Ridge Logistic Regression for Preventing Overfitting

STA303/STA1002: Methods of Data Analysis II, Summer 2016

Michael Guerzhoy

Case Study: Images

Images are made up of pixels – tiny dots with constant colour.

A grayscale image is actually can be represented as an array of numbers between 0 and 1 (0 for black, 1 for white, numbers between 0 and 1 for different shades of gray.)

Image Classification

- Suppose we have images of 2 different people
- For a new image, want to know which of the 2 people it is
- Covariates: a vector of all the brightnesses of the grayscale image

	x0	x1	x2	x3	x4	x5	x6	x7
• X=	x12	x13	x1 4	x15	x16	x17	x18	x19
	x24	x25	x26	x27	x28	x29	x30	x31
	x36	x37	x38	x39	x40	x41	x42	x43
	x48	x49	x50	x51	x52	x53	x5 4	x55
	x60	x61	x62	x63	x6 4	x65	x66	x67
	x72	x73	x74	x75	x76	x77	x78	x79
	x8 4	x85	x86	x87	x88	x89	x90	x91

 Y_i : 1 if it's person A, 0 if it's person B

Logistic Regression

- $Y_i \sim Binomial(X_i\beta)$
- Find β such that the Log Likelihood is maximized

•
$$\log P(y|\beta, x) =$$

 $\sum_{i=1}^{m} y_i \log \left(\frac{1}{1 + \exp(-x_i\beta)}\right) + (1 - y_i) \log \left(\frac{\exp(-x_i\beta)}{1 + \exp(-x_i\beta)}\right)$

Classification

• Person A, if $X_i\beta > 0$ and Person B otherwise

What do the β s look like?

• Remember X =

x1	x2	хĴ	x 4	x5	x6	x7
x13	x14	x15	x16	x17	x18	x19
x25	x26	x27	x28	x29	x30	x31
x37	x38	x39	x40	x41	x42	x43
x49	x50	x51	x52	x53	x5 4	x55
x61	x62	x63	x6 4	x65	x66	x67
x73	x7 4	x75	x76	x77	x78	x79
x85	x86	x87	x88	x89	x90	x91
	x13 x25 x37 x49 x61 x73	x13 x14 x25 x26 x37 x38 x49 x50 x61 x62 x73 x74	x13 x14 x15 x25 x26 x27 x37 x38 x39 x49 x50 x51 x61 x62 x63 x73 x74 x75	x13 x14 x15 x16 x25 x26 x27 x28 x37 x38 x39 x40 x49 x50 x51 x52 x61 x62 x63 x64 x73 x74 x75 x76	x13 x14 x15 x16 x17 x25 x26 x27 x28 x29 x37 x38 x39 x40 x41 x49 x50 x51 x52 x53 x61 x62 x63 x64 x65 x73 x74 x75 x76 x77	x1x2x3x4x5x6x13x14x15x16x17x18x25x26x27x28x29x30x37x38x39x40x41x42x49x50x51x52x53x54x61x62x63x64x65x66x73x74x75x76x77x78x85x86x87x88x89x90

• Now go back and construct an image from the β s

Overfitting

- In a small dataset, maybe a pixel in the corner (x₁) of pictures of person A is always be smaller than 0.1, and for person B is always larger than 0.9
 - This would tend to make β_1 very large and negative
 - Recall perfect separation
 - Would hurt classification performance on new data

Ridge Logistic Regression

- Minimize NLL + $\frac{\lambda}{2} \sum_{i=1}^{K} \beta_i^2$
 - (NLL = Negative Log-Likelihood)
- $\lambda = 0$ is what we did before
- $\lambda > 0$ means that we are *not* minimizing the NLL. Instead, we are trying to make the NLL as small as possible, while still making sure that the β s are not too large
 - Tradeoff between good fit (large log-likelihood) and good generalization (good performance on new data)
 - If we expected the "correct" β s to not be very large, makes sense to force them to be small

Ridge Logistic Regression

- Select λ using cross-validation (usually 2-fold cross-validation)
 - Fit the model using the training set data using different λ 's. Use performance on the validation set as the estimate on how well you do on new data. Select the λ with the best performance on the validation set.

Ridge Logistic Regression and Inference

Is the pixel at location (20, 30) in images of John Lennon usually darker than the one in images of Paul McCartney?

- Look at the β that corresponds to the pixel at (20, 30)
- If we are using ridge regression, cannot obtain the standard error in the usual way
- If we really believe that the β cannot be too large, that *should* estimate both the standard error and the point estimate of β people generally use the Bayesian Inference framework when using Ridge Regression