Comparing Several Means

Some slides from R. Pruim

STA303/STA1002: Methods of Data Analysis II, Summer 2016

Michael Guerzhoy

The Dating World of Swordtail Fish

- In some species of swordtail fish, males develop brightly coloured swordtails
- Southern Platyfish do not
- Want to know: will female Southern Platyfish prefer males with artificial brightly-coloured swordtails?
 - If they do, that's evidence that males in other species evolved as a result of female preference
- Experiment: multiple pair of males, one with a transparent artificial tail, one with a bright yellow artificial swordtail. Measure the percentage of time the female spends courting with the male with the yellow tail. There are 84 females in total.

Platyfish

- Eventually, we would like to know whether females spent more time with the yellow-swordtailed males. But we would like to first investigate whether there is anything else going on in the data that might affect our conclusions
- Question: Do the (means of) the quantitative variables depend on which group (given by categorical variable) the individual is in?
- (the fish, in R)

Computing Group Means with Linear Regression

- Fit a linear regression:
- $Y \sim a_0 + a_{g_1}I_{g_1} + a_{g_2}I_{g_2} + \dots + a_{g_N}I_{g_N}$
- *Y*: the percentage of time the female spends with the yellow-tailed male
- I_{gk} : 1 if the case involves Group k, 0 otherwise
- Regression:
 - Minimize $\sum_{i} (Y_i (a_0 + a_{g_1}I_{i,g_1} + a_{g_2}I_{i,g_2} + \dots + a_{g_N}I_{i,g_N}))^2$

Computing Group Means with Linear Regression

•
$$\sum_{i} \left(Y_{i} - (a_{0} + a_{g1}I_{i,g1} + a_{g2}I_{i,g2} + \dots + a_{gN}I_{i,gN}) \right)^{2}$$

= $\sum_{group} \sum_{i \in group} \left(Y_{i} - a_{group} \right)^{2}$

• $\sum_{i \in group} (Y_i - a_{group})^2$ is minimized when $a_{group} = ?$ (show how to do this)

Computing Group Means with Linear Regression

•
$$\left(\sum_{i \in group} (Y_i - a_{group})^2\right)' = 0$$

 $-2 \sum_{i \in group} (Y_i - a_{group}) = 0$
 $\sum_{i \in group} Y_i = \sum_{i \in group} a_{group}$
 $a_{group} = \frac{\sum_{i \in group} Y_i}{N_{group}}$

Computing the Means with R

• (in R)

Are the Pairs Different from Each Other?

- If we had just two pairs in which we're interested, we could simply use a t-Test
 - Estimate the pooled variance from the entire dataset

•
$$s_p^2 = \frac{(N_{g_1}-1)s_1^2 + \dots + (N_{g_N}-1)s_N^2}{(N_{g_1}-1) + \dots + (N_{g_N}-1)} ((N_{g_1}-1) + \dots + (N_{g_N}-1) d.f.)$$

• $\frac{mean_{g_1}-mean_{g_2}}{s_p\sqrt{\frac{1}{N_{g_1}} + \frac{1}{N_{g_2}}}} \sim t((N_{g_1}-1) + \dots + (N_{g_N}-1))$

• But we're interested in whether *any* pair is different from *any other pair*

ANOVA

- Null Hypothesis: the means of all the groups are equal
- Notation:
 - N: number of individuals/observation all together
 - \overline{X} : mean for entire data set is
- Group i:
 - N_i: number of individuals in group *i*
 - X_{ij} : value for individual *j* in group *i*
 - \overline{X}_i : mean for group *i*

ANOVA: Idea

- If all the group means are the same, the average variation within the groups should be almost as large as the average variation within the entire dataset (why almost?)
- Variation BETWEEN groups:
 - For each data value look at the difference between its group mean and the overall mean: $\sum_i N_i (\overline{X_i} \overline{X})^2$
- Variation WITHIN groups:
 - For each data value look at the difference between the value and the group mean: $\sum_{i} \sum_{j} (X_{ij} \overline{X}_{i})^{2}$

ANOVA: Idea

- SSReg (Regression Sum of Squares, variation across groups) : $\sum_i N_i (\overline{X_i} \overline{X})^2$ (d.f.: Ngroups-1)
- RSS (Residual Sum of Squares, variation within groups): $\sum_{i} \sum_{j} (X_{ij} \overline{X}_{i})^{2}$ (d.f.: Npoints-Ngroups)
- Compute the ratio of the averages:

•
$$F = \frac{\sum_{i} N_{i}(\overline{X_{i}} - \overline{X})^{2}}{Ngroups - 1} / \frac{\sum_{i} \sum_{j} (X_{ij} - \overline{X}_{i})^{2}}{Npoints - Ngroups}$$

ANOVA: Idea

•
$$F = \frac{\sum_{i} (\overline{X_{i}} - \overline{X})^{2}}{Ngroups - 1} / \frac{\sum_{i} \sum_{j} (X_{ij} - \overline{X}_{i})^{2}}{Npoints - ngroups}$$

- If "average" between-group variation is not larger than "average" within-group variation (i.e., the Null Hypothesis is true), $F\,\approx\,1$
- If between-group variation is larger than within-group variation (i.e., the means for the different groups are different), F > 1

•
$$\frac{\sum_{i} N_{i}(\overline{X_{i}} - \overline{X})^{2}}{\sigma^{2}} \sim \chi^{2}(Ngroups - 1)$$

•
$$\frac{\sum_{ij}(X_{ij} - \overline{X_{i}})^{2}}{\sigma^{2}} \sim \chi^{2}(Npoints - Ngroups)$$

• *F*~*F*(*Ngroups* – 1, *Npoints* – *Ngroups*)

The F distribution

• If
$$W_1 \sim \chi^2(k_1)$$
 and $W_2 \sim \chi^2(k_2)$, then
 $F = \frac{W_1}{W_2} \sim F(k_1, k_2)$

ANOVA: the model

• Constant variance σ^2 , (possibly) different means μ_i for the different groups

 $X_{ij} \sim N(\mu_i, \sigma^2)$

• Null Hypothesis: $\mu_1 = \mu_2 = \cdots = \mu_{Ngroups}$

• F statistic:
$$F = \frac{\sum_{i} N_{i}(\overline{X_{i}} - \overline{X})^{2}}{Ngroups - 1} / \frac{\sum_{i} \sum_{j} (X_{ij} - \overline{X}_{i})^{2}}{Npoints - ngroups}$$

- F-test: $P_{\mu_1=\cdots=\mu_{Ngroups}}$ (F > f)
 - If the Null Hypothesis is true,

$$F \sim F(Ngroups - 1, Npoints - Ngroups)$$

Pairwise t-Tests

- Suppose we find (using an F-test) that there are differences between the different means. That still doesn't tell us what the differences are
- Naively, we can run a t-Test for every pair of groups
- (in R)

Problem with Multiple Comparisons

- If we are computing a p-value and the Null Hypothesis is true, we'd get a false positive 5% of the time (1 time out of 20)
 - False positive: p-value<.05, but the Null Hypothesis is true
- If we are computing 20 p-values and the Null Hypothesis is true, what percent of the time will we get at least one false positive?

Problem with Multiple Comparisons

• If we are computing 20 p-values and the Null Hypothesis is true, what percent of the time will we get at least one false positive?

 $1 - (1 - 0.05)^{20} \approx 64\%$

- If we have 7 groups, and compare each mean to each other mean, how many comparisons do we make?
 - (Show in R)

Problem with Multiple Comparisons

• N variables to do pairwise comparison on:

$$\binom{N}{2} = N(N-1)/2$$
 comparisons

- Intuition:
 - See the table in R
 - For each coefficient (N) of them, compare it to every other (N-1): N(N-1) comparisons. But we compared each pair twice, so divide by two: N(N-1)/2

Bonferroni correction

- Boole's inequality: the probability of any one of the events E_1, E_2, \ldots, E_n happening is smaller than $\sum_i P(E_i)$:
 - $P(\bigcup_i E_i) \leq \sum_i P(E_i)$
 - Idea: the probability is largest when the events are mutually exclusive, in which case the probability is $\sum_i P(E_i)$

•
$$P\left(\bigcup_{i=1\dots n}^{n}\left(p_{i}\leq\frac{\alpha}{n}\right)\right)\leq\sum_{i=1}^{n}P\left(p_{i}\leq\frac{\alpha}{n}\right)=\frac{n\alpha}{n}=\alpha$$

Bonferroni correction

- If we want the *familywise* p-value threshold to be α , make the individual p-value threshold be $\frac{\alpha}{n}$, where *n* is the number of groups
- Generally, *very* conservative
 - Why?

Tukey's Honest Significant Differences (HSD)

- Tukey's HSD is a method of adjusting the SE estimate based on the range of the data
 - Not as conservative as using the Bonferroni correction

Confidence Intervals -- Bonferroni

- If the statistic is t-distributed: $\hat{\theta} \pm t_{df,1-\frac{\alpha}{k}} \cdot SE(\hat{\theta})$
- (In R)

Summary: F-test and Pairwise Comparisons

- Assuming (and checking) normal distributions with constant variance in different groups:
 - Run F-test to see if any of the means are different
 - Can follow up and check pairwise differences
- If you have a hypothesis about which group means are different *ahead of time*, that's like running multiple studies
 - Some of your multiple studies might be wrong, of course
 - Still, okay not to adjust as long as you report that you had lots of hypotheses about which means might be different
 - Of course, if you have lots of hypotheses, people might think you're a little bit scatterbrained