Poisson Regression

Some slides from Craig Burkett
Elephants example

- 41 male elephants from Kenyan National Park
 - Followed for 8 years
- Interested in relationship between age & number of successful matings
- (Elephants, in R)
- Can’t use linear regression because responses are not normal
 - Unless matings happen *really* often

![Poisson distribution chart](image)
Elephants Example - Binomial

• Can’t use binomial response because the number of trials isn’t fixed
 • What does a fixed number of trials entail?
Generalized Linear Models -- Review

\[g(\mu) = X\beta \]

\[Y \sim \text{dist}_\mu. Y^{(i)} \sim \text{dist}_\mu(g^{-1}(X^{(i)}\beta)) \]

\(g(\mu) \) is called a **Link Function**. The distribution of the Y’s is the family

\(g(\mu) = \mu \) is linear regression – Identity Link

\(g(\mu) = \log(\mu) \) is Log Link – the default for Poisson regression

\(g(\mu) = \log\left(\frac{\mu}{1-\mu}\right) \) is Logistic regression – Logit Link
Estimating GLMs

• Find a β such that

$$\Pi_i dist_\mu (g^{-1}(X^{(i)} \beta))$$

is maximized
Response

- Counts, so model with Poisson distribution
 \[P(Y = y) = \frac{\mu^y e^{-\mu}}{y!} \]
 \[E[Y] = Var[Y] = \mu \]
- Poisson regression model
 \[\log(\mu) = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p \]
Interpretation

• $\mu = \exp(\beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p)$

• Increasing x_j by one unit with other predictors held constant, increases mean of response by factor e^{β_j}

• Inference (i.e., CI’s for the βs)
 • Wald and LRT as with logistic
A representation of a log-linear model in which the distribution of Y (as a function of X) is Poisson with mean μ and $\log(\mu) = -1.7 + 0.20X$; the histograms are the Poisson distribution at three values of X.

Visualizing the SD
Conclusions

• Does the average number of matings increase with age?
 • Yes

• For every additional year of age, the expected number of matings increases by
 • $\exp(0.0687) = 1.07$