that} \quad i \in B.$$
(52)

The solution of (52) exists if and only if $\min_k c_k \leq \frac{\tilde{\gamma}_i - (\sum_k c_k)x}{\tilde{\alpha}_i - x} \leq \sum_k c_k - \min_k c_k$, which gives $\max_i \left[\frac{\tilde{\gamma}_i - (\sum_k c_k - \min_k c_k)\tilde{\alpha}_i}{\min_k c_k} \right]^+ \leq x \leq \min_i \left[\frac{\tilde{\gamma}_i - (\min_k c_k)\tilde{\alpha}_i}{\sum_k c_k - \min_k c_k} \right]$. Therefore, the new lower bound can be written as

$$\min_{x} \left[x + \sum_{i=1}^{N} \ell_i'(\boldsymbol{c}, x) \right] \text{ s.t. } \left[\frac{\tilde{\gamma}_i - \left(\sum_{k} c_k - \min_k c_k \right) \tilde{\alpha}_i}{\min_k c_k} \right]^+ \le x \le \frac{\tilde{\gamma}_i - \left(\min_k c_k \right) \tilde{\alpha}_i}{\sum_{k} c_k - \min_k c_k}, \forall i.$$
(53)

Next, we can prove that the objective function of (53) is non-decreasing with x. First, we prove $\ell_i'(\boldsymbol{c},x)$ is continuous when $\exists B' \in \mathscr{B}^-$ such that $\frac{\sum_k c_k [P(A_i \cap A_k) - x]}{c_i [P(A_i) - x]} = \frac{\sum_{k \in B'} c_k}{c_i}$. This can be proved by $\lim_{h \to 0^+} \ell_i'(\boldsymbol{c},x+h) = \lim_{h \to 0^+} \ell_i'(\boldsymbol{c},x-h) = \frac{c_i}{\sum_{k \in B'} c_k}$. Then one can prove that when $\frac{\sum_{k \in B_2^{(i)}} c_k}{c_i} < \frac{\sum_k c_k [P(A_i \cap A_k) - x]}{c_i [P(A_i) - x]} < \frac{\sum_{k \in B_1^{(i)}} c_k}{c_i}$, the partial derivative of $\ell_i'(\boldsymbol{c},x) + \frac{c_i}{\sum_k c_k} x$ w.r.t. x is non-negative:

$$\frac{\partial \left(\ell_{i}'(c,x) + \frac{c_{i}}{\sum_{k} c_{k}}x\right)}{\partial x} = \frac{c_{i}}{\sum_{k} c_{k}} - \frac{c_{i}}{\sum_{k \in B_{1}^{(i)}} c_{k}} - \frac{c_{i}}{\sum_{k \in B_{2}^{(i)}} c_{k}} + \frac{c_{i} \sum_{k} c_{k}}{\left(\sum_{k \in B_{1}^{(i)}} c_{k}\right) \left(\sum_{k \in B_{2}^{(i)}} c_{k}\right)}$$

$$= \frac{c_{i} \left(\sum_{k} c_{k} - \sum_{k \in B_{1}^{(i)}} c_{k}\right) \left(\sum_{k} c_{k} - \sum_{k \in B_{2}^{(i)}} c_{k}\right)}{\left(\sum_{k} c_{k}\right) \left(\sum_{k \in B_{1}^{(i)}} c_{k}\right) \left(\sum_{k \in B_{2}^{(i)}} c_{k}\right)}$$

$$= \frac{c_{i} \left(\sum_{k \notin B_{1}^{(i)}} c_{k}\right) \left(\sum_{k \notin B_{2}^{(i)}} c_{k}\right)}{\left(\sum_{k \in B_{1}^{(i)}} c_{k}\right) \left(\sum_{k \in B_{2}^{(i)}} c_{k}\right)} \ge 0.$$
(54)

Therefore, the objective function of (53), $\sum_{i} \ell'_{i}(\boldsymbol{c}, x) + x = \sum_{i} \left(\ell'_{i}(\boldsymbol{c}, x) + \frac{c_{i}}{\sum_{k} c_{k}} x \right)$, is non-decreasing with x.

Finally, defining $\tilde{\delta}$ as in (48), the new lower bound can be written as $P\left(\bigcup_{i=1}^N A_i\right) \geq \tilde{\delta} + \sum_{i=1}^N \ell_i'(\boldsymbol{c}, \tilde{\delta})$, where $\ell_i'(\boldsymbol{c}, \tilde{\delta})$ can be obtained using the solution for $\ell_i(\boldsymbol{c})$ with $b = \frac{\sum_k c_k P(A_i \cap A_k)}{c_i P(A_i)}$ replaced by $\tilde{b} = \frac{\sum_k c_k \left[P(A_i \cap A_k) - \tilde{\delta}\right]}{c_i \left[P(A_i) - \tilde{\delta}\right]}$.

7. Proof of Corollary 2.

Corollary. (Improved class of upper bounds $\hbar_{NEW-II}(\mathbf{c})$): We can improve the upper bound $\hbar_{NEW-I}(\mathbf{c})$ in (44) by

$$P\left(\bigcup_{i} A_{i}\right) \leq \min_{i} \left\{ \frac{\sum_{k} c_{k} P(A_{i} \cap A_{k}) - (\min_{k} c_{k}) P(A_{i})}{\sum_{k} c_{k} - \min_{k} c_{k}} \right\}$$

$$+ \left(\frac{1}{\min_{k} c_{k}} + \frac{1}{\sum_{k} c_{k} - \min_{k} c_{k}}\right) \sum_{i} c_{i} P(A_{i})$$

$$- \frac{1}{(\min_{k} c_{k})(\sum_{k} c_{k} - \min_{k} c_{k})} \sum_{i} \sum_{k} c_{i} c_{k} P(A_{i} \cap A_{k}),$$

$$=: \hbar_{NEW-II}(\mathbf{c}).$$

$$(55)$$

Note that the upper bound $\hbar_{NEW-II}(\mathbf{c})$ in (55) is always sharper than \hbar_{NEW-I} in (44).

Proof. Letting $x = p_{\{1,\ldots,N\}}$. Defining $\mathscr{B}^- = \mathscr{B} \setminus \{1,\ldots,N\}$, then

$$\hbar'(\mathbf{c}) = \max_{x} \left[x + \sum_{i=1}^{N} \hbar'_{i}(\mathbf{c}, x) \right], \tag{56}$$

where $\hbar'_i(\boldsymbol{c},x)$ is defined by

$$h'_{i}(\boldsymbol{c},x) := \max_{\{p_{B}: i \in B, B \in \mathscr{B}^{-} \sum_{B: i \in B, B \in \mathscr{B}^{-}} \frac{c_{i}p_{B}}{\sum_{k \in B} c_{k}} \\ \text{s.t.} \quad \sum_{B: i \in B, B \in \mathscr{B}^{-}} p_{B} = P(A_{i}) - x, \\ \sum_{B: i \in B, B \in \mathscr{B}^{-}} \left(\frac{\sum_{k \in B} c_{k}}{c_{i}}\right) p_{B} = \frac{1}{c_{i}} \sum_{k} c_{k} \left[P(A_{i} \cap A_{k}) - x\right], \\ p_{B} \geq 0, \quad \text{for all} \quad B \in \mathscr{B}^{-} \quad \text{such that} \quad i \in B.$$

$$(57)$$

The solution of $\hbar'_i(\boldsymbol{c},x)$ is independent with x:

$$\hbar'_{i}(\mathbf{c}, x) = (P(A_{i}) - x) \left(\frac{c_{i}}{\min_{k} c_{k}} + \frac{c_{i}}{\sum_{k} c_{k} - \min_{k} c_{k}} \right) \\
- \frac{c_{i}}{(\min_{k} c_{k}) (\sum_{k} c_{k} - \min_{k} c_{k})} \sum_{k} c_{k} \left(P(A_{i} \cap A_{k}) - x \right), \\
= P(A_{i}) \left(\frac{c_{i}}{\min_{k} c_{k}} + \frac{c_{i}}{\sum_{k} c_{k} - \min_{k} c_{k}} \right) \\
- \frac{c_{i}}{(\min_{k} c_{k}) (\sum_{k} c_{k} - \min_{k} c_{k})} \sum_{k} c_{k} P(A_{i} \cap A_{k}), \tag{58}$$

and the solution exists if and only if for all i

$$\min_{k} c_{k} \leq \frac{\sum_{k} c_{k} P(A_{i} \cap A_{k}) - (\sum_{k} c_{k}) x}{P(A_{i}) - x} \leq \sum_{k} c_{k} - \min_{k} c_{k}.$$
 (59)

Thus, we get

$$\left\{ \max_{i} \frac{\sum_{k} c_{k} P(A_{i} \cap A_{k}) - \left(\sum_{k} c_{k} - \min_{k} c_{k}\right) P(A_{i})}{\min_{k} c_{k}} \right\}^{+}$$

$$\leq x \leq \min_{i} \frac{\sum_{k} c_{k} P(A_{i} \cap A_{k}) - \left(\min_{k} c_{k}\right) P(A_{i})}{\sum_{k} c_{k} - \min_{k} c_{k}}$$
(60)

Therefore, we get the upper bound

$$P\left(\bigcup_{i} A_{i}\right) \leq \min_{i} \left\{ \frac{\sum_{k} c_{k} P(A_{i} \cap A_{k}) - (\min_{k} c_{k}) P(A_{i})}{\sum_{k} c_{k} - \min_{k} c_{k}} \right\}$$

$$+ \left(\frac{1}{\min_{k} c_{k}} + \frac{1}{\sum_{k} c_{k} - \min_{k} c_{k}}\right) \sum_{i} c_{i} P(A_{i})$$

$$- \frac{1}{(\min_{k} c_{k})(\sum_{k} c_{k} - \min_{k} c_{k})} \sum_{i} \sum_{k} c_{i} c_{k} P(A_{i} \cap A_{k}).$$

$$(61)$$

REFERENCES

- A. Cohen and N. Merhav, Lower bounds on the error probability of block codes based on improvements on de Caen's inequality, *IEEE Transactions on Information Theory*, **50** (2004), 290–310.
- [2] C. Feng, L. Li and J. Shen, Some inequalities in functional analysis, combinatorics, and probability theory, The Electronic Journal of Combinatorics, 17 (2010), 1.
- [3] V. V. Vazirani, Approximation Algorithms, Springer-Verlag New York, Inc., New York, NY, USA, 2001.
- [4] J. Yang, F. Alajaji and G. Takahara, Lower bounds on the probability of a finite union of events, URL http://arxiv.org/abs/1401.5543, Submitted, 2014.
- [5] J. Yang, F. Alajaji and G. Takahara, New bounds on the probability of a finite union of events, in 2014 IEEE International Symposium on Information Theory (ISIT), 2014, 1271–1275.

E-mail address: jun@utstat.toronto.edu
E-mail address: fady@mast.queensu.ca
E-mail address: takahara@mast.queensu.ca