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Abstract 

In the past five years, the replicability of original findings published in psychology 

journals has been questioned.  We show that replicability can be estimated by computing 

the average power of studies.  We then present four methods that can be used to estimate 

average power for a set of studies that were selected for significance: p-curve, p-uniform, 

maximum likelihood, and z-curve.  We present the results of large-scale simulation 

studies with both homogeneous and heterogeneous effect sizes. All methods work well 

with homogeneous effect sizes, but only maximum likelihood and z-curve produce 

accurate estimates with heterogeneous effect sizes.  All methods overestimate 

replicability using the Open Science Collaborative reproducibility project and we discuss 

possible reasons for this.  Based on the simulation studies, we recommend z-curve as a 

valid method to estimate replicability. We also validated a conservative bootstrap 

confidence interval that makes it possible to use z-curve with small sets of studies.  

 Keywords:  Power estimation, Post-hoc power analysis, Publication bias, 

Maximum likelihood, P-curve, P-uniform, Z-curve, Effect size, Replicability, Simulation. 
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How	  replicable	  is	  psychology?	  	  A	  comparison	  of	  four	  methods	  of	  estimating	  

replicability	  on	  the	  basis	  of	  test-‐statistics	  in	  original	  studies	  

 

Science is built on a mixture of trust and healthy skepticism.  On one hand, scientists who 

read and cite published work trust the authors, reviewers, and editors to ensure that most 

reported results provide sufficient credible evidence based on objective empirical studies. 

On the other hand, scientists also insist that studies be reported with sufficient detail to 

reproduce them and to see whether other researchers can replicate the results. Replication 

studies ensure that false positives will be promptly discovered when replication studies 

fail to confirm the original results. Replicability is acknowledged to be a requirement of 

good science (Popper 1934, Bunge 1998).  According to Fisher, replicability is also a 

characteristic of a good experiment; “A properly designed experiment rarely fails to give 

... significance” (Fisher, 1926, p. 504).   

 In recent years, psychologists and other scientists have started to realize that 

published results are far less replicable than one would expect based on the high rate of 

significant results in published articles (Hirschhorn, Lohmueller, Byrne and Hirschhorn 

2002, Ioannidis 2008, Simmons, Nelson and Simonsohn 2011, Begley and Ellis 2012, 

John, Lowenstein and Prelec 2012, Begley 2013, Chang and Li 2015, Baker 2016). In 

Psychology, the Open Science Collaboration (OSR) project attempted to estimate the 

replicability of published results in psychology by replicating 100 primary findings of 

articles from three influential journals that publish results from social and cognitive 

psychology (OSR, 2015).  Ninety seven percent of the replicated studies reported a 

statistically significant result, but only 37% of the replication studies were able to 
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replicate this outcome.  This low success rate has created heated debates, especially in 

social psychology where the success rate was only 25%. 

 The use of actual replication studies to estimate replicability has a number of 

limitations.  First, it is practically impossible to conduct actual replications on a large 

scale, especially for studies that require a long time (longitudinal studies) or are very 

expensive (MRI studies), or raise ethical concerns (animal research).  Second, actual 

replication studies may require expertise that only a few researchers in the world have.  

Third, there are many reasons why a particular replication study might fail, and 

replication failure would call for additional efforts to seek reasons for the failure.  For 

these reasons, it is desirable to have an alternative method of estimating replicability that 

does not require literal replication.  We see this method as complementary to actual 

replication studies.  Actual replication studies are needed because they provide more 

information than just finding a significant result again. For example, they show that the 

results can be replicated over time and are not limited to a specific historic, cultural 

context. They also show that the description of the original study was sufficiently precise 

to reproduce the study in a way that it successfully replicated the original result.  At the 

same time a statistical estimation method based on the results reported in original articles 

can provide information that replication studies do not provide. For example, they can 

show that it was highly probable or improbable that an exact replication study would be 

successful.  This information can be helpful in the evaluation of failed replication studies. 

If the replicability estimate of the original study is low, it is not surprising that an actual 

replication study failed to produce a significant result. In contrast, if the estimated 

replicability was high, it suggests that the replication study was not exact or had some 



Running head:  ESTIMATING REPLICABILITY  5	  

problems. Thus, statistical estimates of replicability and the outcome of replication 

studies can be seen as two independent methods that are expected to produce convergent 

evidence of replicability.  

 Our approach to the estimation of replicability based on evidence from original 

studies is based on the concept of statistical power. Power analysis was introduced by 

Neyman and Pearson (1933) as a formalization of Fisher’s criterion of a good 

experiment.  According to Fisher (1926, p. 504), a good experiment should rarely 

produce a non-significant result when the null hypothesis is false.  Most psychologists are 

familiar with Cohen’s (1988) suggestion that good experiments should have 80% power; 

that is 4 out of 5 replications should produce a significant result and only 1 out of 5 

studies would fail to reject the false null hypothesis; that is, making a type-II error.  

However, in actual practice, psychologists have ignored a priori power analysis and 

typically conduct studies with less power (Schimmack, 2012).  A common estimate of 

power is that average power is about 50% (Cohen 1962, Sedlmeier and Gigerenzer 1989).  

This means that about half of the studies in psychology have less than 50% power.  

Power has direct consequences for replicability because power is the long-run probability 

of obtaining a statistically significant result. Thus, even if a study with 30% power 

produced a significant result, the chance of obtaining the same result again in a 

replication study remains 30%.   

 Methodologists have wondered for a long time why researchers ignore power if 

power is essential for producing significant results in original studies and in replication 

studies (Schimmack, 2012; Sedlmeier & Gigerenzer, 1989) without a satisfactory answer. 

We believe one possible explanation is that researchers confuse the rate of significant 
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results in published articles with the replicability of published findings.  As power is the 

long-run probability of obtaining a significant result, the rate of obtained significant can 

be used to estimate observed power, and the success rate of original articles is over 90%. 

(Sterling, 1959; Sterling, Rosenbaum and Weinkam, 1995).  This may create the illusion 

that studies have high power and nearly always produce significant results and the 

expectation that replication studies will be equally successful.  However, Sterling et al. 

(1995) pointed out that the observed success rate in journals provides an inflated estimate 

of power, and therefore with replicability, because journals are more likely to publish 

significant results than non-significant results.  It is well known that non-significant 

results often end up in Rosenthal's (1969) proverbial file drawer, but it is not known how 

many non-significant results remain unpublished. As a result, neither the true success rate 

of original studies, nor the replicability of these studies is currently known.  In this 

article, we present four methods that can be used to estimate replicability of published 

studies even if published studies are selected for significance.  These methods can be 

used to estimate the replicability of psychological research in general or the replicability 

of results in specific journals. 

We define replicability as the probability of obtaining the same result in an exact 

replication study with the same procedure and sample sizes. As most studies focus on 

rejecting the null hypothesis, we define “obtaining the same result” as obtaining a 

significant result again. This definition ignores the sign of an effect or the pattern of a 

complex interaction effect, which leads to a slight over-estimation of replicability, if one 

were also taking the sign of an effect into account. However, this bias is small because it 

is very rare that a replication study produces a significant result in the opposite direction 



Running head:  ESTIMATING REPLICABILITY  7	  

(OSR, 2015).  All four methods of estimating replicability are using the statistical 

evidence against the null hypothesis in original studies to estimate average power.  In a 

simple scenario, where all studies have the same power (homogeneous case), replicability 

is power.  However, in the more realistic and complex scenario, where studies have 

different power (heterogeneous case), replicability corresponds to mean power.  In our 

technical description of the statistical methods we focus on the statistically well-defined 

concept of power. In the end, we use this approach to make predictions about replicability 

in the OSR reproducibility project.  

Introduction of Statistical Methods for Power Estimation 

 Consider a population of significance tests in which every test has its own 

probability of being significant; that is, there is a population of power values. Now 

suppose that one finding is randomly selected from the population. The study is repeated 

exactly, and the same statistical test is used to test for significance in the replication 

study. We show that the probability of obtaining a significant result in the replication 

study equals the mean power of studies in the population from which the study was 

drawn.  It is important to note that this assumes exact replication. If replication studies 

are not exact, it is possible that the population effect sizes change. However, unless there 

are systematic changes in designs (e.g., replication studies increased sample sizes, which 

increases power), these changes will average out and power estimates are still good 

predictors of average power in studies that are not exact replications.  As mentioned 

earlier, estimating average power is trivial when all studies are reported. In this case, the 

rate of significant results provides a simple and accurate estimate of average power.  

However, it is more difficult to estimate average power for a set of studies that were 



Running head:  ESTIMATING REPLICABILITY  8	  

selected to produce significant results. In this case, the average rate of significant results 

and average observed power yield inflated estimates of power.  Thus, the main goal of 

our article is to introduce and evaluate four different methods that can estimate the 

average power of a set of studies that were selected for significance.  

 Two of the methods we consider -- Simonsohn, Nelson and Simmons' (2014b) p-

curve and van Assen, van Aert, and Wicherts' (2014) p-uniform -- were developed to 

correct for publication bias in meta-analyses of effect sizes. Both methods assume a fixed 

population effect size. Simonsohn et al. have extended their method to estimate power in 

the restricted setting of a single fixed power value for the entire population, implying 

homogeneity in sample size as well as effect size (www.p-curve.com).  However, we 

predict that these methods will not perform well when there is moderate to large 

heterogeneity in effect sizes.   

We introduce two additional methods that are explicitly designed to estimate 

power for sets of heterogeneous studies such as the set of studies that were replicated in 

the OSC reproducibility project. We use extensive simulation studies to compare all four 

methods for a wide variety of scenarios.  Finally, we apply all four methods to the studies 

from the OSC reproducibility project, where the success rate of actual replication studies 

can be used as a validation criterion for the four statistical estimation methods.   

We predicted that each method would do well in simulations that match its 

assumptions, but would perform worse than other methods when these assumptions are 

violated.  Based on this model, we predicted that the homogeneous methods (p-curve, p-

uniform) would do well in simulations with homogeneous effect sizes, but that the other 

two methods will outperform p-curve and p-uniform in simulations with heterogeneous 
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effect sizes and in predicting the outcome of the OSC replication project.  We will 

introduce more specific predictions of the two methods that do not assume homogeneous 

effect sizes, after we explain the two methods.  

Statistical Power 

 The power of a statistical test (Neyman and Pearson, 1933; Lehman, 1959; 

Cohen, 1988) is the probability of correctly rejecting the null hypothesis. Power can be 

calculated exactly for any chosen set of parameter values, without using sample data in 

any way. This may be done before data are collected in order to choose sample size 

(Cohen 1988, Desu and Raghavarao 1990), or to estimate the power of published studies 

to produce significant results assuming different effect sizes (Cohen 1962, Sedlmeier and 

Gigerenzer 1989). The problem with this use of power analysis is that it provides power 

for hypothetical effect sizes, while we are interested in estimating average power of 

studies for the actual population effect sizes of studies, when the actual effect sizes are 

unknown. 

 The formal definition of power is the probability of obtaining a significant result 

when the null hypothesis is false. This may seem to present a problem for the use of 

power analysis with actual effect sizes because some studies may have an effect size of 

zero; that is, when the null hypothesis is true.  Although power is not strictly defined in 

this case, the probability of obtaining a significant result is defined by the significance 

criterion, usually 0.05.  Thus, power can never reach a value of zero and is bound at the 

level of the significance criterion. It is practically irrelevant whether we assume that 

effect sizes are never strictly zero and treat .05 as the lower limit of the range of power 

values or whether we use an extended definition of power to include the probability of 
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obtaining a significant result even when the null hypothesis is true and equate power with 

alpha (Sterling et al., 1995).  In short, our goal is to estimate average power of a set of 

studies with unknown population effect sizes that can assume any value, including zero.  

Moreover, we aim to do so for studies that were selected for significance either because 

journals only published significant results or because the goal of a replication study is to 

confirm that an original significant result is replicable.  

 Observed power  The difficulty of estimating true power based on a single study 

is well documented (Boos and Stefanski 2012, Gerard, Smith and Weerakkody 1998, 

Gillett 1994, Hoenig and Heisey 2001, Thomas 1997, Yuan and Maxwell 2005). One 

problem is that the observed power method relies on the observed effect size as an 

estimate of the population effect size to compute power, and if studies are selected for 

significance, observed effect sizes are inflated. Even without selection bias, observed 

power estimates based on a single study are too variable to be practically useful (Yuan & 

Maxwell, 2005). However, low precision in estimates based on a single study does not 

mean that estimates from individual studies are useless. Each study provides some 

reliable information about power and when results are aggregated across studies, average 

observed power can be used to reducing sampling error and to obtain meaningful 

estimates of true power (Francis, 2012; Schimmack, 2012; Simonsohn et al., 2014b).  

 Heterogeneity  Since power is a function of effect size and sample size, estimates 

of effect size lead immediately to estimates of power. Furthermore, some methods of 

estimating effect size explicitly take publication bias into account. In our view, the most 

promising of these are the p-curve method of Simonsohn, Nelson and Simmons (2014b) 

and the p-uniform method of van Assen, van Aert, and Wicherts (2014). Once an 
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estimate of the population effect size has been found, it is straightforward to use this 

quantity to compute an estimated power for each study. Averaging the power estimates 

produces an estimate of population mean power.  

 Estimates of effect size generally assume that a single quantity is being estimated. 

In contrast, our interest is in a setting where not only the sample sizes, but the effect 

sizes, the topics being investigated and the statistical tests employed are all subject to 

sampling variation. That is, we wish to estimate population mean power not just 

assuming selection for significance, but also under heterogeneity --- that is, assuming that 

each test in the population has its own true power (a fixed, unknown number), and they 

all might be different.  

 It has been suggested (Ioannidis and Trikalinos 2007, Kepes, Banks, McDaniel 

and Whetzel 2012, Simonsohn et al 2014b, van Assen et al 2014) that methods developed 

for homogeneity may be applied to the heterogeneous situation by subsetting the data into 

tests with approximately the same effect size, or even the same true power.  It has never 

been examined whether this approach can solve the problem of heterogeneous effect 

sizes.  Schimmack (2012) proposed to conduct a meta-analysis of power estimates. This 

approach does not require homogeneous effect sizes, but it leads to inflated power 

estimates when studies are selected for significance.  We propose two novel methods for 

estimating mean power in the challenging scenario where effect sizes and sample sizes 

are heterogeneous and publication bias is present. One method uses maximum likelihood 

estimation (which we view as the default method of estimation in Statistics). The other 

method fits predicted standardized test values (z-scores) to observed z-scores and uses the 

estimated weights and non-centrality parameters to compute average power. We call this 
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method z-curve.  We test these methods in a wide range of simulation studies. 

Furthermore, we compare our methods to p-curve and p-uniform to examine the 

robustness of these methods for homogeneous data when heterogeneity is present.  As 

previous simulations have focused on effect size estimation, our simulations provide the 

first test of these methods for the estimation of power and replicability.   

 

Notation and statistical background 

 To present our methods formally, it is necessary to introduce some statistical 

notation. Rather than using traditional notation from Statistics that might make it difficult 

for non-statisticians to understand our method, we use computer syntax as notation 

(Simonsohn, Nelson, & Simmons, 2014a). We use the  S  syntax (Becker, Chambers and 

Wilks, 1988) that is familiar to psychologists who conduct data analysis using the R 

statistical software (R core team, 2012). It also makes it easier to program our methods in 

R.  

 The outcome of an empirical study is partially determined by random sampling 

error, which implies that statistical results will vary across studies. This variation is 

expected to follow a random sampling distribution. Each statistical test has its own 

sampling distribution. We will use the symbol  T  to denote a general test statistic; it 

could be a  t -statistic,  F , chi-squared,  Z , or something more obscure. 

 Assume an upper-tailed test, so that the null hypothesis will be rejected at 

significance level α  (usually  α = 0.05 ), when the continuous test statistic  T  exceeds a 

critical value  c . Typically there is a sample of test statistic values   T1,…,Tk , but when 

only one is being considered the subscript will be omitted. The notation    p(t)  refers to the 
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probability under the null hypothesis that  T  is less than or equal to the fixed constant  t . 

The symbol p would represent pnorm if the test statistic were standard normal, pf if the 

test statistic had an  F -distribution, and so on. While    p(t)  is the area under the curve, 

   d(t)  is height of the curve above the  x -axis, as in dnorm. Following the conventions of 

the  S  language, the inverse of p is q, so that    p(q(t)) = q(p(t)) = t .  

 Sampling distributions when the null hypothesis is true are well known to 

psychologists because they provide the foundation of significance testing.  Most 

psychologists are less familiar with non-central sampling distributions; see Johnson, Kotz 

and Balakrishnan (1995) for a detailed and authoritative treatment.  When the null 

hypothesis is false, the area under the curve of the test statistic's sampling distribution is 

   p(t,ncp) , representing particular cases like    pf(t,df1,df2,ncp) . The initials ncp stand 

for ``non-centrality parameter." This notation applies directly when  T  has one of the 

common non-central distributions like the non-central  t ,  F  or chi-squared under the 

alternative hypothesis, but it extends to the distribution of any test statistic under any 

specific alternative, even when the distribution in question is technically not a non-central 

distribution.  The non-centrality parameter is positive when the null hypothesis is false, 

and statistical power is a monotonically increasing function of the non-centrality 

parameter. This function is given explicitly by Power =    1− p(c,ncp) .  

 For the most important non-central distributions ( Z ,  t , chi-squared and  F ), the 

non-centrality parameter can be factored into the product of two terms.  The first term is 

an increasing function of sample size, and the second term is a function of the unknown 

parameters that reflects how wrong the null hypothesis is. In symbols,     

 !! ncp= f1(n)⋅ f2(es).   (1) 
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In this equation, n is the sample size and es is effect size. While sample size is 

observable, effect size is a function of unknown parameters and can never be known 

exactly. The quantities that are computed from sample data and commonly called effect 

size are estimates of effect sizes.  

 As we use the term, effect size refers to any function of the model parameters that 

equals zero when the null hypothesis is true, and assumes larger positive values as the 

size of an effect (a mean difference or a covariance) becomes stronger. From this 

perspective, all reasonable definitions of effect size for a particular statistical model are 

deterministic monotone functions of one another and so the choice of which one to use is 

determined by convenience and interpretability. This usage is consistent in spirit with that 

of Cohen (1988), who freely uses ``effect size" to describe various functions of the model 

parameters, even for the same statistical test (see also Grissom & Kim, 2012).  

 As an example of Equation (1), consider for example a standard  F -test for 

difference between the means of two normal populations with a common variance. After 

some simplification, the non-centrality parameter of the non-central  F  may be written 

    ncp = nρ (1− ρ)d 2 ,  

where   n = n1 + n2  is the total sample size, 
  
ρ =

n1

n
 is the proportion of cases allocated to 

the first treatment, and 
  
d =

|µ1 − µ2 |
σ

 is Cohen's (1988) effect size for the two-sample 

problem. This expression for the non-centrality parameter can be factored in various 

ways to match Equation (1); for example,   f1(n) = nρ (1− ρ)  and    f2(es) = es2 .  This is 

just an example; Equation (1) applies to the non-centrality parameters of the non-central 
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 Z ,  t , chi-squared and  F  distributions in general. Thus for a given sample size and a 

given effect size, the power of a statistical test is 

 !! Power =1−p(c , f1(n)⋅ f2(es)).   (2) 

The function    f2(es)  is particularly convenient because it will accommodate any 

reasonable definition of effect size. Details are given in the technical supplement. 

Two Populations of Power 

 Consider a population of independent statistical tests. Each test has its own power 

value, a true probability of rejecting the null hypothesis determined by the sample size, 

procedure and true parameter values. The tests are conducted. Significant results are 

published and become available as data. Non-significant results go into the mythical ``file 

drawer" of Rosenthal (1979). This means that there are two populations of power values: 

the original population, and the sub-population corresponding to the tests that happened 

to be statistically significant.  

 Selection for significance (publication bias) does not change the power values of 

individual studies. However, the population of studies in the set of studies selected for 

significance differs from the original population of studies without selection for 

significance.  The reason is that selection for significance tends to select studies with 

higher power. For example, a study with 80% power is more likely to end up in the 

sample of studies selected for significance than a study with 20% power. 

 Probability models may often be clarified by thinking of them as games of 

chance. Designing a study and selecting a hypothesis to test corresponds to 

manufacturing a roulette wheel that may not be perfectly balanced. The numbers on the 

wheel are  p -values, and   p < 0.05  is a win. Running the study and collecting data 
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corresponds to spinning the wheel. The unique balance and other physical properties of 

the wheel determine the probability of a win; this corresponds to the power of the test. 

Performing the statistical analysis corresponds to examining the number that comes up on 

the wheel and noting whether   p < 0.05 . A large number of wheels are manufactured and 

spun once. This is the population before selection. The wheels that yield wins are put on 

display; this is the population after selection. Naturally, there is a tendency for wheels 

with a higher chance of winning to be put on display. The wheels that yield losing 

numbers are sent to warehouses (the file drawer), or more likely to landfill.  

 Spinning all the wheels on display a second time would take a great deal of effort, 

but if we did so we could record the proportion of wins. This would not be the true 

probability of significance, but if the number of wheels on display is large it would be 

close. Spinning all the wheels a third time would yield another proportion of wins, 

presumably close to the first. Repeating this impossibly tedious exercise a large number 

of times and averaging the proportions would give the true probability of a win for the 

wheels on display. The objective of this paper is to estimate this important unknown 

quantity using only the numbers that appeared on first spin, for the wheels on display. 

 We now give a set of fundamental principles connecting the probability 

distribution power before selection to its distribution after selection. These principles do 

not depend on the particular population distribution of power, the significance tests 

involved, or the Type I error probabilities of those tests. They do not even depend on the 

appropriateness of the tests or the assumptions of the tests being satisfied. The only 

requirement is that each power value in the population is the probability that the 
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corresponding test will be significant. The supplemental materials contain proofs and a 

numerical example. 

 

Principle 1 Population mean power equals the overall probability of a significant 

result. 

 Principle 1 applies equally to the population of studies before and after selection.  

Because it applies after selection, this principle establishes the link between replicability 

and population mean power. If a single published result is randomly selected and the 

study is repeated exactly, the probability of obtaining another significant result equals 

population mean power after selection. In terms of the roulette wheel analogy, this is a 

two-stage game. The first stage is to select a wheel at random from those on display, and 

the second stage is to spin the wheel. Principle 1 says that the probability of winning the 

game is exactly the mean probability of a win for the wheels on display.  

 

Principle 2 The effect of selection for significance is to multiply the probability of 

each power value by a quantity equal to the power value itself, divided by population 

mean power before selection. If the distribution of power is continuous, this statement 

applies to the probability density function. 

 For example, suppose that before selection, 80% of studies have power equal to 

0.10 and 20% have power equal to 0.60. Table 1 shows the distribution of power before 

and after selection.  Expected (population mean) power before selection is 0.10*0.8 + 

0.60*0.2 =  0.20. After selection there are still the same two power values, but their 

probabilities change. To obtain the probability that power equals 0.10 after selection, 
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multiply 0.8 by the power value 0.1, and divide by the expected power before selection of 

0.20. The resulting probability after selection is 0.8*0.1/0.2 = 0.40.  

--------------------------------------------------------- 
                Insert Table 1 about here 
--------------------------------------------------------- 
 
In the technical supplement, Principle 2 is used to derive Principle 3.  

 Principle 3 Population mean power after selection for significance equals the 

population mean of squared power before selection, divided by the population mean of 

power before selection.  

P-curve and p-uniform estimation of mean power 

 The p-curve (Simonsohn et al 2014b) and p-uniform (van Assen et al 2014) 

methods are designed for estimating effect sizes in meta-analyses where there is a single 

fixed effect size, but possibly varying sample sizes. We adapted them slightly to produce 

estimates of mean power.  Both p-uniform and p-curve are based on the idea that  p -

values are uniformly distributed when the null hypothesis is true. Originally, the test 

statistics were used to test the null hypothesis that the population effect size is zero. To 

use this method for the estimation of population effect sizes, the method is applied 

repeatedly with modified hypotheses that the effect size equals some specified non-zero 

value. If a hypothesized effect size matches the actual population effect size, the resulting 

 p -values would again have a uniform distribution. To find the best fitting effect size for 

a set of observed test statistics, p-curve and p-uniform compute p-values for various 

effect sizes and chose the effect size that yields the best approximation of a uniform 

distribution.  
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 If the modified null hypothesis that effect size = es is true, the cumulative 

distribution function of the test statistic is the conditional probability 

 

 

!! 

F0(t)= Pr{T ≤ t |T > c}

= p(t ,ncp)−p(c ,ncp)1−p(c ,ncp)

=
p(t , f1(n)⋅ f2(es))−p(c , f1(n)⋅ f2(es))

1−p(c , f1(ni )⋅ f2(es))
,

  

using    ncp = f1(n) ⋅ f2(es)  as given in Equation (1). The corresponding modified  p -

value (which Simonsohn et al. call the pp-value) is  

 
   
1− F0(T ) =

1− p(T , f1(n) ⋅ f2(es))
1− p(c, f1(n) ⋅ f2(es))

.
 

Note that since the sample sizes of the tests may differ, the symbols p,  n  and  c  as well 

as  T  may have different referents for   j = 1,…,k  test statistics. The subscript  j  has been 

omitted to reduce notational clutter. 

 The only difference between p-curve and p-uniform is the criterion that is used to 

find the effect size that yields a distribution of modified p-values that best approximates a 

uniform distribution. P-curve is based on a Kolmogorov-Smirnov test for departure from 

a uniform distribution, choosing the  es  value yielding the smallest value of the test 

statistic.  P -uniform is based on a different criterion. Denoting by  
Pj  the modified  p -

value associated with test  j , calculate 
  
Y = − ln

j=1

k

∑ (Pj ) , where  ln  is the natural logarithm. 

If the  
Pj  values were uniformly distributed,  Y  would have a Gamma distribution with 
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expected value  k , the number of tests. The P-uniform estimate is the modified null 

hypothesis effect size  es  that makes  Y  equal to  k , its expected value under uniformity. 

 These technologies are designed for heterogeneity in sample size only, and 

assume a common effect size for all the tests. Given an estimate   es!  of the common 

effect size, estimated power for each test is solely determined by sample size. Using 

Expression (2), the estimated power of test  j  is 
    1− p(cj , f1(nj ) ⋅ f2(es! )) . Population 

mean power can then be estimated by averaging the  k  power estimates. This natural way 

of estimating mean power is merely implicit in the papers by van Assen et al (2014) and 

Simonsohn et al (2014b).  

Maximum likelihood estimation of mean power 

 The method of maximum likelihood (Fisher, 1922; also see the historical account 

by Aldrich, 1997) is a general method for the estimation of an unknown parameter by 

finding the parameters value that makes the observed data most probable. For any set of 

observed data, the statistical assumptions allow calculation of the probability of obtaining 

the observed the data (or for continuous distributions, the probability of obtaining data in 

a tiny region surrounding the observed data). The likelihood function expresses this 

probability as a function of the unknown parameter. Geometrically, the likelihood 

function is a curve, and estimation proceeds by finding the highest point on the curve. 

The maximum likelihood estimate is the parameter value yielding that maximum. The 

case of multi-parameter estimation is analogous, with the curve being replaced by a 

convoluted surface in higher dimension. When data are consistent with the model 

assumptions, maximum likelihood generally yields more precise parameter estimates than 

other methods, especially for large samples (Lehmann and Casella, 1998).  
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 For simplicity, first consider the case of heterogeneity in sample size but not 

effect size. In this case the single unknown parameter is the effect size es, and the 

likelihood function is based on the conditional probability of observing the data given 

selection for significance. Denoting the observed test statistic values by   t1,…,tk , the 

likelihood function is a product of  k  terms of the form  

 
!! 

d(t j , f1(nj )⋅ f2(es))
1−p(c j , f1(nj )⋅ f2(es))

,   (1) 

where because of selection for significance, all the  
t j  values are greater than their 

respective critical values  
c j . Expression (1) becomes the likelihood of Hedges (1984) for 

the case of a two-sample  t -test. 

 As an example, consider a one-way ANOVA with four treatment groups, equal 

sample sizes, and a ``medium" value of 0.25 for Cohen's (1988, p. 275) effect size  f . As 

shown in the technical supplement,    ncp = f1(n) ⋅ f2(es) = n ⋅es2  for this problem, where 

 n  is the total sample size. Figure 1 shows the likelihood function for a simulated set of 

  k = 25   F  statistics. In this example, the sample sizes before selection varied about a 

mean of twenty per treatment. The likelihood function reaches its maximum when effect 

size equals 0.244; this is the maximum likelihood estimate. It is quite close to the true 

value of 0.25. 

 In general, the maximum likelihood estimate of  es  is the effect size value that 

makes the likelihood function greatest. Denote it by   es! . The estimated probability of 

significance for each study is obtained by 

 
    Estimated Power = 1− p(cj , f1(nj ) ⋅ f2(es! )),  
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and then as for p-curve and p-uniform, the estimated power values are averaged to 

produce a single estimate of mean power. 

 Now include heterogeneity in effect size as well as sample size. If sample size and 

effect size before selection are independent, selection for significance induces a mild 

relationship between sample size and effect size, since tests that are low in both sample 

size and effect size are under-selected, while tests high in both are over-selected. Suppose 

that the distribution of effect size before selection is continuous with probability density 

   gθ (es) . This notation indicates that the distribution of effect size depends on an 

unknown parameter or parameter vector θ . In the technical supplement, it is shown that 

the likelihood function (a function of θ ) is a product of  k  terms of the form 

 

!! 

d(
0

∞

∫ t j , f1(nj )⋅ f2(es))gθ(es)des
1−p(c j , f1(nj )⋅ f2(es))⎡⎣ ⎤⎦0

∞

∫ gθ(es)des
,   (2) 

where the integrals denote areas under curves that can be computed with R's integrate 

function. Again, the maximum likelihood estimate is the value of θ  for which the value 

of the product is highest. Denote the maximum likelihood estimate by  θ̂ . Typically  θ̂  is a 

single number or a pair of numbers. 

 As before, an estimate of population mean power is produced by averaging 

estimated power for the  k  significance tests. It is shown in the technical supplement that 

the terms to be averaged are 

 

!! 

1−p(c j , f1(nj )⋅ f2(es))⎡⎣ ⎤⎦
2

0

∞

∫ g
θ̂
(es)des

1−p(c j , f1(nj )⋅ f2(es))⎡⎣ ⎤⎦0

∞

∫ g
θ̂
(es)des

,   

an expression that also follows from an informed application of Principle 3. 
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Z-curve  

 Z-curve follows a traditional meta-analyses that converts  p -values into  Z -scores 

as a common metric to integrate results from different original studies (Stouffer, 

Suchman, DeVinney, Star and Williams, 1949; Rosenthal, 1979). The use of  Z -scores as 

a common metric makes it possible to fit a single function to  p -values arising from 

widely different statistical methods and tests. The method is based on the simplicity and 

tractability of power analysis for the one-tailed  Z -test, in which the distribution of the 

test statistic under the alternative hypothesis is just a standard normal shifted by a fixed 

quantity that we will denote by  m  m (Heisey & Hoenig, 2001). As described the 

technical supplement,  m  is the non-centrality parameter for the one-tailed  Z -test. Input 

to the  Z -curve is a sample of  p -values from two-sided or other non-directional tests, all 

less than  α = 0.05 . These  p -values are processed in several steps to produce an estimate. 

1.  Convert  p -values to  Z -scores. The first step is to imagine, for simplicity, that 

all the  p -values arose from two-tailed  Z -tests in which results were in the predicted 

direction. This is equivalent to an upper-tailed  Z -test with significance level 

 α / 2 = 0.025 . The conversion to  Z -scores (Stouffer et al., 1949) consists of finding 

the test statistic  Z  that would have produced that  p -value. The formula is 

   Z = qnorm(1− p / 2) . 

 

2. Set aside   Z > 6 . We assume that  p -values in this range come from tests with 

power essentially equal to one. To avoid numerical problems arising from  p -values 
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that are approximately zero, we set them aside for now and bring them back in the 

final step. 

 

3.  Fit a finite mixture model. Before selecting for significance and setting aside 

values above six, the distribution of the test statistic  Z  given a particular non-

centrality parameter value  m  is normal1 with mean  m . Afterwards, it is a normal 

distribution truncated on the left at the critical value  c  (usually 1.96) truncated on 

the right at 6, and re-scaled to have area one under the curve.  Because of 

heterogeneity in sample size and effect size, the full distribution of  Z  is an average 

of truncated normals, with potentially a different value of  m  for each member of the 

population. As a simplification, heterogeneity in the distribution of  Z  is represented 

as a finite mixture with  r  components. The model is equivalent to the following 

two-stage sampling plan. First, select a non-centrality parameter  m  from   m1,…,mr  

according to the respective probabilities   w1,…,wr . Then generate  Z  from a normal 

distribution with mean  m  and standard deviation one. Finally, re-scale so that the 

area under the curve equals one.  Under this approximate model, the probability 

density function of the test statistic after selection for significance is  

 
!! 
f (z)= wj

j=1

r

∑
dnorm(z −mj )

pnorm(6−mj )−pnorm(c −mj )
,   (3) 

for c < z < 6.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  This statement would be exactly true if the  p -values really came from one-sided  Z -
tests as suggested in Step 1. In practice it is an approximation.	  
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For the sake of comparing predicted and observed distributions of z-scores, 

distributions are fitted using a kernel density estimate (Silverman, 1986) as 

implemented in R's density function, with the default settings.    

 Specifically, the fitting step proceeds as follows. First, obtain the kernel density 

estimate based on the sample of  Z  values between z = 2 and z = 6 and re-scale it so 

that the area under the curve between z = 2 and z = 6 equals one. Call this the 

conditional density estimate. Next, calculate the conditional density estimate at a set 

of equally spaced points ranging from 2 to 6. Then, numerically choose  
wj  and  

mj  

values so as to minimize the sum of absolute differences between the conditional 

density estimate and (3). 

 

4.  Estimate mean power for   Z < 6 . The estimate of rejection probability upon 

replication for   Z < 6  is the area under the curve above the critical value, with 

weights and non-centrality values from the curve-fitting step. The estimate is 

 
!!  
ℓ = ŵ j

j=1

r

∑ (1−pnorm(c − m̂j )),   (4) 

where   ŵ1,…, ŵr  and   m̂1,…,m̂r  are the values located in Step 3. Note that while the 

input data are censored both on the left and right as represented in Formula (3), there 

is no truncation in Formula (4) because it represents the distribution of  Z  upon 

replication. 

 

5.  Re-weight using   Z > 6 . Let  q  denote the proportion of the original set of  Z  

statistics with   Z > 6 . Again, we assume that the probability of significance for those 
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tests is essentially one. Bringing this in as one more component of the mixture 

estimate, the final estimate of the probability of rejecting the null hypothesis for 

exact replication of a randomly selected test is   

 

!!  

Zest = (1−q)ℓ+q ⋅1

= q+(1−q) ŵ j
j=1

r

∑ (1−pnorm(c − m̂j ))
  

By Principle 3, this is the estimate of population mean power after selection for 

significance 

Simulations 

The simulations reported here were carried out using the R programming environment (R 

Core Team, 2012) distributing the computation among 70 quad core Apple iMac 

computers.  The R code is available in the supplemental materials. In the simulations, the 

four estimation methods (p-curve, p-uniform, maximum likelihood and z-curve) were 

applied to samples of significant chi-squared or  F  statistics, all with   p < 0.05 . This 

covers most cases of interest, since  t  statistics may be squared to yield  F  statistics, 

while  Z  may be squared to yield chi-squared with one degree of freedom.  

Heterogeneity in Sample Size Only: Effect size fixed 

Sample sizes after selection for significance were randomly generated from a Poisson 

distribution with mean 86, so that they were approximately normal, with population mean 

86 and population standard deviation 9.3 (Johnson, Kemp and Kotz, 2005). Population 

mean power, number of test statistics on which the estimates were based, type of test 

(chi-squared or  F ) and (numerator) degrees of freedom were varied in a complete 

factorial design. Within each combination, we generated 10,000 samples of significant 

test statistics and applied the four estimation methods to each sample. In these 
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simulations, it was not necessary to simulate test statistic values and then literally select 

those that were significant. A great deal of computation was saved by simulating directly 

from the distribution of the test statistic after selection; details are given in the technical 

supplement. 

 Effect sizes were selected to yield population mean power values after selection 

of 0.05, 0.25, 0.50 or 0.75. For  F -tests, we used Cohen's (1988, p.275) effect size metric 

 f . For chi-squared tests, we used  w  (Cohen, 1988, p. 216). The number of test statistics 

 k  on which estimates were based was 15, 25, 50, 100 or 250. Numerator degrees of 

freedom (just degrees of freedom for the chi-squared tests) were one, three or five. 

Because the pattern of results was similar for  F  and chi-squared tests and for different 

degrees of freedom, we give details for  F -tests with one numerator degree of freedom; 

preliminary data mining of the psychological literature suggests that this is the case most 

frequently encountered in practice. Full results are given in the supplemental materials. 

 Table 2 shows means and standard deviations of estimated population mean 

power after selection. Differences between the mean estimates and the true values 

represent bias in estimation. We conclude that all methods performed fairly well, with z-

curve showing a bit more bias than the other methods. 

--------------------------------------------------------- 
                Insert Table 2 about here 
--------------------------------------------------------- 
 

Absolute error of estimation   It is desirable for average estimates to be close to the true 

values, but still positive and negative errors may cancel. More interesting is how close the 

estimate is on average to the true value being estimated. Table 3shows mean absolute 

error of estimation for F-tests with one numerator degree of freedom (full results are 
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given in the supplemental material). As expected, all the methods become more accurate 

with larger numbers of tests. Though the differences are fairly small, z-curve is least 

accurate when mean power is low, and most accurate when mean power is high. 

Maximum likelihood has a slight edge over the other methods under most circumstances, 

except that z-curve sometimes does better when population mean power is moderate to 

high and the estimates are based on a small number of tests. 

-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Insert	  Table	  3	  about	  here	  
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
	  
 Testing differences in accuracy  Because results like the ones in in Table 2 are 

based on random number generation, some of the apparent differences could be due to 

chance. Thus we find ourselves applying statistical tests to an investigation of statistical 

tests.  Within each of the 20 combinations of power and number of tests, there are six 

potential pairwise comparisons of mean absolute error. These comparisons were carried 

out using large-sample two-sided matched Z-tests with a Bonferroni correction, yielding 

a joint 0.001 significance level for the 120 tests.   

 Table 4 shows the number of times that the row method was significantly more 

accurate than the column method by this stringent criterion. There are 6 sub-tables, one 

for each combination of type of test (chi-squared or F) and degrees of freedom. For F -

tests, df refers to the numerator (experimental) degrees of freedom. Note that the 

Bonferroni correction was applied separately to each sub-table. In all, Table 4 

summarizes the results of 720 tests (full details are given in the supplemental material). 

-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Insert	  Table	  4	  about	  here	  
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
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 In each sub-table of Table 4, the most accurate method overall is maximum 

likelihood, followed by p-uniform. When maximum likelihood lost a comparison it was 

usually to z-curve. As one would expect from the general theory of maximum likelihood 

estimation (Lehmann and Casella 1998, Ch 6), maximum likelihood performed 

particularly well when estimates were based on a large number of tests. It is important to 

recognize, however, the differences in average estimation error are fairly small. We 

conclude that although maximum likelihood performs best, all the methods yield 

reasonable estimates when effect sizes are homogeneous.  

 In conclusion, our results confirmed that p-curve and p-uniform perform well in 

simulations with homogeneous effect sizes. Nevertheless, the new maximum likelihood 

method outperformed the existing methods. This is not surprising because maximum 

likelihood is hard to beat when data conform to the model underlying maximum 

likelihood estimation.  

Heterogeneity in Both Sample Size and Effect Size 

 To model heterogeneity in effect size, we let effect sizes before selection vary 

according to a gamma distribution (Johnson, Kotz and Balakrishnan, 1995), a flexible 

continuous distribution taking positive values. Sample size before selection remained 

Poisson distributed with a population mean of 86. For convenience, sample size and 

effect size were independent before selection. Maximum likelihood also assumed that 

effect size is gamma distributed, and the likelihood search was over the two parameters 

of the gamma distribution. The other 3 methods were not modified in any way. P-curve 

and p-uniform continued to assume a fixed effect size, and z-curve continued to assume 
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heterogeneity in the non-centrality parameter without distinguishing between 

heterogeneity in sample size and heterogeneity in effect size. 

 The simulation study followed the format of the previous study with amount of 

heterogeneity in effect sizes as an additional factor.  The factors were true population 

mean power (0.25, 0.50 or 0.75), standard deviation of effect size after selection (0.10, 

0.20 or 0.30), number of test statistics upon which estimates of mean power are based (k 

= 100, 250, 500, 1,000 or 2,000), type of test ( F  or chi-squared), and experimental 

degrees of freedom (1, 3 or 5). Within each cell of the design, ten thousand significant 

test statistics were randomly generated, and population mean power was estimated using 

all four methods. For brevity, we present results for  F -tests with numerator   df = 1 . Full 

results are given in the supplemental material. 

Table 5 shows means and standard deviations of estimated population mean 

power as a function of true population mean power and the standard deviation of effect 

size.  P-uniform broke down completely for higher heterogeneity in effect size, with most 

estimates close to one regardless of the true value. For moderate to high mean power, the 

p-curve also produces an over-estimate on average, with the problem becoming most 

severe when mean power and heterogeneity in effect size are both high. Maximum 

likelihood and z-curve performed much better.   

-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Insert	  Table	  5	  about	  here	  
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
	  
 Table 6 shows the mean absolute error of estimation. The results are consistent 

with those in Table 5 with maximum likelihood and z-curve outperforming p-curve and 

p-uniform.  
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-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Insert	  Table	  6	  about	  here	  
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
	  
	  
 
 Table 7 directly pits the methods against each other and counts the wins for all 

three df values, and for chi-squared tests as well as F-tests. The clear winner is maximum 

likelihood, followed by z-curve, p-curve and p-uniform in that order. When other 

methods beat maximum likelihood, it was almost always when heterogeneity in effect 

size and true population power were both low. This is consistent with Table 5, in which 

maximum likelihood performs better when mean power is moderate to high.  

-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Insert	  Table	  7	  about	  here	  
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
 

Simulation of Complex Heterogeneity  

 In the preceding simulation, heterogeneity in effect size before selection was 

modeled as a gamma distribution, with effect size independent of sample size before 

selection. Maximum likelihood had a substantial and arguably unfair advantage, since it 

assumed exactly the correct distribution for effect size. Also, sample size and effect size 

before selection were independent in both the simulations and in the assumptions of 

maximum likelihood. It is well known that when its assumptions are correct, maximum 

likelihood is very accurate compared to other methods (Lehmann and Casella 1998, Ch. 

6). When assumptions are incorrect however, there are no general theoretical results and 

the performance of maximum likelihood must be assessed through simulation studies.  

 To test the robustness of maximum likelihood to assumptions, we conducted a 

simulation study with a complex distribution of effect sizes. We limited this simulation to 
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 F -tests with one numerator degrees of freedom because the previous simulations showed 

that that the test-statistic and degrees of freedom had no effect on the results.  

Effect size after selection had a beta distribution rather than a gamma before 

selection. A beta distribution is limited to values between zero and one and thus lacks the 

long right tail of a gamma distribution, but a value of one is considerably above Cohen's 

(1988, p. 287) large effect size of   f = 0.4 . We made sample size and effect size non-

independent, connecting them by a Poisson regression. This created varying population 

correlations between sample sizes and effect sizes across sets of simulated studies. We 

believe that a negative correlation between sample size is expected because researchers 

are using smaller samples when they expect larger effects.  This is evident in the OSR 

(2015), where studies from cognitive psychology had larger effects and smaller samples 

than studies from social psychology. 

 In the simulations, the variance of effect size after selection was fixed at 0.30, the 

high heterogeneity value in the preceding simulation study. Sample size after selection 

was Poisson distributed with expected value   exp(β0 + β1es) . Mean effect size after 

selection and the parameters  β0  and  β1  were selected to achieve (a) desired population 

mean power after selection, (b) desired population correlation between effect size and 

sample size after selection, and (c) population mean sample size of 86 after selection at 

the mean effect size. Details are given in the technical supplement. 

 Three values of population mean power (0.25, 0.50 and 0.75), five values of the 

number of test statistics k (100, 250, 500, 1000 and 2000) and five values of the 

correlation between sample size and effect size (0.0, -0.2, -0.4, -0., -0.8) were varied in a 

factorial design, with ten thousand simulated data sets in each combination of values. All 
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four estimation methods were applied to each simulated data set, with three random 

starting values for maximum likelihood.  

 Table 8 shows means and standard deviations of estimated population mean 

power as a function of true population mean power and the standard deviation of effect 

size.  We were surprised to see that a correlation between sample sizes and effect sizes 

had no effect on the results.  Although unexpected, this result suggests that it is 

permissible to assume independence between effect sizes and sample sizes, which makes 

the methods more useful for applications to real datasets where this assumption is 

violated.  The results also replicated the finding that the two methods for heterogeneous 

data outperformed p-curve and p-uniform.  The most important result was that maximum 

likelihood no longer was a clear winner. In fact, z-curve generally produced slightly more 

accurate estimates than maximum likelihood.   

-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Insert	  Table	  8	  about	  here	  
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
	  
 Table 9 shows mean absolute error of estimation; the results are consistent with 

the results in Table 8.   

-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
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Table 10 shows the head-to-head comparison of the four methods.  The results provide 

the strongest evidence that z-curve outperforms maximum likelihood when the 

distribution of effect sizes does not match a gamma distribution, which is the assumed 

distribution of the maximum likelihood method.  Z-curve has an advantage over 

maximum likelihood because it does not assume a specific distribution of effect size. This 
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shows the advantage of methods with few assumptions to outperform methods with 

assumptions when these assumptions are violated.  
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Simulation of Full Heterogeneity 

 When population mean power in a field of study is being estimated, there will 

typically be heterogeneity not just in sample size and effect size, but also in the tests on 

which estimates are based. The distribution of sample size is unlikely to be Poisson, the 

distribution of effect size will not be gamma and the null hypothesis will be true with 

non-zero probability. Our full heterogeneity simulation examines the performance of the 

four methods in this situation.  We also changed the simulation of sample sizes. While 

the Poisson distribution is a widely accepted model for count data (Johnson, Kemp and 

Koch, 2005), sample size may be more dispersed and skewed than a Poisson distribution. 

Figure 1 compares the Poisson distribution with mean 86 to a histogram of 7,000 

approximate sample sizes based on denominator degrees of freedom in the journal 

Psychological Science since the start of the journal to the end of 2015.   
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Sample sizes were estimated from degrees of freedom in reported statistical tests, using 

the formula   n = df1 + df2 +1 . Numerator degrees of freedom were limited to ten or fewer, 

and the data were edited so that sample size ranged from 20 to 500, with a mean of 86. In 

this simulation, eighty percent of the tests were  F -tests, and twenty percent were chi-

squared. For the  F -tests,   (df1,df2 )  pairs were randomly sampled with replacement from 
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the Psychological Science data. The degrees of freedom for the chi-squared tests were 

randomly sampled with replacement from the   df1  values. Sample size was selected with 

replacement, independently of degrees of freedom. 

 Effect size   In this set of simulations, effect size has a mixed continuous-discrete 

distribution. With probability 0.10, effect size equals zero, so that the null hypothesis is 

exactly true. With probability 0.05, effect size has a standard exponential distribution 

shifted by one; in this case the minimum effect size is over twice Cohen's (1988) ``high" 

value, representing manipulation checks and other ``findings" that are too good to be true. 

The other 0.85 probability is devoted to a beta distribution, with parameters chosen to 

make population mean power after selection either 0.25, 0.50 or 0.75. No special attempt 

was made to hold the standard deviation of effect size constant, but all values were above 

0.30. Sample size and effect size are independent after selection, so that before selection 

they are non-independent.  

Figure 2 shows the distribution of effect size after selection and the resulting 

distribution of power after selection. It is evident that the effect of heterogeneity in 

sample size and effect size is increased heterogeneity in power. Since power is bounded 

by 0.05 and one, its distribution is forced to the extremes. 
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Table 11 shows means and standard deviations of the estimates for the four 

methods.  The results mostly replicate previous findings, but this time maximum 

likelihood performed better than in the previous simulation and often outperformed z-

curve.   
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 Table 12 shows only small differences between Maximum Likelihood and z-curve 

and the head-to-head comparison in Table 13 ends in a tie.   
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It is not entirely clear why the simulation of full heterogeneity led to better performance 

of maximum likelihood than the previous simulation with a gamma distribution.  One 

possibility is that combining a beta distribution and a shifted exponential distribution 

produced a right-skewed distribution that is fairly well approximated by a gamma.  An 

advantage of z-curve is that it does not make assumptions about the distribution of effect 

sizes. This makes the method more robust when the distribution deviates from a beta 

distribution that is the assumed distribution underlying the maximum likelihood method. 

Nevertheless, we recommend both methods and both methods are likely to produce 

similar estimates when they are applied to real data. Z-curve may be preferable because it 

runs much faster, at least in or implementation. 

A conservative bootstrap confidence interval for z-curve 

 Estimates should always be accompanied by confidence intervals, to give an idea 

of their precision. For z-curve, the most natural choice is a bootstrap confidence interval. 
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The bootstrap (Efron 1981, Efron and Tibshirani 1993) is based on re-sampling from the 

observed data with replacement, calculating a statistic on each re-sampled data set, and 

using the histogram of the resulting values as an approximation to the sampling 

distribution of the statistic. In this case the statistic is the z-curve estimate. Our choice is 

the percentile confidence interval method, which assumes that the sampling distribution 

of the estimate is symmetric, and centered on the quantity being estimated. Here, we re-

sampled test statistics and computed z-curve estimates B = 500 times. The 95 percent 

bootstrap confidence interval ranges from the 2.5 percentile to the 97.5 percentile of the 

estimates.   

 Especially when samples are small, it is important to verify that a proposed 95% 

confidence interval contains the true value 95% of the time. This is called the coverage of 

the confidence interval. In a pilot study, we found that the coverage of the 95% bootstrap 

confidence interval was sometimes less than 95%. For example, notice in Table 11 that 

the mean estimate for power = 0.25 and k =2,000 is 0.23 rather than 0.25. The sampling 

distribution of the z-curve estimate is nicely symmetric as required by the bootstrap 

method, but it is centered on 0.23 and not 0.25. The resulting coverage of the confidence 

interval is roughly 84% when it should be 95. With increasing volume of data, the width 

of the confidence interval would shrink and the coverage would decrease to zero. 

 Reviewing the average z-curve estimates from all the simulations, we determined 

that the bias of the z-curve estimate is seldom more than two percentage points, and never 

more than two percentage points for larger samples. Thus an easy fix of the confidence 

interval is to decrease the lower limit by 0.02 and increase the upper limit by 0.02. This 

yields our conservative bootstrap confidence interval. 
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 We tested the conservative bootstrap confidence interval in the setting of full 

heterogeneity, with 10,000 simulated datasets in each combination of three values of true 

population mean power (again, the distributions in Figure 2), and seven values of the 

number of test statistics, ranging from k =25 to k =2,000.  Table 14 gives the coverage 

values. Even for k =25 its performance is respectable. The table shows that the 

conservative bootstrap confidence interval is indeed conservative under most 

circumstances. When the estimates are based on larger numbers of test statistics, it 

behaves more like a 99 percent confidence interval. For estimates based on fewer than 25 

test statistics, it might be helpful to increase the correction factor from 0.02 to 0.025.  
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 Table 15 shows mean upper and lower confidence limits. The upper limit is the 

top number in each cell, and the lower limit is the bottom number. For example, when the 

true population mean power is 0.75 and the z-curve estimate is based on k =100 test 

statistics, the average confidence interval will range from 0.65 to 0.85. This may be 

sufficient precision for some purposes, but it is desirable to base estimates on a larger 

number of test statistics if possible. 
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Application to the Replication Project data 

Of the 100 original studies in the OSC (2015) Replication Project, three were null results 

(failures to reject the null hypothesis), and in an additional four studies the original result 
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was only ``marginally" significant, with  p -values ranging from 0.051 to 0.073. These 

were set aside, because the methods discussed in this paper assume that selected results 

are a representative sample. That is, there is no additional selection for larger effect sizes. 

This assumption is unlikely to be true for marginally significant results. Of the remaining 

93 studies, five were eliminated because the replication studies were not based on an 

independent sample or had other unusual characteristics. Thirty-four of the 88 replication 

studies produced a significant result (39%), which is similar to the replication rate for all 

97 significant original studies (37%).  

 Most of the test statistics for the originally reported tests were  F  or chi-squared. 

The rest were converted by squaring  t  statistics to obtain  F s, and squaring  Z  statistics t 

obtain chi-squared with one degree of freedom. Input to z-curve was simply the set of  p -

values. For the other three methods, test statistics were divided into subsets according to 

the type of test ( F  or chi-squared) and the (numerator) degrees of freedom. Estimates 

were calculated for each subset, and then combined as a weighted sum, using the 

observed proportions of the subsets as weights. 

 The estimates of population mean power were 0.68 for p-curve, 0.76 for p-

uniform, 0.59 for maximum likelihood and 0.66 for z-curve. The 95% confidence interval 

for z-curve was from 0.49 to 0.79.  Given the small sample size, it is difficult to make 

strong claims about the relative performance of the four methods, yet the ordering of 

estimates is consistent with the simulation studies with heterogeneous effect sizes. 

Accordingly, p-uniform produces the strongest overestimation followed by p-curve, then 

z-curve and then maximum likelihood.  The confidence interval around the z-curve 

estimate allows for a wide range of values, but even the lower bound is above the actual 
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success rate of 39%.  This suggests that all methods overestimate the success rate in 

actual replication studies.  We discuss possible explanations for this discrepancy between 

statistical predictions and actual success rates in the discussion section.  

 

Discussion 

In this paper, we have compared four methods for estimating population mean power 

after selection for significance: p-curve, p-uniform, maximum likelihood and z-curve. P-

curve (Simonsohn et al., 2014b) and p-uniform (van Assen et al., 2014) are slight 

adaptations of methods for estimating a fixed effect size. Maximum likelihood is a 

generic approach to estimation for any parametric model, and z-curve is new. Based on a 

set of large-scale simulation studies, we conclude that z-curve is the most accurate 

method when there is substantial heterogeneity in effect size and the distribution of effect 

size is unknown. It is also the most convenient, requiring only a set of p-values as input. 

Estimates should be accompanied by confidence intervals. We describe a conservative 

bootstrap confidence interval for z-curve and verify by simulation that it has good 

coverage even for small samples. 

 In a meta-analysis of studies testing exactly the same hypothesis with very similar 

subject populations, it is reasonable to assume that effect size is a single fixed constant, 

while sample size of course may vary. This is the setting for which p-curve and p-

uniform were designed. Here, all the methods performed reasonably well in our 

simulations, but the most accurate method was maximum likelihood. Thus, we 

recommend maximum likelihood for conducting fixed effects meta-analysis when the set 

of studies shows evidence of publication bias. 
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 Some important statistical features of z-curve require further investigation. One is 

the question of independence. In all he simulations, the input p-values were independent. 

While z-curve does not formally assume independent inputs, the bootstrap confidence 

interval definitely does. Further simulations need to examine how z-curve performs when 

clusters of p-values come from multiple dependent tests of the same data. tests conducted 

on the same raw data set. Another unresolved issue is how well the method performs for 

tests that do not have one of the common non-central distributions under the alternative 

hypothesis (e.g., repeated measures ANOVA).  

 Another important extension of z-curve and maximum likelihood is to examine 

the ability of these methods to estimate the average power before selection of 

significance. These estimates would make it possible to estimate the size of the file-

drawer with unpublished non-significant results.  This estimate will always be lower than 

the estimate for the population of studies that were selected for significance because the 

non-significant studies in the file-drawer have lower power.  At present, the mean power 

of studies selected for significance provides a conservative and optimistic estimate of the 

average power of studies conducted.  The results for the OSG dataset yielded estimates of 

60% to 70% power.  These estimates are surprisingly high and higher than Cohen’s 

(1962) estimate of 50% power (see also Gigerenzer & Sedlmeier, 1989). There are 

numerous reasons for this discrepancy and future research with larger samples is needed 

to obtain more precise estimates of the typical power of psychological studies.   

 Last but not least, future research needs to examine which factors contribute to the 

discrepancy between our estimate of replicability of the OSC studies and the actual 

success rate of replication studies. Before we discuss possible reasons, it is important to 
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recognize that the sample size is small and that sampling error may at least partially 

explain the discrepancy.  However, a number of additional factors are likely to play a role 

as well.  

 It is possible that actual replication studies underestimate replicability of original 

studies, and this may occur for a number of reasons.  First, it is possible that the 

replication studies were not exact replications, and that minor differences between the 

original and replication studies accounted for a lower success rate.  Although this is a 

possibility, there is no direct evidence to support this claim.  Moreover, our results clearly 

show that the 97% success rate in the original study can only be explained with selection 

for significance.  The 95% confidence interval of our estimate of replicability ranges 

from 49% to 79%.  As power before selection for significance is lower than power after 

selection for significance, the most optimistic estimate of the true success rate before 

selection for significance would be 79%; and this is a very optimistic estimate, indeed. 

Thus, our results provide strong evidence for the presence of publication bias in 

psychology journals (Sterling et al., 1995).  Moreover, our results cannot be attributed to 

problems with actual replication studies because they are based on the very same 

significance tests that were used in original articles to claim a significant result.   

 Another important factor that needs to be considered is the relationship between 

replicability and mean power after selection for significance.  Mean power after selection 

for significance is only an accurate estimate of replicability if we assume that researchers 

conduct one study and then select significant results for publication.  However, if 

researchers conduct several similar conceptual replication studies, the chances for a study 

with low power to be selected into the population of studies with significant results 
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increases. As a result, the power of studies in the population of significant results 

decreases and becomes more and more similar to the average power of studies without 

selection.  To illustrate this, imagine that researchers would continue conducting exact 

replication studies until a significant result is found.  In this case, even null effects would 

be selected into the pool of studies with significant results with 100% probability.  As a 

result, there would be no difference between the set of studies before selection and the set 

of studies after selection.  Of course, we are not implying that researchers conduct exact 

replication studies until they produce a significant result. However, they may engage in 

research practices that have essentially the same effect on replicability.  For example, 

they may include several dependent variables and publish only the dependent variable 

that produced a significant result (John et al., 2012; Simmons et al., 2011).  The use of 

these research practices would explain why our estimate of replicability, one that is based 

on a simple selection process, overestimates the success rate of actual replication studies 

in the OSC reproducibility project.  Future simulation studies needs to examine how z-

curve behaves when significant results are obtained with the help of questionable 

research practices.   

 At present it is impossible to quantify the replicability of psychological research 

precisely.  However, it is encouraging that three different methods produce converging 

evidence that replicability in psychology is neither 100% nor 0%.  Based on the OSC 

project we get an estimate of 40%. Cohen’s approach yields estimates around 50% 

(Sedlmeier & Gigerenzer, 1989), and our new method suggested an estimate around 60%.  

Until further evidence provides more precise information we can expect that about 50% 

+/- 10% of published significant results will replicate.  The advantage of our method is 
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that it can be used for large sets of studies, making it possible to examine predictors of 

replicability.  The OSC project already identified discipline, designs, and effect sizes as 

predictors of replicability, but the evidence was weak due to the small sample size. Our 

method can be applied to all published results and estimate replicability for the whole 

population of published results.  Our method can also be used quickly, or even in real 

time, as new results become available.  This makes it possible to track replicability and to 

evaluate whether various initiatives to improve replicability are actually paying off.  

Nearly 30 years ago, Gigerenzer and Sedlmeier observed that studies of power fail to 

increase the power of studies and there is no evidence that power of studies in 

psychology has increased over the past 50 years since Cohen published his seminal 

article.  We hope that our method will be able to show an increase in power in response 

to the replicability crisis.   
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Table 1:  Illustration	  of	  Principle	  2 

	  

	  
Probability	  

Power	  value	   Before	  selection	   After	  selection	  
	  

0.10	  	   0.80	  	   0.40	  	  
0.60	  	   0.20	  	   0.60	  	  
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Table 2:  Means and standard deviation of estimated population mean power for 
heterogeneity in sample size only: F-tests with numerator df = 1 

 
 

 Mean  Standard Deviation 
 

 Population Mean Power = 0.05 
 

 Number of Tests  Number of Tests 
 15 25 50 100 250  15 25 50 100 250 

 
P-curve 0.083 0.073 0.064 0.059 0.055  0.059 0.039 0.024 0.015 0.007 
P-uniform 0.076 0.067 0.061 0.058 0.054  0.050 0.032 0.019 0.012 0.006 
MaxLike 0.076 0.067 0.061 0.057 0.054  0.050 0.033 0.020 0.012 0.006 
Z-curve 0.086 0.071 0.058 0.049 0.040  0.088 0.065 0.044 0.031 0.019 

 
 Population Mean Power = 0.25 

 
 Number of Tests  Number of Tests 
 15 25 50 100 250  15 25 50 100 250 

 
P-curve 0.269 0.261 0.256 0.253 0.251  0.156 0.128 0.095 0.069 0.046 
P-uniform 0.256 0.253 0.252 0.251 0.251  0.147 0.121 0.089 0.065 0.042 
MaxLike 0.260 0.255 0.253 0.251 0.251  0.146 0.120 0.087 0.064 0.042 
Z-curve 0.314 0.305 0.293 0.280 0.268  0.155 0.127 0.093 0.068 0.045 

 
 Population Mean Power = 0.50 

 
 Number of Tests  Number of Tests 
 15 25 50 100 250  15 25 50 100 250 

 
P-curve 0.484 0.491 0.496 0.497 0.499  0.175 0.139 0.102 0.073 0.046 
P-uniform 0.473 0.485 0.493 0.496 0.499  0.170 0.132 0.097 0.070 0.044 
MaxLike 0.479 0.489 0.495 0.497 0.499  0.166 0.130 0.095 0.068 0.043 
Z-curve 0.513 0.516 0.513 0.508 0.502  0.151 0.121 0.091 0.068 0.045 

 
 Population Mean Power = 0.75 

 
 Number of Tests  Number of Tests 
 15 25 50 100 250  15 25 50 100 250 

 
P-curve 0.728 0.736 0.742 0.747 0.749  0.128 0.098 0.069 0.048 0.030 
P-uniform 0.721 0.732 0.740 0.746 0.748  0.126 0.097 0.067 0.047 0.029 
MaxLike 0.728 0.736 0.742 0.747 0.749  0.121 0.093 0.065 0.045 0.028 
Z-curve 0.704 0.712 0.717 0.723 0.728  0.105 0.084 0.064 0.048 0.033 
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Table 3:  Mean absolute error of estimation for heterogeneity in sample size only: F-tests 

with numerator df = 1 

 
 Number of Tests 
 15 25 50 100 250 

 
Population Mean Power = 0.05 

 
P-curve  3.32 2.25 1.41 0.93 0.52 
P-uniform 2.57 1.75 1.11 0.76 0.43 
MaxLike  2.59 1.74 1.09 0.73 0.39 
Z-curve  6.53 4.90 3.38 2.44 1.79 

 
Population Mean Power = 0.25 

 
P-curve  12.94 10.49 7.69 5.53 3.64 
P-uniform 12.11 9.87 7.17 5.18 3.38 
MaxLike  12.07 9.76 7.05 5.10 3.32 
Z-curve  13.55 11.09 8.21 5.96 3.87 

 
Population Mean Power = 0.50 

 
P-curve  14.32 11.20 8.14 5.80 3.67 
P-uniform 13.93 10.68 7.80 5.56 3.51 
MaxLike  13.61 10.41 7.60 5.39 3.41 
Z-curve  12.42 9.91 7.44 5.48 3.59 

 
Population Mean Power = 0.75 

 
P-curve  9.77 7.59 5.38 3.72 2.35 
P-uniform 9.79 7.59 5.34 3.71 2.32 
MaxLike  9.33 7.23 5.11 3.53 2.21 
Z-curve  8.34 6.96 5.56 4.30 3.13 
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Table 4:  Number of times row method is significantly more accurate than column method: 
Heterogeneity in sample size only 
	  

 
 Chi-squared tests  F-tests 

 
df = 1 

 
  PC PU ML ZC Total   PC PU ML ZC Total 
P-curve  (PC) 0 0 0 14 14  (PC) 0 0 0 13 13 
P-uniform (PU) 15 0 0 14 29  (PU) 15 0 0 13 28 
MaxLike  (ML) 20 16 0 16 52  (ML) 20 17 0 14 51 
Z-curve  (ZC) 5 4 3 0 12  (ZC) 7 5 4 0 16 

 
df = 3 

 
  PC PU ML ZC Total   PC PU ML ZC Total 
P-curve  (PC) 0 0 0 15 15  (PC) 0 0 0 13 13 
P-uniform (PU) 16 0 0 15 31  (PU) 15 0 0 14 29 
MaxLike  (ML) 20 15 0 16 51  (ML) 20 16 0 15 51 
Z-curve  (ZC) 5 2 2 0 9  (ZC) 6 4 3 0 13 

 
df = 5 

 
  PC PU ML ZC Total   PC PU ML ZC Total 
P-curve  (PC) 0 0 0 15 15  (PC) 0 0 0 13 13 
P-uniform (PU) 15 0 1 16 32  (PU) 14 0 0 14 28 
MaxLike  (ML) 20 15 0 17 52  (ML) 20 16 0 15 51 
Z-curve  (ZC) 3 2 2 0 7  (ZC) 6 4 3 0 13 
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Table 5: Means and standard deviations of estimated power for heterogeneity in 
sample size and effect size based on 1,000 F-tests with numerator df = 1 

 
 Mean  Standard Deviation 

 
Population Mean Power = 0.25 

 
 SD of Effect Size  SD of Effect Size 
 0.1  0.2  0.3   0.1  0.2  0.3  

 
P-curve 0.225 0.272 0.320  0.024 0.033 0.039 
P-uniform 0.294 0.694 0.949  0.029 0.056 0.028 
MaxLike 0.230 0.269 0.283  0.069 0.016 0.015 
Z-curve 0.233 0.225 0.226  0.027 0.026 0.024 

 
Population Mean Power = 0.50 

 
 SD of Effect Size  SD of Effect Size 
 0.1  0.2  0.3   0.1  0.2  0.3  

 
P-curve 0.549 0.679 0.757  0.024 0.027 0.026 
P-uniform 0.602 0.913 0.995  0.024 0.019 0.003 
MaxLike 0.501 0.502 0.506  0.025 0.019 0.019 
Z-curve 0.504 0.492 0.487  0.026 0.026 0.025 

 
Population Mean Power = 0.75  

 
 SD of Effect Size  SD of Effect Size 
 0.1  0.2  0.3   0.1  0.2  0.3  

 
P-curve 0.824 0.928 0.962  0.013 0.009 0.006 
P-uniform 0.861 0.992 1.000  0.012 0.003 0.000 
MaxLike 0.752 0.750 0.750  0.022 0.017 0.014 
Z-curve 0.746 0.755 0.760  0.021 0.017 0.016 

 
 

 

  



Running head:  ESTIMATING REPLICABILITY  56	  

 

   

Table 6: Mean Absolute Error of estimation for heterogeneity in sample size 
and effect size based on 1, 000 F-tests with numerator df = 1 

	  
    

 
SD of Effect size 

 
0.1  0.2  0.3  

    

Population Mean Power = 0.25 
    

P-curve   2.87  3.16  7.08  
P-uniform  4.50 44.38 69.90 
MaxLike   3.55  2.06  3.34  
Z-curve   2.59  3.08  2.90 

    

Population Mean Power = 0.50 
    

P-curve   4.93 17.86 25.70  
P-uniform 10.21 41.28 49.54  
MaxLike   1.80  1.49  1.50  
Z-curve   2.12  2.19  2.23  

    

Population Mean Power = 0.75 
    

P-curve   7.45 17.75 21.23  
P-uniform 11.08 24.17 24.99  
MaxLike   1.42  1.18  1.16  
Z-curve   1.69  1.42  1.55  

    

 

 

  



Running head:  ESTIMATING REPLICABILITY  57	  

 

 

Table 7: Number of times row method is significantly more accurate than column 
method: Heterogeneity in sample size and effect size 
	  

 
 Chi-squared tests  F-tests 

 
df = 1 

 
  PC PU ML ZC Total   PC PU ML ZC Total 
P-curve  (PC) 0 45 0 0 45  (PC) 0 45 4 0 49 
P-uniform (PU) 0 0 0 0 0  (PU) 0 0 0 0 0 
MaxLike  (ML) 41 45 0 33 119  (ML) 40 45 0 31 116 
Z-curve  (ZC) 45 45 8 0 98  (ZC) 42 45 10 0 97 

 
df = 3 

 
  PC PU ML ZC Total   PC PU ML ZC Total 
P-curve  (PC) 0 45 4 1 50  (PC) 0 45 5 4 54 
P-uniform (PU) 0 0 0 0 0  (PU) 0 0 5 0 5 
MaxLike  (ML) 40 44 0 34 118  (ML) 40 40 0 34 114 
Z-curve  (ZC) 40 45 7 0 92  (ZC) 39 45 7 0 91 

 
df = 5 

 
  PC PU ML ZC Total   PC PU ML ZC Total 
P-curve  (PC) 0 45 5 4 54  (PC) 0 45 5 6 56 
P-uniform (PU) 0 0 0 0 0  (PU) 0 0 5 1 6 
MaxLike  (ML) 40 45 0 36 121  (ML) 40 40 0 34 114 
Z-curve  (ZC) 38 45 5 0 88  (ZC) 38 42 8 0 88 
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Table 8: Means and standard deviations of estimated power with beta effect size and 
correlated sample size and effect size: k = 1, 000 F-tests with numerator df = 1 
 

 
 Mean  Standard Deviation 

 
 Population Mean Power = 0.25 

 
 Correlation  Correlation 
 -0.8 -0.6 -0.4 -0.2 0.0  -0.8 -0.6 -0.4 -0.2 0.0 

 
P-curve 0.407 0.405 0.403 0.403 0.402  0.043 0.044 0.043 0.044 0.044 
P-uniform 0.853 0.852 0.852 0.852 0.852  0.003 0.004 0.003 0.004 0.004 
MaxLike 0.302 0.301 0.300 0.300 0.300  0.015 0.015 0.015 0.015 0.015 
Z-curve 0.232 0.231 0.230 0.231 0.230  0.015 0.015 0.015 0.015 0.015 

 
 Population Mean Power = 0.50 

 
 Correlation  Correlation 
 -0.8 -0.6 -0.4 -0.2 0.0  -0.8 -0.6 -0.4 -0.2 0.0 

 
P-curve 0.839 0.840 0.841 0.841 0.841  0.022 0.022 0.022 0.022 0.022 
P-uniform 0.906 0.906 0.906 0.906 0.906  0.004 0.004 0.004 0.004 0.004 
MaxLike 0.532 0.533 0.533 0.534 0.534  0.018 0.018 0.019 0.019 0.019 
Z-curve 0.493 0.494 0.495 0.495 0.495  0.023 0.023 0.023 0.023 0.023 

 
 Population Mean Power = 0.75 

 
 Correlation  Correlation 
 -0.8 -0.6 -0.4 -0.2 0.0  -0.8 -0.6 -0.4 -0.2 0.0 

 
P-curve 0.990 0.991 0.992 0.992 0.992  0.002 0.002 0.002 0.002 0.002 
P-uniform 0.964 0.966 0.966 0.967 0.967  0.003 0.003 0.003 0.003 0.003 
MaxLike 0.826 0.832 0.836 0.838 0.840  0.016 0.016 0.015 0.015 0.015 
Z-curve 0.785 0.790 0.793 0.794 0.796  0.013 0.013 0.013 0.012 0.012 
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Table 9: Mean Absolute Error of estimation with beta effect size and correlated sample 
size and effect size: k = 1, 000 F-tests with numerator df = 1 

 
 Correlation 
 -‐0.8 -‐0.6 -‐0.4 -‐0.2 0.0 

 
Population Mean Power = 0.05 

 
P-curve  15.67 15.49 15.33 15.30 15.24 
P-uniform 60.26 60.24 60.23 60.22 60.22 
MaxLike  5.17 5.11 5.05 5.05 5.01 
Z-curve  2.37 2.41 2.47 2.48 2.50 

 
Population Mean Power = 0.05 

 
P-curve  33.88 33.99 34.07 34.09 34.11 
P-uniform 40.59 40.61 40.63 40.63 40.64 
MaxLike  3.25 3.34 3.42 3.43 3.46 
Z-curve  1.92 1.91 1.89 1.90 1.89 

 
Population Mean Power = 0.05 

 
P-curve  24.04 24.13 24.18 24.21 24.24 
P-uniform 21.43 21.56 21.63 21.67 21.72 
MaxLike  7.62 8.23 8.56 8.76 8.97 
Z-curve  3.51 4.01 4.27 4.43 4.59 
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Table 10: Number of times row method is significantly more accurate than column 
method with beta effect size and correlated sample size and effect size: F-tests with 
numerator df = 1 

      

 
P-curve P-uniform MaxLike Z-curve Total 

      

P-curve  0  50  0  0  50 
P-uniform 25  0  0  0  25  
MaxLike  75  75  0  5  155  
Z-curve  75  75  69  0  219  
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Table 11: Means and standard deviations of estimated population mean power under full 
heterogeneity 
 

 
 Mean  Standard Deviation 

 
 Population Mean Power = 0.25 

 
 Number of Tests  Number of Tests 
 100 250 500 1000 2000  100 250 500 1000 2000 

 
P-curve 0.280 0.280 0.283 0.288 0.292  0.072 0.051 0.037 0.027 0.020 
P-uniform 0.691 0.776 0.823 0.856 0.877  0.155 0.107 0.077 0.054 0.039 
MaxLike 0.267 0.267 0.268 0.269 0.269  0.046 0.029 0.020 0.015 0.012 
Z-curve 0.251 0.240 0.234 0.232 0.230  0.064 0.042 0.032 0.025 0.020 

 
 Population Mean Power = 0.50 

 
 Number of Tests  Number of Tests 
 100 250 500 1000 2000  100 250 500 1000 2000 

 
P-curve 0.561 0.571 0.577 0.581 0.585  0.063 0.040 0.029 0.020 0.015 
P-uniform 0.807 0.861 0.891 0.911 0.923  0.090 0.060 0.042 0.030 0.022 
MaxLike 0.473 0.468 0.465 0.463 0.462  0.054 0.035 0.025 0.019 0.015 
Z-curve 0.517 0.505 0.497 0.491 0.487  0.071 0.047 0.035 0.026 0.020 

 
 Population Mean Power = 0.75 

 
 Number of Tests  Number of Tests 
 100 250 500 1000 2000  100 250 500 1000 2000 

 
P-curve 0.828 0.836 0.840 0.842 0.844  0.034 0.020 0.014 0.010 0.007 
P-uniform 0.921 0.945 0.956 0.964 0.968  0.035 0.022 0.015 0.011 0.008 
MaxLike 0.740 0.736 0.734 0.731 0.730  0.045 0.030 0.022 0.016 0.012 
Z-curve 0.764 0.756 0.750 0.745 0.740  0.042 0.030 0.023 0.018  0.014 
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Table 12: Mean Absolute Error of Estimation under Full Heterogeneity 

	  
	   	   	   	   	   	  

	  
Number	  of	  Tests 

	  
100	   250	   500	   1000	   2000	  

	   	   	   	   	   	  

Population	  Mean	  Power	  =	  0.25 
	   	   	   	   	   	  

P-‐curve	  	   6.27	   4.68	   4.05	   4.00	   4.25	  
P-‐uniform	   44.14	   52.57	   57.35	   60.56	   62.67	  
MaxLike	  	   3.87	   2.66	   2.23	   2.03	   1.99	  
Z-‐curve	  	   5.13	   3.53	   2.95	   2.60	   2.43	  

	   	   	   	   	   	  

Population	  Mean	  Power	  =	  0.50 
	   	   	   	   	   	  

P-‐curve	  	   7.39	   7.21	   7.67	   8.10	   8.50	  
P-‐uniform	   30.67	   36.14	   39.13	   41.06	   42.30	  
MaxLike	  	   4.81	   3.84	   3.67	   3.74	   3.79	  
Z-‐curve	  	   5.93	   3.78	   2.81	   2.23	   1.98	  

	   	   	   	   	   	  

Population	  Mean	  Power	  =	  0.75 
	   	   	   	   	   	  

P-‐curve	  	   7.88	   8.62	   8.99	   9.24	   9.41	  
P-‐uniform	   17.11	   19.48	   20.61	   21.36	   21.84	  
MaxLike	  	   3.67	   2.61	   2.16	   2.03	   2.07	  
Z-‐curve	  	   3.64	   2.45	   1.81	   1.48	   1.38	  
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Table 13: Number of times row method is significantly more accurate than column 
method under full heterogeneity 

	  
	   	   	   	   	   	  

	  
P-‐curve	   P-‐uniform	   MaxLike	   Z-‐curve	   Total	  

	   	   	   	   	   	  

P-‐curve	  	   0	  	   15	  	   0	  	   0	  	   15	  
P-‐uniform	   0	  	   0	  	   0	  	   0	  	   0	  	  
MaxLike	  	   15	  	   15	  	   0	  	   6	  	   36	  	  
Z-‐curve	  	   15	  	   15	  	   7	  	   0	  	   37	  	  
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Table 14: Coverage of the 95% conservative bootstrap confidence interval 
	  

	   	   	   	   	   	   	   	  

Population	   Number	  of	  Tests 
Mean	  Power	   25	  	   50	  	   100	  	   250	  	   500	  	   1000	   2000	  

	   	   	   	   	   	   	   	  

0.25	  	   95.78	   97.13	   98.02	   98.69	   98.76	   98.35	   97.95	  
0.50	  	   94.58	   95.51	   96.79	   98.27	   99.11	   99.28	   99.15	  
0.75	  	   93.21	   94.81	   96.83	   98.85	   99.37	   99.73	   99.58	  
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Table 15: Average Upper and Lower Confidence limits 
	  

	   	   	   	   	   	   	   	  Population	   Number	  of	  Tests 
Mean	  Power	   25	  	   50	  	   100	   250	   500	   1000	   2000	  

	   	   	   	   	   	   	   	  0.25	  	   0.54	   0.46	   0.40	   0.35	   0.32	   0.30	   0.29	  

	  
0.06	   0.09	   0.11	   0.14	   0.16	   0.17	   0.17	  

0.50	  	   0.76	   0.71	   0.67	   0.62	   0.58	   0.56	   0.55	  

	  
0.26	   0.32	   0.36	   0.39	   0.41	   0.42	   0.43	  

0.75	  	   0.89	   0.87	   0.85	   0.83	   0.81	   0.80	   0.79	  

	  
0.55	   0.61	   0.65	   0.67	   0.68	   0.69	   0.69	  
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Figure 1: Likelihood Function for 25 F -tests With True E↵ect Size = 0.25
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these methods to perform well. A more important question is how z-curve and maximum
likelihood perform when they are faced with full heterogeneity.

Sample size and degrees of freedom In the simulations so far, sample sizes have been
Poisson distributed. While the Poisson distribution is a widely accepted model for count
data (Johnson, Kemp and Koch, 2005), sample size may be more dispersed and skewed than
the Poisson in practice when a variety of research designs are employed. Figure 2 compares
the Poisson distribution with mean 86 to a histogram of 7,000 approximate sample sizes
based on denominator degrees of freedom in the journal Psychological Science (give years).
These are preliminary data and not a random sample, but we believe they are closer to
reality than the Poisson when a full range of topics is being investigated.

Figure 2: Poisson versus Psychological Science Sample Sizes
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The Psychological Science data consist of 7,000 pairs of numerator and denominator
degrees of freedom. Actual sample sizes were not collected in this preliminary attempt at
data mining, so sample size was approximated by n = df1 + df2 + 1. Numerator degrees of
freedom were limited to ten or fewer, and the data were edited so that sample size ranged
from 20 to 500, with a mean of 86.

In this simulation, eighty percent of the tests were F -tests, and twenty percent were chi-
squared. For the F -tests, (df1, df2) pairs were randomly sampled with replacement from the
Psychological Science data. The degrees of freedom for the chi-squared tests were randomly
sampled with replacement from the df1 values. Sample size was selected with replacement,
independently of degrees of freedom.
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Figure 3: Distributions of e↵ect size and power after selection under full heterogeneity
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