Analysis of binary repeated measures data with R

Right-handed basketball players take right and left-handed shots from 3 locations in a different random order for each player. Hit or miss is recorded. This is a 2x3 factorial design with repeated measures on both factors: Hand they are shooting with and spot on the court.

```R
> rm(list=ls()); options(scipen=999) # To avoid scientific notation
> # Install packages if necessary. Only need to do this once.
> # install.packages("lme4")
> # install.packages("car")
> # Library packages -- do this every time
> library(lme4) # For lmer function
> library(car)  # For F-tests, likelihood ratio and Wald chi-squared tests
> # Read data into a data frame
> bball = read.table("http://www.utstat.toronto.edu/~brunner/data/legal/Bball1.data.txt")
> head(bball,12); attach(bball)

Subject Hand      Spot   Hit
 1     1 Lhand LeftBaseline      0
 2     1 Lhand     Middle       0
 3     1 Lhand RightBaseline    1
 4     1 Rhand LeftBaseline     1
 5     1 Rhand     Middle       1
 6     1 Rhand RightBaseline    1
 7     2 Lhand LeftBaseline     0
 8     2 Lhand     Middle       1
 9     2 Lhand RightBaseline    0
10     2 Rhand LeftBaseline     1
11     2 Rhand     Middle       1
12     2 Rhand RightBaseline    1

> # Sample sizes
> table(Hand,Spot)

Spot
Hand       LeftBaseline Middle RightBaseline
Lhand      58      58          58
Rhand      58      58          58

> # Frequency table
> net = table(Hit,Spot,Hand); net
,, Hand = Lhand

Spot
  Hit LeftBaseline Middle RightBaseline
0     39       27      47
1     19       31      11

,, Hand = Rhand

Spot
  Hit LeftBaseline Middle RightBaseline
0     31       17      24
1     27       41      34
```
> prophitleft = prop.table(net[,1],2); prophitleft # Col % on first sub-table
 Spot Hit LeftBaseline Middle RightBaseline
 0 0.6724138 0.4655172 0.8103448
 1 0.3275862 0.5344828 0.1896552
> prophitright = prop.table(net[,2],2); prophitright # Col % on second sub-table
 Spot Hit LeftBaseline Middle RightBaseline
 0 0.5344828 0.2931034 0.4137931
 1 0.4655172 0.7068966 0.5862069

> # 2 x 3 table of percentage hits
> # Labels
> handval = as.character(sort(unique(Hand))); handval
[1] "Lhand" "Rhand"
> spotval = as.character(sort(unique(Spot))); spotval
[1] "LeftBaseline" "Middle" "RightBaseline"
> PercentHits = rbind(prophitleft[,2],prophitright[,2]) * 100
> PercentHits = round(PercentHits,2)
> rownames(PercentHits) = handval; colnames(PercentHits) = spotval
> PercentHits

 LeftBaseline Middle RightBaseline
 Lhand 32.76 53.45 18.97
 Rhand 46.55 70.69 58.62

> # Set contrasts of the factors to contr.sum (effect coding)
> contrasts(Hand) = contr.sum(2); contrasts(Spot) = contr.sum(3)
>
> # Naive logistic regression, ignoring repeated measures
> naiveglm = glm(Hit ~ Spot*Hand, family=binomial)
> # summary(naiveglm) # Optional
> # Likelihood ratio tests
> anova(naiveglm, test="Chisq") # Terms added sequentially first to last
Analysis of Deviance Table
Model: binomial, link: logit

Response: Hit

Terms added sequentially (first to last)

 Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 347 481.04
Spot 2 16.3131 345 464.73 0.0002869 ***
Hand 1 20.5967 344 444.13 0.000005669 ***
Spot:Hand 2 5.3207 342 438.81 0.0699225 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> Anova(naiveglm, type="III") # Each term is last
Analysis of Deviance Table (Type III tests)

Response: Hit

 LR Chisq Df Pr(>Chisq)
Spot 17.6956 2 0.0001437 ***
Hand 21.0853 1 0.000004393 ***
Spot:Hand 5.3207 2 0.0699225 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Fit a mixed model
hoops = glmer(Hit ~ Spot*Hand + (1 | Subject), family=binomial)

summary(hoops)
Anova(hoops, type="III") # Each effect controlled for all others

Analysis of Deviance Table (Type III Wald chisquare tests)

Response: Hit

<table>
<thead>
<tr>
<th>Chisq</th>
<th>Df</th>
<th>Pr(>Chisq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.0290</td>
<td>1 0.31041</td>
</tr>
<tr>
<td>Spot</td>
<td>19.4143</td>
<td>2 0.000060847 ***</td>
</tr>
<tr>
<td>Hand</td>
<td>22.7883</td>
<td>1 0.000001809 ***</td>
</tr>
<tr>
<td>Spot:Hand</td>
<td>6.0659</td>
<td>2 0.04817 *</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Because the interaction is significant but close, try a likelihood ratio test
Fit a model with main effects but no interaction, and compare
restrictedmodel = glmer(Hit ~ Spot+Hand + (1 | Subject), family=binomial)
anova(restrictedmodel,hoops)

Data: NULL
Models:
 restrictedmodel: Hit ~ Spot + Hand + (1 | Subject)
 hoops: Hit ~ Spot * Hand + (1 | Subject)

<table>
<thead>
<tr>
<th>Df</th>
<th>AIC</th>
<th>BIC</th>
<th>logLik</th>
<th>deviance</th>
<th>Chisq</th>
<th>Chi Df</th>
<th>Pr(>Chisq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>restrictedmodel</td>
<td>5</td>
<td>439.20</td>
<td>458.46</td>
<td>-214.60</td>
<td>429.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hoops</td>
<td>7</td>
<td>436.86</td>
<td>463.83</td>
<td>-211.43</td>
<td>422.86</td>
<td>6.3371</td>
<td>2 0.04206 *</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Want mean estimated log odds and pairwise comparisons.
X = model.matrix(hoops) # The X matrix!
sumh = summary(hoops)
betahat = cbind(sumh$coef[,1]) # Estimated fixed effects as a column vector.
estlogodds = X %*% betahat # Estimated pop mean log odds for each observation.

Display estimated pop mean log odds by Hand and Spot
aggmeans = aggregate(estlogodds, by = list(Hand,Spot), FUN = mean)
aggmeans

Group.1 Group.2 V1
1 Lhand LeftBaseline -0.8721978
2 Rhand LeftBaseline -0.1669893
3 Lhand Middle 0.1708591
4 Rhand Middle 1.0680078
5 Lhand RightBaseline -1.7338464
6 Rhand RightBaseline 0.4272533

aggregate(estlogodds, by = list(Hand,Spot), FUN = sd) # Check, all zeros
treatmeans = aggmeans[,3]
dim(treatmeans) = c(2,3)
rownames(treatmeans) = rownames(PercentHits)
colnames(treatmeans) = colnames(PercentHits)
> addmargins(treatmeans,FUN=mean) # With marginal means
Margins computed over dimensions
in the following order:
1:
 LeftBaseline Middle RightBaseline mean
Lhand -0.8721978 0.1708591 -1.7338464 -0.8117284
Rhand -0.1669893 1.0680078 0.4272533 0.4427573
mean -0.5195935 0.6194335 -0.6532965 -0.1844855
> addmargins(PercentHits,FUN=mean) # With marginal means
Margins computed over dimensions
in the following order:
1:
 LeftBaseline Middle RightBaseline mean
Lhand 32.760 53.45 18.970 35.06
Rhand 46.550 70.69 58.620 58.62
mean 39.655 62.07 38.795 46.84
>
>
> DiffHand = treatmeans[2,] - treatmeans[1,] # Advantage of Right hand
(interaction)
> rbind(treatmeans,DiffHand)
LeftBaseline Middle RightBaseline
Lhand -0.8721978 0.1708591 -1.7338464
Rhand -0.1669893 1.0680078 0.4272533
DiffHand 0.7052085 0.8971486 2.1610997
> # Advantage of the right hand appears to be greatest on the right baseline
> # Compare percentage hits
> Radvantage = PercentHits[2,] - PercentHits[1,]
> rbind(PercentHits,Radvantage)
LeftBaseline Middle RightBaseline
Lhand 32.76 53.45 18.97
Rhand 46.55 70.69 58.62
Radvantage 13.79 17.24 39.65
> # Same general story. This is reassuring.
> # Testing pairwise differences.
> # First make a combination variable. The combination variable HandSpot
> # will have 6 values
>
> n = length(Hit); n
[1] 348
> HandSpot = character(n) # A character-valued variable of length n
> for(j in 1:n) HandSpot[j] = paste(Hand[j],Spot[j],sep='')
> freq = table(HandSpot); cbind(freq)
freq
LhandLeftBaseline 58
LhandMiddle 58
LhandRightBaseline 58
RhandLeftBaseline 58
RhandMiddle 58
RhandRightBaseline 58
>
> # Look at a summary of this one-way
> summary(glmer(Hit ~ HandSpot + (1 | Subject), family=binomial))

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation)
['glmerMod']
 Family: binomial (logit)
 Formula: Hit ~ HandSpot + (1 | Subject)

AIC BIC logLik deviance df.resid
436.9 463.8 -211.4 422.9 341

Scaled residuals:
 Min 1Q Median 3Q Max
-1.7842 -0.7273 -0.3379 0.6988 3.5638

Random effects:
 Groups Name Variance Std.Dev.
 Subject (Intercept) 0.9844 0.9922
Number of obs: 348, groups: Subject, 58

Fixed effects:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.8722 0.3362 -2.595 0.00947 **
HandSpotLhandMiddle 1.0431 0.4258 2.449 0.01431 *
HandSpotLhandRightBaseline -0.8616 0.4735 -1.820 0.06877 .
HandSpotRhandLeftBaseline 0.7052 0.4234 1.666 0.09576 .
HandSpotRhandMiddle 1.9402 0.4527 4.286 0.0000182 ***
HandSpotRhandRightBaseline 1.2994 0.4305 3.018 0.00254 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
HndSptLhndM -0.674
HndSptLhndR -0.573 0.449
HndSptRhnL -0.671 0.532 0.456
HndSptRhnM -0.652 0.521 0.412 0.512
HndSptRhnRB -0.672 0.535 0.441 0.530 0.524

> # Note how the intercept matches with estimated mean log odds for
> # Left hand, left baseline. Good.

> # Now make a matrix, number of rows = number of columns = number of treatments
> # Upper triangle will have z statistics for pairwise tests
> # Lower triangle will have unadjusted p-values
> handspot = factor(HandSpot) # Dummy variable coding will change in the loop
> ntreat = length(unique(HandSpot))
> PairWize = diag(ntreat) # Ones on main diagonal
> rownames(PairWize) = sort(unique(HandSpot))
> colnames(PairWize) = c("LL","LM","LR","RL","RM","RR")
> for(i in 1:(ntreat-1))
> {
> contrasts(handspot) = contr.treatment(ntreat, base = i) # i is reference category
> model = glmer(Hit ~ handspot + (1 | Subject), family=binomial)
> ztable = summary(model)$coef
> PairWize[i,(i+1):ntreat] = ztable[(i+1):ntreat,3] # z-values
> PairWize[(i+1):ntreat,i] = ztable[(i+1):ntreat,4] # p-values
> } # Next i (row)

Warning message:
In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
 Model failed to converge with max|grad| = 0.0285943 (tol = 0.001, component 1)
> # Convergence problems on one of these equivalent models -- the last.
> # Look at the full summary.
> summary(glmer(Hit ~ handspot + (1 | Subject), family=binomial))
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation)
'['glmerMod' ']
Family: binomial (logit)
Formula: Hit ~ handspot + (1 | Subject)

AIC BIC logLik deviance df.resid
436.9 463.8 -211.4 422.9 341

Scaled residuals:
 Min 1Q Median 3Q Max
-1.7918 -0.7238 -0.3321 0.6982 3.6153

Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 1.014 1.007
Number of obs: 348, groups: Subject, 58

Fixed effects:
(Intercept) 1.072483 0.002468 434.6 <0.0000000000000002 ***
handspot1 -1.959860 0.002469 -793.9 <0.0000000000000002 ***
handspot2 -0.901053 0.002468 -365.1 <0.0000000000000002 ***
handspot3 -2.825073 0.002468 -1144.5 <0.0000000000000002 ***
handspot4 -1.247175 0.002468 -505.3 <0.0000000000000002 ***
handspot6 -0.644438 0.002468 -261.1 <0.0000000000000002 ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:

(Intr) hndsp1 hndsp2 hndsp3 hndsp4
handspot1 0.000
handspot2 0.000 0.000
handspot3 0.000 0.000 0.000
handspot4 0.000 0.000 0.000 0.000
handspot6 0.000 0.000 0.000 0.000 0.000

convergence code: 0
Model failed to converge with max|grad| = 0.0285943 (tol = 0.001, component 1)

Warning message:
In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
 Model failed to converge with max|grad| = 0.0285943 (tol = 0.001, component 1)
>
> # Do the test with a no-intercept model
> noint = glmer(Hit ~ 0 + HandSpot + (1 | Subject), family=binomial)
> L = rbind(c(0,0,0,0,0,1,-1))
> linearHypothesis(noint,L) # Testing H0: L beta = 0
Linear hypothesis test

Hypothesis:
HandSpotRhandMiddle - HandSpotRhandRightBaseline = 0

Model 1: restricted model
Model 2: Hit ~ 0 + HandSpot + (1 | Subject)

Df Chisq Pr(>Chisq)
1
2 1 2.2065 0.1374
>

Page 6 of 7
> PairWize[5,6] = -sqrt(2.2065); PairWize[6,5] = 0.1374
> # Bonferroni: Compare p-values to alpha/k
> 0.05/15
> [1] 0.003333333
> >
> > round(PairWize,6)

<table>
<thead>
<tr>
<th></th>
<th>LL</th>
<th>LM</th>
<th>LR</th>
<th>RL</th>
<th>RM</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>LhandLeftBaseline</td>
<td>1.000000</td>
<td>2.449387</td>
<td>-1.819906</td>
<td>1.665746</td>
<td>4.285583</td>
<td>3.018448</td>
</tr>
<tr>
<td>LhandMiddle</td>
<td>0.014310</td>
<td>1.000000</td>
<td>-4.020645</td>
<td>-0.822777</td>
<td>2.082820</td>
<td>0.621173</td>
</tr>
<tr>
<td>LhandRightBaseline</td>
<td>0.068773</td>
<td>0.000058</td>
<td>1.000000</td>
<td>3.336967</td>
<td>5.575011</td>
<td>4.508563</td>
</tr>
<tr>
<td>RhandLeftBaseline</td>
<td>0.095764</td>
<td>0.410635</td>
<td>0.000847</td>
<td>1.000000</td>
<td>2.848380</td>
<td>1.435711</td>
</tr>
<tr>
<td>RhandMiddle</td>
<td>0.000018</td>
<td>0.037268</td>
<td>0.000000</td>
<td>0.004394</td>
<td>1.000000</td>
<td>-1.485429</td>
</tr>
<tr>
<td>RhandRightBaseline</td>
<td>0.002541</td>
<td>0.534486</td>
<td>0.000007</td>
<td>0.151085</td>
<td>0.137400</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

This document was prepared by Jerry Brunner, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US. Use any part of it as you like and share the result freely. It is available in OpenOffice.org from the workshop website: http://www.utstat.toronto.edu/~brunner/workshops/mixed