Logistic Regression
Titanic Survival Case Study

• The RMS Titanic
 • A British passenger liner
 • Collided with an iceberg during her maiden voyage
 • 2224 people aboard, 710 survived

• People on board:
 • 1st class, 2nd class, 3rd class passengers (the price of the ticket and also social class played a role)
 • Different ages
 • Different genders
Exploratory data analysis (in R)
What’s Wrong with Linear Regression?

- \(E[Y_i] = \beta_0 + \beta_1 X_1^{(i)} + \cdots + \beta_{k-1} X_{k-1}^{(i)} \)
 \(Y_i \sim Bernoulli(\pi_i) \) (\(\pi_i = \pi(X_1, X_2 \ldots) \))
- We can match the expectation. But we’ll have
 \(Var[Y_i] = \pi_i (1 - \pi_i) \)
- \(Y_i \) is very far from normal (just two values)
- \(Var[Y_i] \) is not constant
- Predictions for \(Y_i \) can have the right expectations, but will sometimes be outside of \((0, 1)\)
Logistic Curve

\[s(y) = \frac{1}{1 + \exp(-y)} \]

Inputs can be in \((-\infty, \infty)\), outputs will always be in \((0, 1)\)
Logistic Regression

• We will be computing

\[
\frac{1}{1 + \exp(-\beta_0 - \beta_1 X_1 - \cdots - \beta_k X_k)}
\]

to always get a value between 0 and 1

• Model:

\[
Y_i \sim \text{Bernoulli}(\pi_i), \pi_i = \frac{1}{1 + \exp(-\beta_0 - \beta_1 X_1^{(i)} - \cdots - \beta_k X_k^{(i)})}
\]

• \(\text{Var}(Y_i) = ? \)
Log-Odds

\[\pi = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \ldots)}} \]
\[\Rightarrow \pi = 1 + e^{-(\beta_0 + \beta_1 x_1 + \ldots)} \]

\[\Rightarrow \log \left(\frac{\pi}{1 - \pi} \right) = -(\beta_0 + \beta_1 x_1 + \ldots) \]
\[\Rightarrow \log \left(\frac{\pi}{1 - \pi} \right) = \beta_0 + \beta_1 x_1 + 000 \]
Odds

• If the probability of an event is \(\pi \), the odds of the event are \(\frac{\pi}{1-\pi} \).
Odds

• You pay $5 if France don’t win, and get $9 if they do.

• What’s the probability of France winning assuming “true odds” are offered?

• (What about if the odds \(r = p/(1-p) \) are given as 0.6?)
The Log-Odds are Linear in X

• $\log \left(\frac{\pi}{1-\pi} \right) = \beta_0 + \beta_1 x_1 + \cdots$

• Generalized linear model: $g(\mu) = X\beta$, with a distribution imposed on Y
 - $g(\mu) = \log \left(\frac{\mu}{1-\mu} \right)$ with $Y \sim \text{Bernoulli}(\mu)$ is Logistic regression
 - g is the link function
 - $\text{logit}(\mu) = \log \left(\frac{\mu}{1-\mu} \right)$
Maximum Likelihood

\[Y_i \sim \text{Bernoulli}(\pi_i) \]

\[P(Y_i = y_i | \beta_0, \beta_1, \ldots, \beta_{k-1}) = \pi_i^{y_i} (1 - \pi_i)^{1-y_i} \]

\[P(Y_1 = y_1, \ldots, Y_n = y_n | \ldots) = \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1-y_i} \]

\[\log P(Y_1 = y_1, \ldots, Y_n = y_n | \ldots) = \sum_{i=1}^{n} (y_i \log \pi_i + (1 - y_i) \log(1 - \pi_i)) \]

\[\pi_i = \frac{1}{1 + \exp(\beta_0 + \beta_1 X_1^{(i)} + \cdots + \beta_{k-1} X_{k-1}^{(i)})} \]

Now, take the derivative wrt the betas, and find the betas that maximize the log-likelihood....
Titanic Analysis

• (in R)
Interpretation of β_0 - Linear Reg.

- In Linear Regression, if there are no other predictors, the least-squares (and Maximum Likelihood) estimate of Y is the mean
 - $E[Y] = \beta_0 \Rightarrow \bar{Y} = b_0$

```r
y <- rnorm(100, 10, 25)
> summary(lm(y ~ 1))

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| (Intercept) | 8.727 | 2.524 | 3.458 | 0.000804 |

> mean(y)

[1] 8.726752
```
Interpretation of β_0 - Logistic Reg.

• MLE for $\pi = P(Y = 1)$ is also the sample mean \bar{Y} (proportion of the time Y is 1/the marginal probability that Y is 1)

• In Logistic Regression, without predictors we have

$$
\pi = \frac{1}{1 + e^{-\beta_0}}
$$

$$
\beta_0 = logit(\bar{Y})
$$

• (in R)
Interpretation of β_0 - Logistic Reg.

• Now, back to predicting with age. What’s the interpretation of β_0 now?
• (in R)
Interpretation of β_1 (Categorical Predictor)

```r
fit <- glm(survived ~ sex, family= binomial, data= titan)
> summary(fit)

Coefficients:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| (Intercept) | -1.44363 | 0.08762 | -16.48   | <2e-16 |
| sexfemale | 2.42544   | 0.13602 | 17.83    | <2e-16 |

> exp(coef(fit))

<table>
<thead>
<tr>
<th>(Intercept)</th>
<th>sexfemale</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2360704</td>
<td>11.3071844</td>
</tr>
</tbody>
</table>

• Interpretation: the odds of survival for women are 11.3 times higher than for men
Interpretation of $\beta$
(Mixed Predictors)

$\text{logit}(\pi) = \beta_0 + \beta_1 \cdot \text{age} + \beta_2 \cdot I_{\text{female}}$

- In Linear Regression, $\beta_1$ would the increase in survival for a unit change in $\text{age}$, keeping other variables constant

- $\beta_2$ is the difference between group means, keeping other variables constant

- In logistic regression, $\beta_1$ is the increase in the log-Odds of survival, for a unit change in $\text{age}$, keeping other variables constant

- $\beta_2$ is the increase in the log-Odds of survival for women compared to men, keeping age constant
Quantifying Uncertainty

• (in R)
Interpreting Coefficients

```r
fit <- glm(survived ~ age + sex, family= binomial, data= titan)
> exp(coef(fit))

 (Intercept) age sexfemale
 0.2936769 0.9957548 11.7128810

> exp(confint(fit))
Waiting for profiling to be done...

 2.5 % 97.5 %
(Intercept) 0.2037794 0.4194266
age 0.9855965 1.0059398
sexfemale 8.7239838 15.8549675

Controlling for age, we are 95% confident that females have a 772% to 1485% higher odds of survival, compared to males
```
Likelihood Ratio Test

• Can be used to compare any two nested models

• Test statistic:
  • \( LRT = 2 \log(LMAX_{full}) - 2 \log(LMAX_{reduced}) \)
    • Has a \( \chi^2 \) distribution when the extra parameters in \( LMAX_{full} \) are 0
  • LMAX: the maximum likelihood value

• A lot of the time what’s computed is
  • deviance = \( \text{const} - 2 \log LMAX \)

• Then:
  • \( LRT = \text{deviance}_{reduced} - \text{deviance}_{full} \)
Wald Test

• The test based on approximating the sampling distribution of the coefficients as normal
  • The SE’s that are show shown when you call summary

• Unreliable for “small” sample sizes
Model Assumptions

• Independent observations
• Correct form of model
  • Linearity between logits & predictor variables
  • All relevant predictors included
• For CIs and hypothesis tests to be valid, need large sample sizes
Titanic Dataset: Model Checking

• Independent observations?
  • Not really, for one thing, they were all on one ship!

• Large sample?
  • Yes
Titanic Dataset: Other Worries

• Do we have all relevant predictors?
  • I.e., might there be confounding variables we haven’t considered/don’t have available?