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Perfectly Fitting the Data

• Likelihood: ς𝑖=1
𝑛 𝜋𝑖

𝑦𝑖 1 − 𝜋𝑖
1−𝑦𝑖

• 𝜋𝑖 =
1

1+𝑒−𝛽0−𝛽1𝑥1
𝑖

−𝛽2𝑥2
𝑖

−⋯

• Want 𝜋𝑖 as close as possible to 𝑦𝑖

• If 𝑦𝑖 = 1, want −𝛽0 − 𝛽1𝑥1
𝑖

− 𝛽2𝑥2
𝑖

− ⋯ as negative 
as possible

• If 𝑦𝑖 = 0, want −𝛽0 − 𝛽1𝑥1
𝑖

− 𝛽2𝑥2
𝑖

− ⋯ as positive as 
possible

• Suppose 𝑦𝑖 = 𝑥1
(𝑖)

always
• What’s the 𝛽1 that maximizes the likelihood?



Perfectly Fitting the Data

• Suppose 𝑦𝑖 = 𝑥1
(𝑖)

always
• What’s the 𝛽1 that maximizes the likelihood?

• The smaller 𝛽1, the better

• In general, suppose 

• 𝑒−𝛽0−𝛽1𝑥1
𝑖

−𝛽2𝑥2
𝑖

−⋯−𝛽𝑝𝑥𝑝
(𝑖)

< 1 ⬄ 𝑦𝑖 = 1

• How can we then increase the likelihood by 
changing the 𝛽’s?



• In general, suppose 

• 𝑒−𝛽0−𝛽1𝑥1
𝑖

−𝛽2𝑥2
𝑖

−⋯−𝛽𝑝𝑥𝑝
(𝑖)

< 1 ⬄ 𝑦𝑖 = 1

• How can we then increase the likelihood by 
changing the 𝛽’s?
• Multiply all of them by a constant factor



Perfect Separation

• 𝑒−𝛽0−𝛽1𝑥1
𝑖

−𝛽2𝑥2
𝑖

−⋯−𝛽𝑝𝑥𝑝
(𝑖)

< 1 ⬄ 𝑦𝑖 = 1

• 𝛽0 + 𝛽1𝑥1
𝑖

+ 𝛽2𝑥2
𝑖

+ ⋯ + 𝛽𝑝𝑥𝑝
𝑖

> 0 ⬄ 𝑦𝑖 = 1

• With two covariates:
• (in R)

• The line 𝛽0 + 𝛽1𝑥1
𝑖

+ 𝛽2𝑥2
𝑖

separates the points belonging to the 
two classes

• With multiple covariates:
• The hyperplane separates the points belonging to the two classes



Residuals

• The Deviance Residual for point i is such that the 
sum of squared residuals adds up to the deviance

𝑠𝑖𝑔𝑛 𝑦𝑖 − 𝜋𝑖 2{𝑦𝑖 log
𝑦𝑖

𝜋𝑖
+ 1 − 𝑦𝑖 log(

1−𝑦𝑖

1−𝜋𝑖
)}

• (Note: there is no constant here, since we’ve explicitly chosen how to 
define it here)

• 𝑐𝑜𝑛𝑠𝑡 = 2 σ𝑖 (𝑦𝑖 log 𝑦𝑖 + 1 − 𝑦𝑖 log(1 − 𝑦𝑖)

• Reminder: 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =
𝑐𝑜𝑛𝑠𝑡 − 2 log P y 𝛽 =

𝑐𝑜𝑛𝑠𝑡 − 2 ෍

𝑖

(𝑦𝑖 log 𝜋𝑖 + 1 − 𝑦𝑖 log 1 − 𝜋𝑖 )

• If the residual for any group of people look unusual, examine the data



Extra-Binomial Variation

• So far, we assumed that 𝑉𝑎𝑟 𝑌𝑖|𝑥, 𝛽 = 𝜋𝑖 1 − 𝜋𝑖

• That is not true when the observations 𝑌𝑖 are not 
conditionally independent

• That is also not true when in fact the true 
probabilities 𝜋𝑖 and 𝜋𝑗 are not the same even 
though 𝑥(𝑖) = 𝑥(𝑗)

• Suppose we omit a covariate (e.g., the class of the 
passenger in the Titanic dataset)

• The probability of drowning for women in first class is 
different from the probability of drowning for women in 
second class



Quasilikelihood Approach

• Estimate the overdispersion parameter

• One estimate: ෠𝜓 =
𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒

𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝐹𝑟𝑒𝑒𝑑

• Use 𝑆𝐸෡𝜓 𝛽 = ෠𝜓𝑆𝐸𝑒𝑠𝑡(𝛽)

• Overdispersion increases the uncertainty about the 
parameters

• Note: this is called “Quasilikelihood” because we are not 
using our model anymore – we’re adjusting the Standard 
Error

• Justification: hopefully the estimate for 𝛽 are not biased


