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Abstract

Statistical power is a necessary condition for replicability. In any population of pub-
lished results, there is a population of power values for the statistical tests on which
conclusions are based. We show how this distribution is affected by publication bias,
the tendency to suppress non-significant findings. In a set of large-scale simulation
studies, we compare methods for estimating the mean of a heterogeneous population
of power values, based only on significant results. Maximum likelihood is most accu-
rate when assumptions about the distribution of effect size are correct. Without such
assumptions, the most successful method is a new one: z-curve. We describe and val-
idate a conservative bootstrap confidence interval for z-curve that allows the method
to be applied to small samples as well as large samples.

1 Introduction

Science is built on a mixture of trust and healthy skepticism. On one hand, scientists who
read and cite published work trust the authors, reviewers, and editors to ensure that most
reported results provide credible evidence based on objective empirical studies. On the other
hand, scientists also insist that results be reproducible; they or other researchers should be
able to repeat an empirical study and obtain the same results. This way, the facts on
which scientific knowledge is based cannot be in doubt for long. In particular, false positives
will be promptly discovered when replication studies fail to reproduce the original results.
Reproducibility is acknowledged to be a requirement of good science (Popper 1934, Bunge
1998).

In recent years, numerous replication failures have shown that published results are much
less reproducible than psychologists would like to believe. This issue has been called the
“replicability crisis,” and extends across a variety of fields in the social and biomedical
sciences (Hirschhorn, Lohmueller, Byrne and Hirschhorn 2002, loannidis 2008, Simmons,
Nelson and Simonsohn 2011, Begley and Ellis 2012, John, Lowenstein and Prelec 2012, Begley
2013, Chang and Li 2015, Baker 2016). In Psychology, the Open Science Collaboration (OSR)
project attempted to replicate the primary findings of 100 studies, mostly in the areas of



cognitive and social psychology (OSR, 2016). For three studies, the “effect” was a failure to
find significant results. The remaining 97 studies reported support for a hypothesis with a
significant or at least marginally significant result. However, the corresponding replication
studies produced only 37% significant results. This low success rate has created heated
debates, especially in social psychology where the success rate was only 25%.

One possible source of resistance to the OSC results is that in spite of indications of persis-
tently low statistical power in psychological research (Cohen 1962, Sedlmeier and Gigerenzer
1989), there may be lack of awareness about the true probability of obtaining a statistically
significant result in a psychological study. The reason may be that journals have a tendency
publish mostly significant results, a condition that has been called “publication bias” (Ster-
ling, 1959; Sterling, Rosenbaum and Weinkam, 1995). As a result, psychological journals
create a false expectation that significant results are to be expected. However, the success
rate in journals is inflated because non-significant results often remain unpublished and end
up in Rosenthal’s (1969) proverbial file drawer. As the size of researchers’ file drawers is
unknown, it is unclear how likely it is that an empirical study produces a significant result
and how likely it is that a published significant result will reproduce a significant result in a
replication study.

Studies like the OSC replication project produce valuable information, but they are very
costly in terms of time and resources. The objective of this paper is to introduce methods for
assessing the typical replicability of a body published findings without literally repeating any
of the studies. Instead, estimates are based on statistical results reported in the articles. Our
approach applies to scientific disciplines like Psychology, where most findings are established
by rejecting null hypotheses based on tests of statistical significance. This convention applies
to 97 out of 100 studies in the OSC project. Replicating a finding means collecting another
set of data from the same population with exactly the same procedure and sample size,
and obtaining significant results in the same direction again. We define the replicability of
a finding as the probability of replication. Because of the caveat “in the same direction,”
replicability is technically less than or equal to the probability of significance. Except when
the null hypothesis is true or almost true, the difference is small.

Consider a population of empirical findings. Each finding in the population has been
validated by a test of significance, and every test has its own probability of being significant;
that is, there is a population of power values. Now suppose that one finding is randomly
selected from the population. The study is repeated exactly, and the same statistical test
that originally validated the finding is carried out on the new data. We show (Principle 1 of
Section 2) that the probability of obtaining significant results from this two-stage procedure is
exactly equal to the population mean power value. This means that population mean power
sets an upper bound on replicability, and an estimate of mean power is a generous estimate
of average replicability. It is important to note that this assumes exact replication, including
the subject population and possible unreported failures of experimental control. Thus, while
mathematically the probability of replication is often barely less than the power, in practice
we expect good estimates of mean power to be noticeably higher than actual replicability.
When estimated power is low, actual replicability is likely to be even worse.



In this article, we introduce four methods for estimating population mean power based
on published results. It is important to distinguish this undertaking from that of Cohen
(1962) and Sedlmeier and Gigerenzer’s (1989) follow-up. In Cohen’s classic survey of power
in the Journal of Abnormal and Social Psychology, power was calculated exactly for effect
sizes deemed “small,” “medium” and “large,” using the observed sample sizes and designs of
the studies. If a “medium” effect size referred to the population mean (which Cohen never
claimed), power at the mean effect size is still not the same as mean power. In fact, by
Jensen’s inequality (Billingsley 1986, p. 283) power at the mean effect size is greater than
mean power.

Two of the methods we consider — Simonsohn, Nelson and Simmons’ (2014b) p-curve
and van Assen, van Aert, and Wicherts’ (2014) p-uniform — were developed to correct for
publication bias in meta-analyses of effect sizes. Both methods assume a fixed population
effect size. Simmonsohn et al. have extended their method to estimate power in the restricted
setting of a single fixed power value for the entire population, implying homogeneity in sample
size as well as effect size (www.p-curve.com). We introduce two additional methods that
are explicitly designed to estimate power for heterogeneous data under publication bias. We
use extensive simulation studies to compare all four methods for a wide variety of scenarios.
Finally, we apply all four methods to the studies from the OSC reproducibility project.

1.1 Statistical Power

The power of a statistical test (Neyman and Pearson, 1933; Lehman, 1959; Cohen, 1988) is
the probability of correctly rejecting the null hypothesis. Power can be calculated exactly
for any chosen set of parameter values, without using sample data in any way. This may
be done before data are collected in order to choose sample size (Cohen 1988, Desu and
Raghavarao 1990), or with published studies to assess average power assuming effects of a
designated magnitude (Cohen 1962, Sedlmeier and Gigerenzer 1989). But since true effect
size is never known exactly, the power of a reported statistical test is an unknown quantity.
Our objective is to estimate the population mean of such quantities.

The formal definition of power implies that power is not defined for a population effect
size of zero. In this case the null hypothesis is false, and will be rejected incorrectly with
probability equal to the significance criterion, usually 0.05. As the probability of the null
hypothesis being true is unknown, this definition of power would make power estimation
impossible in principle. One way around the problem is to assume that the null hypothesis
is never exactly true (Sterling et al., 1995). Another solution is to extend the definition
of power so that it is defined even when the null hypothesis is true. In the end, there are
no practical implications for power estimation because power approaches the significance
criterion in the limit as effect sizes approach zero. In the limit, a highly underpowered study
with a true effect is as unlikely to replicate a significant result as a Type I error. Assuming
the usual 0.05 significance level, power equals 0.05 if the null hypothesis is true.



1.1.1 Selection for significance

There is a tendency for non-significant results not to appear in the published literature, a
condition that has been called “publication bias” (Sterling, 1959; Sterling, Rosenbaum and
Weinkam, 1995). By severing the relationship between average power and apparent success
rate, publication bias can create a false expectation that significant results are to be expected,
leading to inflated estimates of of power (Francis, 2012; Schimmack, 2012). For example in
the OSC data, significant results were initially reported in 93 out of 100 studies; four were
“marginally significant,” and three were presented as null results. This would suggest an
average power of 93%, very different from the 37% success rate on actual replication. This
shows the importance of allowing for publication bias. Though some non-significant results
are reported, we suspect that they may often be selected to make a point and so to be quite
unrepresentative of the population from which they are taken. It is safest to discard them.
Thus, estimates will be based upon a sub-population of tests that are statistically significant.

1.1.2 Observed power

The difficulty of estimating true power based on a single study is well documented (Boos and
Stefanski 2012, Gerard, Smith and Weerakkody 1998, Gillett 1994, Hoenig and Heisey 2001,
Thomas 1997, Yuan and Maxwell 2005). One problem is that the observed power method
relies on the observed effect size as an estimate of the population effect size to compute
power, and observed effect size is severely inflated by publication bias. Even if the bias in
effect size could be corrected on average, the resulting estimates of power are too variable to
be practically useful for a single study. However, low precision does not mean that estimates
from individual studies are useless. In fact, psychologists routinely report standardized effect
sizes in small samples, often with very large confidence intervals. The point estimate is not
very informative, but it can be used for meta-analyses, and meta-analyses of effect sizes
can produce precise estimates of population parameters because sampling error decreases as
the number of studies in a meta-analysis increase. The same principle applies to statistical
power. Although sampling error creates too much noise for the interpretation of observed
power in a single study, meta-analyses can provide valuable information about power in the
presence of publication bias (Francis, 2012; Schimmack, 2012).

1.1.3 Heterogeneity

Since power is a function of effect size and sample size, estimates of effect size lead immedi-
ately to estimates of power. Furthermore, some methods of estimating effect size explicitly
take publication bias into account. In our view, the most promising of these are the p-curve
method of Simonsohn, Nelson and Simmons (2014b) and the p-uniform method of van As-
sen, van Aert, and Wicherts (2014). Once an estimate of the population effect size has been
found, it is straightforward to use this parameter to compute an estimated power for each
study. Averaging these quantities produces an estimate of population mean power.
Estimates of effect size generally assume that a single quantity is being estimated. In
contrast, our interest is in a setting where not only the sample sizes, but the effect sizes,
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the topics being investigated and the statistical tests employed are all subject to sampling
variation. That is we wish to estimate population mean power not just assuming selection for
significance, but also under heterogeneity — that is, assuming that each test in the population
has its own true power (a fixed, unknown number), and they all might be different.

It has been suggested (Ioannidis and Trikalinos 2007, Kepes, Banks, McDaniel and Whet-
zel 2012, Simonsohn et al. 2014b, van Assen et al. 2014) that methods developed for homo-
geneity may be applied to the heterogeneous situation by subsetting the data into tests with
approximately the same effect size, or even the same true power. Our objection to this idea
is that it involves too much unverified guesswork. It is impossible to know a priori which
tests belong in the same cluster. This would be especially true if true effect size varies con-
tinuously, a very plausible state of affairs. Moreover, this approach is not feasible when the
set of studies is large as, for example, in an analysis of an entire journal over a multi-year
period.

We propose two novel methods for estimating mean power in the challenging scenario
where effect sizes and sample sizes are heterogeneous and publication bias is present. The
methods are maximum likelihood, (which we view as the default method of estimation in
Statistics) and a new method we call z-curve. We test these in a wide range of simulation
studies. Furthermore, we compare our methods to p-curve and p-uniform to examine the
robustness of these methods for homogeneous data when heterogeneity is present. As previ-
ous simulations have focused on effect size estimation, our simulations provide the first test
of these methods for the estimation of power and replicability.

1.2 Notation and statistical background

To present our methods formally, it is necessary to introduce some statistical notation.
Rather than using traditional notation from statistics that might make it difficult for non-
statisticians to understand our method, we use and extend an innovative notation of Simon-
sohn, Nelson and Simmons (2014a), who employ a modified version of the S syntax (Becker,
Chambers and Wilks, 1988) to represent probability distributions. The S language is familiar
to psychologists who conduct data analysis using the R statistical software (R core team,
2012). It also makes it easier to implement our methods in R, particularly in the simulation
studies.

The outcome of an empirical study is partially determined by random sampling error,
which implies that statistical results will vary across studies. This variation is expected to
follow a random sampling distribution. Each statistical test has its own sampling distribu-
tion. We will use the symbol T" to denote a general test statistic; it could be a t-statistic, F,
chi-squared, Z, or something more obscure.

Assume an upper-tailed test, so that the null hypothesis will be rejected at significance
level o (usually o = 0.05), when the continuous test statistic 7" exceeds a critical value c.
Typically there is a sample of test statistic values T, ..., Tk, but when only one is being
considered the subscript will be omitted. The notation p(¢) refers to the probability under
the null hypothesis that 7" is less than or equal to the fixed constant . The symbol p would
represent pnorm if the test statistic were standard normal, pf if the test statistic had an F-



distribution, and so on. While p(¢) is the area under the curve, d(¢) is height of the curve
above the x-axis, as in dnorm. Following the conventions of the S language, the inverse of p
is q, so that p(q(#)) = q(p(®)) =t.

Sampling distributions when the null-hypothesis are true are well-known to psychologists
because they provide the foundation of null-hypothesis significance testing. Most psycholo-
gists are less familiar with non-central sampling distributions (see Johnson, Kotz and Bal-
akrishnan, 1995 for a detailed and authoritative treatment). When the null hypothesis is
false, the area under the curve of the test statistic’s sampling distribution is p(¢,ncp), repre-
senting particular cases like pf (¢,df1,df2,ncp). The initials ncp stand for “non-centrality
parameter.” This notation applies directly when 7" has one of the common non-central dis-
tributions like the non-central ¢, F' or chi-squared under the alternative hypothesis, but it
extends to the distribution of any test statistic under any specific alternative, even when
the distribution in question is technically not a non-central distribution. The non-centrality
parameter is positive when the null hypothesis is false, and statistical power is a monoton-
ically increasing function of the non-centrality parameter. This function is given explicitly
by Power = 1 — p(c,ncp).

For the most important non-central distributions (Z, ¢, chi-squared and F'), the non-
centrality parameter can be factored into the product of two terms. The first term is an
increasing function of sample size, and the second term is a function of the unknown param-
eters that reflects how wrong the null hypothesis is. In symbols,

ncp = fi(n) - fa(es). (1.1)

In this equation, n is the sample size and es is effect size. While sample size is observable,
effect size is a function of unknown parameters and can never be known exactly. The quan-
tities that are computed from sample data and commonly called “effect size” are properly
estimates of es.

As we use the term, effect size refers to any function of the model parameters that equals
zero when the null hypothesis is true, and assumes larger and larger positive values as the
null hypothesis becomes more false. From this perspective, all reasonable definitions of effect
size for a particular statistical model are deterministic monotone functions of one another
and so the choice of which one to use is determined by convenience and interpretability.
This usage is consistent in spirit with that of Cohen (1988), who freely uses “effect size” to
describe various functions of the model parameters, even for the same statistical test. Also
see Grissom and Kim (2012).

As an example of Equation (1.1), consider for example a standard F-test for difference
between the means of two normal populations with a common variance. After some simpli-
fication, the non-centrality parameter of the non-central F' may be written

ncp =np(l—p)d?,

where n = n; + ny is the total sample size, p = "! is the proportion of cases allocated to

the first treatment, and d = @ is Cohen’s (1988) effect size for the two-sample problem.
This expression for the non-centrality parameter can be factored in various ways to match



Equation 1.1; for example, fi(n) = np(1 — p) and fy(es) = es?. Note that this is just

an example; Equation 1.1 applies to the non-centrality parameters of the non-central Z, ¢,
chi-squared and F' distributions in general. Thus for a given sample size and a given effect
size, the power of a statistical test is

Power =1 —p(c, f1(n) - fa(es)). (1.2)

The function fs(es) is particularly convenient because it will accommodate any reasonable
definition of effect size. Details are given in the technical supplement.

2 Two Populations of Power

Consider a population of independent statistical tests. Each test has its own power value,
a true probability of rejecting the null hypothesis determined by the sample size, proce-
dure and true parameter values. The tests are conducted. Significant results are published
and become available as data. Non-significant results go into the mythical “file drawer”
of Rosenthal (1979). This means that there are are two populations of power values: the
original population, and the sub-population corresponding to the tests that happened to be
statistically significant.

Selection for significance (publication bias) does not change the power values of individual
studies. However, the population of studies in the set of studies selected for significance differs
from the original population of studies without selection for significance. The reason is that
selection for significance tends to select studies with higher power. For example, a study
with 80% power is more likely to end up in the sample of studies selected for significance
than a study with 20% power.

Probability models may often be clarified by thinking of them as games of chance. De-
signing a study and selecting a hypothesis to test corresponds to manufacturing a roulette
wheel that may not be perfectly balanced. The numbers on the wheel are p-values, and
p < 0.05 is a win. Running the study and collecting data corresponds to spinning the wheel.
The unique balance and other physical properties of the wheel determine the probability of
a win; this corresponds to the power of the test. Performing the statistical analysis corre-
sponds to examining the number that comes up on the wheel and noting whether p < 0.05.
A large number of wheels are manufactured and spun once. This is the population before
selection. The wheels that yield wins are put on display; this is the population after selec-
tion. Naturally, there is a tendency for wheels with a higher chance of winning to be put
on display. The wheels that yield losing numbers are sent to warehouses (the file drawer),
or more likely to landfill. All records are destroyed. Even the number of losing wheels is
suppressed.

Spinning all the wheels on display a second time would take a great deal of effort, but
if we did so we could record the proportion of wins. This would not be the true probability
of significance, but if the number of wheels on display is large it would be close. Spinning
all the wheels a third time would yield another proportion of wins, presumably close to the
first. Repeating this impossibly tedious exercise a large number of times and averaging the
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proportions would give the true probability of a win for the wheels on display. The objective
of this paper is to estimate this important unknown quantity using only the numbers that
appeared on first spin.

We now give a set of fundamental principles connecting the probability distribution power
before selection to its distribution after selection. These principles do not depend on the
particular population distribution of power, the significance tests involved, or the Type I
error probabilities of those tests. They do not even depend on the appropriateness of the
tests or the assumptions of the tests being satisfied. The only requirement is that each power
value in the population is the probability that the corresponding test will be significant. The
supplementary materials contain proofs and a numerical example.

Principle 1 Population mean power equals the overall probability of a significant result.

Principle 1 applies equally to the population of studies before and after selection. Because it
applies after selection, this principle establishes the link between replicability and population
mean power. If a single published result is randomly selected and the study is repeated
exactly, the probability of obtaining another significant result equals population mean power
after selection. In terms of the roulette wheel analogy, this is a two-stage game. The first
stage is to select a wheel at random from those on display, and the second stage is to spin
the wheel. Principle 1 says that the probability of winning the game is exactly the mean
probability of a win for the wheels on display.

Principle 2 The effect of selection for significance is to multiply the probability of each
power value by a quantity equal to the power value itself, divided by population mean power
before selection. If the distribution of power is continuous, this statement applies to the
probability density function.

For example, suppose that before selection 80% of studies have power equal to 0.10 and 20%
have power equal to 0.60. Table 1 shows the distribution of power before and after selection.
Expected (population mean) power before selection is 0.10 % 0.8 + 0.60 % 0.2 = 0.20. After
selection there are still the same two power values, but their probabilities change. To obtain
the probability that power equals 0.10 after selection, multiply 0.8 by the power value 0.1,
and divide by the expected power before selection of 0.20. The resulting probability after
selection is 0.8 % 0.1/0.2 = 0.40. In the technical supplement, Principle 2 is used to derive

Table 1: Illustration of Principle 2

Probability
Power value Before selection After selection
0.10 0.80 0.40
0.60 0.20 0.60

the remaining principles.



Principle 3 shows how population mean power after selection is related to population
mean power before selection. In simulation studies, Principle 3 allows the distribution of
power before selection to be chosen so that expected power after selection is exactly equal
to some desired value.

Principle 3 Population mean power after selection for significance equals the population
mean of squared power before selection, divided by the population mean of power before se-
lection.

It is also possible to go backwards from power after selection to mean power before
selection, again without knowing the full distributions. In Principle 4, the reciprocal of
power refers to one divided by the power value. Naturally this quantity has a population
mean.

Principle 4 Population mean power before selection equals one divided by the population
mean of the reciprocal of power after selection.

Although we do not pursue the topic in this paper, Principle 4 opens the door to estimating
mean power before selection using only significant results.

Selection for significance is often called “publication bias” (Sterling 1959, Sterling et al.
1995), and it has indisputable drawbacks. However, it does increase average power because
tests with higher power are more likely to be selected. Principle 5 quantifies the increase.

Principle 5 The increase in population mean power due to selection for significance equals
the population variance of power before selection divided by the population mean of power
before selection.

Because variances cannot be negative, population mean power after selection for significance
is always greater than or equal to population mean power before selection, with equality
occurring only in the homogeneous case where the population variance of power before selec-
tion is equal to zero. The greatest increases in mean power will occur when the distribution
of power before selection is heterogeneous, and average power is low.

3 Estimation Methods

In this section, we describe four methods for estimating population mean power under con-
ditions of heterogeneity, after selection for statistical significance.

3.1 P-curve and p-uniform estimation of mean power

The p-curve (Simonsohn et al. 2014b) and p-uniform (van Assen et al. 2014) methods are
designed for estimating effect sizes in meta-analyses where there is a single fixed effect size,
but possibly varying sample sizes. We adapted them slightly to produce estimates of mean
power, again for the setting of heterogeneity in sample size but not effect size.



Both p-uniform and p-curve are based on the idea that p-values are uniformly distributed
when the null hypothesis is true. Originally, the test statistics were used to test the null
hypothesis that the effect size is zero, and they all rejected that null hypothesis. Now the
set of significant test statistics is used to test a modified null hypothesis that the effect size
equals some specified non-zero value. If the modified null hypotheses were true, the resulting
p-values would again have a uniform distribution. To find the best fitting effect size for a set
of observed test statistics, p-curve and p-uniform compute p-values for various effect sizes
and chose the effect size that yields the best approximation of a uniform distribution. The
main difference between p-curve and p-uniform is the criterion used to pick the best fitting
effect size.

If the modified null hypothesis that effect size = es is true, the cumulative distribution
function of the test statistic is the conditional probability

Fo(t) = Pr{T <t|T > ¢}
p(t,ncp) — p(c,ncp)
1 —p(c,ncp)
p(t, f1(n) - fa(es)) —ple, fi(n) - fa(es))
1 —ple, fi(ni) - fa(es)) ’

using ncp = fi1(n) - fa(es) as given in Equation 1.1. The corresponding modified p-value
(which Simonsohn et al. would call the pp-value) is

_ 1 -pT, fi(n) - faes))
1 —p(c, fi(n) - foles))

Note that since the sample sizes of the tests may differ, the symbols p, n and ¢ as well as T’
may have different referents for j = 1, ..., k test statistics. The subscript j has been omitted
to reduce notational clutter.

If the modified null hypothesis were true, the modified p-values would have a uniform
distribution. Both p-curve and p-uniform choose as estimated effect size the value of es
that makes the modified p-values most nearly uniform. They differ only in the criterion for
deciding when uniformity has been reached.

P-curve is based on a Kolmogorov-Smirnov test for departure from a uniform distribution,
choosing the es value yielding the smallest value of the test statistic. P-uniform is based on
a different criterion. Denoting by P; the modified p-value associated with test j, calculate
Y = — Z?:l In(P;), where In is the natural logarithm. If the P; values were uniformly
distributed, Y would have a Gamma distribution with expected value k, the number of
tests. The P-uniform estimate is the modified null hypothesis effect size es that makes Y
equal to k, its expected value under uniformity.

These technologies are designed for heterogeneity in sample size only, and assume a
common effect size for all the tests. Given an estimate es of the common effect size, estimated
power for each test is solely determined by sample size. Using Expression 1.2, the estimated
power of test j is 1 — p(c¢;, fi(n;) - f2(es)). Population mean power can then be estimated

1 — Fo(T)
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by averaging the k power estimates. This natural way of estimating mean power is merely
implicit in the papers by van Assen et al. (2014) and Simonsohn et al. (2014b).

As previous simulation studies have shown that these methods work well when their
assumptions are met, we expect both p-uniform and p-curve to produce accurate estimates
of mean power in simulations with fixed effect sizes. However, simulation studies with
heterogeneity in effect sizes show that both methods are likely to overestimate the average
population effect size when effect sizes are heterogeneous (van Aert et al., in press). Thus,
we expect that these methods will provide inflated estimates of replicability in simulations
with heterogeneous effect sizes.

3.2 Maximum likelihood estimation of mean power

The method of Maximum Likelihood (Fisher, 1922; also see the historical account by Aldrich,
1997) is a general method for the estimation of an unknown parameter by finding the pa-
rameters value that makes the observed data most probable. For any set of observed data,
the statistical assumptions allow calculation of the probability of obtaining the observed the
data (or for continuous distributions, the probability of obtaining data in a tiny region sur-
rounding the observed data). The likelihood function expresses this probability as a function
of the unknown parameter. Geometrically, the likelihood function is a curve, and estimation
proceeds by finding the highest point on the curve. The maximum likelihood estimate is the
parameter value yielding that maximum. The case of multi-parameter estimation is anal-
ogous, with the curve being replaced by a convoluted surface in higher dimension. When
data are consistent with the model assumptions, maximum likelihood generally yields more
precise parameter estimates than other methods, especially for large samples (Lehmann and
Casella, 1998). It is fair to say that maximum likelihood is the default method of estimation
in Statistics for parametric models.

For simplicity, first consider the case of heterogeneity in sample size but not effect size.
In this case the single unknown parameter is effect size (es), and the likelihood function is
based on the conditional probability of observing the data given selection for significance.
Denoting the observed test statistic values by ¢y, ..., %, the likelihood function is a product

of k terms of the form
d(t;, f1(n;) - fa(es))

1 —plcj, fi(ng) - fa(es))’
where because of selection for significance, all the ¢; values are greater than their respective
critical values ¢;. Expression 3.1 becomes the likelihood of Hedges (1984) for the case of a
two-sample t-test.

As an example, consider a one-way ANOVA with four treatment groups, equal sample
sizes, and a “medium” value of 0.25 for Cohen’s (1988, p. 275) effect size f. As shown in
the technical supplement, ncp = fi1(n) - fo(es) = n - es? for this problem, where n is the
total sample size. Figure 1 shows the likelihood function for a simulated set of k = 25 F
statistics. In this example, the sample sizes before selection varied about a mean of twenty
per treatment. The likelihood function reaches its maximum when effect size equals 0.244;
this is the maximum likelihood estimate. It is quite close to the true value of 0.25.

(3.1)
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Figure 1: Likelihood Function for 25 F-tests With True Effect Size = 0.25
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In general, the maximum likelihood estimate of es is the effect size value that makes the
likelihood function greatest. Denote it by es. The estimated probability of significance for
each study is obtained by

Estimated Power = 1 — p(cj, fi(n;) - fa(es)),

and then as for p-curve and p-uniform, the estimated power values are averaged to produce
a single estimate of mean power.

Now include heterogeneity in effect size as well as sample size. If sample size and effect
size before selection are independent, selection for significance induces a mild relationship
between sample size and effect size, since tests that are low in both sample size and effect size
are under-selected, while tests high in both are over-selected. Suppose that the distribution
of effect size before selection is continuous with probability density gs(es). This notation
indicates that the distribution of effect size depends on an unknown parameter or parameter
vector €. In the technical supplement, it is shown that the likelihood function (a function of
0) is a product of k terms of the form

fooo d(t;, fi(n;) - f2(es)) go(es) des
IS L =pCej, fi(ng) - fo(es))] go(es) des’

where the integrals denote areas under curves that can be computed with R’s integrate
function. Again, the maximum likelihood estimate is the value of § for which the value of
the product is highest. Denote the maximum likelihood estimate by 6. Typically 6 is a single
number or a pair of numbers.

As before, an estimate of population mean power is produced by averaging estimated
power for the k significance tests. It is shown in the technical supplement that the terms to
be averaged are

(3.2)

Jo L —=ple, fr(ny) - fz(eS))}Qgg(es) des
IS L=, filng) - fo(es))] gj(es) des’

an expression that also follows from an informed application of Principle 3.

(3.3)

3.3 “-curve

In this section we describe a new estimation method called Z-curve. It follows a tradi-
tional meta-analyses that converts p-values into Z-scores as a common metric to integrate
results from different original studies (Stouffer, Suchman, DeVinney, Star and Williams,
1949; Rosenthal, 1979). The use of Z-scores as a common metric makes it possible to fit a
single function to p-values arising from widely different statistical methods and tests. The
method is based on the simplicity and tractability of power analysis for the one-tailed Z-
test, in which the distribution of the test statistic under the alternative hypothesis is just
a standard normal shifted by a fixed quantity that we will denote by m m (Heisey and
Hoenig, 2001). As described the technical supplement, m is the non-centrality parameter for
the one-tailed Z-test. Input to the Z-curve is a sample of p-values from two-sided or other
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non-directional tests, all less than a = 0.05. These p-values are processed in several steps to
produce an estimate.

1. Convert p-values to Z-scores. The first step is to imagine, for simplicity, that all the
p-values arose from two-tailed Z-tests in which results were in the predicted direction.
This is equivalent to an upper-tailed Z-test with significance level a/2 = 0.025. The
conversion to Z-scores (Stouffer et al., 1949) consists of finding the test statistic Z that
would have produced that p-value. The formula is

Z = qnorm(1l — p/2). (3.4)

2. Set aside Z > 6. We assume that p-values in this range come from tests with power
essentially equal to one. To avoid numerical problems arising from p-values that are
approximately zero, we set them aside for now and bring them back in the final step.

3. Fit a finite mizture model. Before selecting for significance and setting aside values
above six, the distribution of the test statistic Z given a particular non-centrality
parameter value m is normal’ with mean m. Afterwards, it is a normal distribution
truncated on the left at the critical value ¢ (usually 1.96) truncated on the right at 6,
and re-scaled to have area one under the curve.

Because of heterogeneity in sample size and effect size, the full distribution of Z is an
average of truncated normals, with potentially a different value of m for each member
of the population. As a simplification, heterogeneity in the distribution of Z is repre-
sented as a finite mixture with 7 components. The model is equivalent to the following
two-stage sampling plan. First, select a non-centrality parameter m from myq,...,m,
according to the respective probabilities wq,...,w,. Then generate Z from a normal
distribution with mean m and standard deviation one. Finally, re-scale so that the
area under the curve equals one.

Under this approximate model, the probability density function of the test statistic
after selection for significance is

f(2) = Zw dnorm(z — m;) (3.5)

p= 7 pnorm(6 — m;) — pnorm(c — m;)’

for c < z < 6.

The finite mixture model is only an approximation. If the true probability density
function of Z given significance were known, the approximation could be optimized
by choosing wy,...,w, and my,...,m, to bring (3.5) as close to the true density
as possible. Since the true density is unknown, we use a kernel density estimate
(Silverman, 1986) as implemented in R’s density function, with the default settings.

! This statement would be exactly true if the p-values really came from one-sided Z-tests as suggested in
Step 1. In practice it is an approximation.
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Specifically, the fitting step proceeds as follows. First, obtain the kernel density esti-
mate based on the sample of significant Z values, re-scaling it so that the area under
the curve between ¢ = 1.96 and 6 equals one. Call this the conditional density esti-
mate. Next, calculate the conditional density estimate at a set of equally spaced points
ranging from 2 to 6. Then, numerically choose w; and m; values so as to minimize the
sum of absolute differences between the conditional density estimate and (3.5).

4. Estimate mean power for Z < 6. The estimate of rejection probability upon replication
for Z < 6 is the area under the curve above the critical value, with weights and non-
centrality values from the curve fitting step. The estimate is

KzZ@j(l—pnorm(c—ﬁzj)), (3.6)
j=1
where wy,...,w, and my,...,m, are the values located in Step 3. Note that while

the input data are censored both on the left and right as represented in Forumula 3.5,
there is no truncation in Formula 3.6 because it represets the distribution of Z upon
replication.

5. Re-weight using Z > 6. Let q denote the proportion of the original set of Z statistics
with Z > 6. Again, we assume that the probability of significance for those tests is
essentially one. Bringing this in as one more component of the mixture estimate, the
final estimate of the probability of rejecting the null hypothesis for exact replication
of a randomly selected test is

Zew = (1—q)l+q-1 (3.7)
- q+(1—q)2{ﬁj(1—pnorm(c—fﬁj))
j=1

By Principle 1, this is the estimate of population mean power after selection for significance.

4 Simulations

The simulations reported here were carried out using the R programming environment (R
Core Team, 2012) distributing the computation among 70 quad core Apple iMac comput-
ers?>. The R code is available in the supplementary materials. In the simulations, the four
estimation methods (p-curve, p-uniform, maximum likelihood and z-curve) were applied to
samples of significant chi-squared or F' statistics, all with p < 0.05. This covers most cases
of interest, since t statistics may be squared to yield F' statistics, while Z may be squared

to yield chi-squared with one degree of freedom.

2We would like to thank Dr. Jeffrey Graham for providing remote access to the machines in the Psychology
Laboratory at the University of Toronto Mississauga. Thanks to Josef Duchesne for technical advice.
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4.1 Heterogeneity in Sample Size Only: Effect size fixed

Sample sizes after selection for significance were randomly generated from a Poisson distri-
bution with mean 86, so that they were approximately normal, with population mean 86
and population standard deviation 9.3 (Johnson, Kemp and Kotz, 2005). Population mean
power, number of test statistics on which the estimates were based, type of test (chi-squared
or F') and (numerator) degrees of freedom were varied in a complete factorial design. Within
each combination, we generated 10,000 samples of significant test statistics and applied the
four estimation methods to each sample. In these simulations, it was not necessary to sim-
ulate test statistic values and then literally select those that were significant. A great deal
of computation was saved by simulating directly from the distribution of the test statistic
after selection; details are given in the technical supplement.

Effect sizes were selected to yield population mean power values after selection of 0.05,
0.25, 0.50 or 0.75. For F-tests, we used Cohen’s (1988, p. 275) effect size metric f. For
chi-squared tests, we used w (Cohen, 1988, p. 216). The number of test statistics k& on
which estimates were based was 15, 25, 50, 100 or 250. Numerator degrees of freedom (just
degrees of freedom for the chi-squared tests) were one, three or five. Because the pattern
of results was similar for F' and chi-squared tests and for different degrees of freedom, we
give details for F-tests with one numerator degree of freedom; preliminary data mining of
the psychological literature suggests that this is the case most frequently encountered in
practice. Full results are given in the supplementary materials.

Average performance Table 2 shows means and standard deviations of estimated pop-
ulation mean power after selection. Differences between the mean estimates and the true
values represent bias in estimation. We conclude that all methods performed fairly well,
with z-curve showing a bit more bias than the other methods.

Absolute error of estimation It is desirable for average estimates to be close to the true
values, but still positive and negative errors may cancel. More interesting is how close the
estimate is on average to the true value being estimated. Table 3 shows mean absolute error
of estimation for F-tests with one numerator degree of freedom; full results are givn in the
supplementary materials. As expected, all the methods become more accurate with larger
numbers of tests. Though the differences are fairly small, Z-curve is least accurate when
mean power is low, and most accurate when mean power is high. Maximum likelihood has a
slight edge over the other methods under most circumstances, except that z-curve sometimes
does better when population mean power is moderate to high and the estimates are based
on a small number of tests.

Testing differences in accuracy Because results like the ones in in Table 2 are based on
random number generation, some of the apparent differences could be due to chance. Thus
we find ourselves applying statistical tests to an investigation of statistical tests. Within
each of the 20 combinations of power and number of tests, there are six potential pairwise
comparisons of mean absolute error. These comparisons were carried out using large-sample
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Table 2: Means and standard deviation of estimated population mean power for heterogene-
ity in sample size only: F-tests with numerator df = 1

Mean Standard Deviation
Population Mean Power = 0.05
Number of Tests Number of Tests
15 25 50 100 250 15 25 50 100 250

P-curve 0.083 0.073 0.064 0.059 0.055 P-curve 0.059 0.039 0.024 0.015 0.007
P-uniform 0.076 0.067 0.061 0.058 0.054 P-uniform 0.050 0.032 0.019 0.012 0.006
MaxLike  0.076 0.067 0.061 0.057 0.054 MaxLike  0.050 0.033 0.020 0.012 0.006
Z-curve 0.086 0.071 0.058 0.049 0.040 Z-curve 0.088 0.065 0.044 0.031 0.019

Population Mean Power = 0.25

Number of Tests Number of Tests
15 25 50 100 250 15 25 50 100 250

P-curve 0.269 0.261 0.256 0.253 0.251 P-curve 0.156 0.128 0.095 0.069 0.046
P-uniform 0.256 0.253 0.252 0.251 0.251 P-uniform 0.147 0.121 0.089 0.065 0.042
MaxLike  0.260 0.255 0.253 0.251 0.251 MaxLike  0.146 0.120 0.087 0.064 0.042
Z-curve 0.314 0.305 0.293 0.280 0.268 Z-curve 0.155 0.127 0.093 0.068 0.045

Population Mean Power = 0.50

Number of Tests Number of Tests
15 25 50 100 250 15 25 50 100 250

P-curve 0.484 0.491 0.496 0.497 0.499 P-curve 0.175 0.139 0.102 0.073 0.046
P-uniform 0.473 0.485 0.493 0.496 0.499 P-uniform 0.170 0.132 0.097 0.070 0.044
MaxLike  0.479 0.489 0.495 0.497 0.499 MaxLike  0.166 0.130 0.095 0.068 0.043
Z-curve 0.513 0.516 0.513 0.508 0.502 Z-curve 0.151 0.121 0.091 0.068 0.045

Population Mean Power = 0.75

Number of Tests Number of Tests
15 25 50 100 250 15 25 50 100 250

Pcurve 0.728 0.736 0.742 0.747 0.749 Pcurve 0.128 0.098 0.069 0.048 0.030
Puniform 0.721 0.732 0.740 0.746 0.748 Puniform  0.126 0.097 0.067 0.047 0.029
MaxLike  0.728 0.736 0.742 0.747 0.749 MaxLike  0.121 0.093 0.065 0.045 0.028
Zcurve 0.704 0.712 0.717 0.723 0.728 Zcurve 0.105 0.084 0.064 0.048 0.033
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Table 3: Mean absolute error of estimation for heterogeneity in sample size only: F-tests
with numerator df =1

Number of Tests

15 25 50 100 250

Population Mean Power = 0.05
P-curve 3.32 225 1.41 093 0.52
P-uniform  2.57 1.75 1.11 0.76 0.43
MaxLike 259  1.74 1.09 0.73 0.39
Z-curve 6.53 490 3.38 244 1.79

Population Mean Power = 0.25
P-curve 12.94 1049 7.69 5.53 3.64
P-uniform 12.11 9.87 7.17 5.18 3.38
MaxLike  12.07 9.76 7.05 5.10 3.32
Z-curve 13.55 11.09 8.21 5.96 3.87

Population Mean Power = 0.50
P-curve 14.32 11.20 8.14 5.80 3.67
P-uniform 13.93 10.68 7.80 5.56 3.51
MaxLike  13.61 10.41 7.60 5.39 3.41
Z-curve 1242 991 744 548 3.59

Population Mean Power = 0.75
P-curve 9.77 759 538 3.72 235
P-uniform 9.79 759 5.34 3.71 232
MaxLike 9.33 7.23 5.11 3.53 221
Z-curve 834 6.96 5.56 4.30 3.13

18



Table 4: Number of times row method is significantly more accurate than column method:
Heterogeneity in sample size only

Chi-squared tests F-tests
df =1
PC PU ML ZC Total PC PU ML ZC Total

P-curve (PC) 0 0 0 14 14 P-curve (PC) 0 0 0 13 13
P-uniform (PU) 15 0 0 14 29 P-uniform (PU) 15 0 0 13 28
MaxULike (ML) 20 16 0 16 52 MaxLike (ML) 20 17 0 14 51
Z-curve (ZC) 5 4 3 0 12 Z-curve (zc) 7 5 4 0 16

df =3
P-curve (PC) 0 0 0 15 15 P-curve (PC) 0 0 0 13 13
P-uniform (PU) 16 0 0 15 31 P-uniform (PU) 15 0 0 14 29
MaxLike (ML) 20 15 0 16 51 MaxLike (ML) 20 16 0 15 51
Z-curve (ZzC) 5 2 2 0 9 Z-curve (ZC) 6 4 3 0 13

df =5
P-curve (PC) 0 0 0 15 15 P-curve (PC) 0 0 0 13 13
P-uniform (PU) 15 0 1 16 32 P-uniform (PU) 14 0 0 14 28
MaxLike (ML) 20 15 0 17 52 MaxLike (ML) 20 16 0 15 51
Z-curve (zC) 3 2 2 0 7 Z-curve (ZC) 6 4 3 0 13

two-sided matched Z-tests with a Bonferroni correction, yielding a joint 0.001 significance
level for the 120 tests.

Table 4 shows the number of times that the row method was significantly more accurate
than the column method by this stringent criterion. There are 6 sub-tables, one for each
combination of type of test (chi-squared or F') and degrees of freedom. For F-tests, df refers
to the numerator (experimental) degrees of freedom. Note that the Bonferroni correction
was applied separately to each sub-table. In all, Table 4 summarizes the results of 720 tests.
Full details are given in the supplementary materials.

In each sub-table of Table 4, the most accurate method overall is maximum likelihood,
followed by p-uniform. When maximum likelihood lost a comparison it was usually to z-
curve. As one would expect from the general theory od maximum likelihood estimation
(Lehmann and Casella 1998, Ch. 6), maximum likelihood performed particularly well when
estimates were based on a large number of tests. It is important to recognize, however,
the the differences in average estimation error are fairly small. We conclude that although
maximum likelihood performs best, all the methods yield reasonable estimates when effect
sizes are homogeneous.
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4.2 Heterogeneity in Both Sample Size and Effect Size

To model heterogeneity in effect size, we let effect size before selection vary according to a
gamma distribution (Johnson, Kotz and Balakrishnan, 1995), a flexible continuous distribu-
tion taking positive values. Sample size before selection remained Poisson distributed with a
population mean of 86. For convenience, sample size and effect size were independent before
selection. Maximum likelihood correctly assumed that effect size is gamma distributed, and
the likelihood search was over the two parameters of the gamma distribution. The other 3
methods were not modified in any way. P-curve and p-uniform continued to assume a fixed
effect size, and z-curve continued to assume heterogeneity in the non-centrality parameter
without distinguishing between heterogeneity in sample size and heterogeneity in effect size.

We carried out a simulation experiment like the one in Section 4.1, with one additional
factor: amount of heterogeneity in effect size, as represented by the standard deviation of the
effect size distribution. The factors were true population mean power (0.25, 0.50 or 0.75),
standard deviation of effect size after selection (0.10, 0.20 or 0.30), number of test statistics
upon which estimates of mean power are based (k =100, 250, 500, 1,000 or 2,000), type of
test (F or chi-squared), and experimental degrees of freedom (1, 3 or 5). Within each cell of
the design, ten thousand significant chi-squared test statistics were randomly generated, and
population mean power was estimated using all four methods. For brevity, we present results
for F-tests with numerator df = 1. Full results are given in the supplementary materials.

When there is heterogeneity in effect size, Maximum Likelihood is computationally de-
manding. The areas under many curves must be calculated numerically; see Expression 3.2.
Using R’s integrate function, the calculation involves fitting a histogram to each curve and
then adding the areas of the bars. It is slow, and some of the curves are very skewed and
razor thin. Numerical accuracy is an issue, especially for ratios of areas when the denom-
inators are very small. In addition, the likelihood function has many local maxima, and
it is necessary to try more than one starting value to have a hope of locating the global
maximum. In our simulations, we used three random starting points. More would have been
better, but the computational burden was too great for a simulation study. As a result, we
consider the performance of maximum likelihood to be under-stated.

Average performance Table 5 shows means and standard deviations of estimated popu-
lation mean power as a function of true population mean power and the standard deviation of
effect size size. In this table the estimates were based on k = 1,000 test statistics, and good
accuracy may be anticipated. P-uniform broke down completely for higher heterogeneity in
effect size, with most estimates close to one regardless of the true value. Notice how a mean
p-uniform estimate at the maximum value of one produces a standard deviation of zero. For
moderate to high mean power, the p-curve also produces an over-estimate on average, with
the problem becoming most severe when mean power and heterogeneity in effect size are
both high. Maximum likelihood and z-curve perform much better.

Absolute error of estimation Table 6 shows mean absolute error of estimation. It
confirms the inaccuracy of p-uniform, and suggests that p-curve may be competitive with
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Table 5: Means and standard deviations of estimated power for heterogeneity in sample size
and effect size based on 1,000 F-tests with numerator df = 1

Mean Standard Deviation
Population Mean Power = 0.25

SD of Effect Size SD of Effect Size

0.1 0.2 0.3 0.1 0.2 0.3

P-curve 0.225 0.272 0.320 P-curve 0.024 0.033 0.039
P-uniform 0.294 0.694 0.949 P-uniform 0.029 0.056 0.028
MaxLike 0.230 0.269 0.283 MaxLike 0.069 0.016 0.015
Z-curve 0.233 0.225 0.226 Z-curve 0.027 0.026 0.024
Population Mean Power = 0.50
SD of Effect Size SD of Effect Size
0.1 0.2 0.3 0.1 0.2 0.3
P-curve 0.549 0.679 0.757 P-curve 0.024 0.027 0.026
P-uniform 0.602 0.913 0.995 P-uniform 0.024 0.019 0.003
MaxLike 0.501 0.502 0.506 MaxLike 0.025 0.019 0.019
Z-curve 0.504 0.492 0.487 Z-curve 0.026 0.026 0.025
Population Mean Power = 0.75
SD of Effect Size SD of Effect Size
0.1 0.2 0.3 0.1 0.2 0.3
P-curve 0.824 0.928 0.962 P-curve 0.013 0.009 0.006
P-uniform 0.861 0.992 1.000 P-uniform 0.012 0.003 0.000
MaxLike 0.752 0.750 0.750 MaxLike 0.022 0.017 0.014
Z-curve 0.746 0.755 0.760 Z-curve 0.021 0.017 0.016

Maximum Likelihood and z-curve when heterogeneity and true mean power are both low,
but not otherwise.

Testing differences in accuracy Table 6 is a sub-table, giving results when estimates
are based on k£ = 1,000 tests. The full table for F-tests with numerator df = 1 has 3 levels
of power, 3 levels of the standard deviation of effect size, and 5 levels of number of tests.
Within each of these 45 combinations, there are 6 pairwise comparisons of the 4 estimation
methods. The resulting 270 matched Z-tests were protected with a Bonferroni correction at
the joint 0.001 significance level.

Table 7 counts the wins for all three df values, and for chi-squared tests as well as F-
tests. The clear winner is Maximum Likelihood, followed by z-curve, p-curve and p-uniform
in that order. When other methods beat maximum likelihood, it was almost always when
heterogeneity in effect size and true population power were both low. This is consistent with
Table 5, in which Maximum Likelihood performs better when mean power is moderate to
high.
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Table 6: Mean Absolute Error of estimation for heterogeneity in sample size and effect size
based on k£ = 1,000 F-tests with numerator df = 1

SD of Effect size
0.1 0.2 0.3
Population Mean Power = 0.25
P-curve 2.87 3.16 7.08
P-uniform  4.50 44.38 69.90
MaxLike 3.55  2.06 3.34
Z-curve 2.59  3.08 2.90
Population Mean Power = 0.50
P-curve 493 17.86 25.70
P-uniform 10.21 41.28 49.54
MaxLike 1.80 1.49 1.50
Z-curve 2.12 2.19 2.23
Population Mean Power = 0.75
P-curve 7.45 17.75 21.23
P-uniform 11.08 24.17 24.99
MaxLike 142 1.18 1.16
Z-curve 1.69 1.42 1.55

4.3 Violating the Assumptions

In Section 4.2, heterogeneity in effect size before selection was modeled as a gamma distribu-
tion, with effect size independent of sample size before selection. Maximum likelihood had a
substantial and arguably unfair advantage, since it assumed exactly the correct distribution
for effect size. Also, sample size and effect size before selection were independent in both the
simulations and in the assumptions of maximum likelihood. It is well known that when its
assumptions are correct, maximum likelihood is very accurate compared to other methods
(Lehmann and Casella 1998, Ch. 6). When assumptions are incorrect however, there are no
genera theoretical results and the performance of maximum likelihood must be assessed on
a case-by-case basis.

To test the robustness of maximum likelihood to assumptions, we conducted a smaller-
scale simulation limited to F-tests with numerator degrees of freedom equal to one. Effect
size after selection had a beta distribution rather than a gamma before selection. Though
the beta distribution covers the interval zero to one and thus lacks the long right tail of the
gamma, still the maximum value of one is more than more than twice Cohen’s (1988, p. 287)
large effect size of f = 0.4. We made sample size and effect size non-independent, connecting
them by a Poisson regression. This induced varying population correlations between sample
size and effect size. Negative correlations would be expected, because of some researchers
doing power analyses to select sample size, or otherwise having a sense of the sample sizes
required for significance in their fields of study.
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Table 7: Number of times row method is significantly more accurate than column method:
Heterogeneity in sample size and effect size

Chi-squared tests F-tests
df =1
PC PU ML ZC Total PC PU ML ZC Total

P-curve (PC) 0 45 0 0 45 P-curve (PC) 0 45 4 0 49
P-uniform (PU) 0 0 0 0 0 P-uniform (PU) 0 0 0 0 0
MaxULike (ML) 41 45 0 33 119 MaxLike (ML) 40 45 0 31 116
Z-curve (ZC) 45 45 8 0 98 Z-curve (ZC) 42 45 10 0 97

df =3
P-curve (PC) 0 45 4 1 50 P-curve (PC) 0 45 5 4 54
P-uniform (PU) 0 0 0 0 0 P-uniform (PU) 0 0 5 0 5
MaxLike (ML) 40 44 0 34 118 MaxLike (ML) 40 40 0 34 114
Z-curve (ZC) 40 45 7T 0 92 Z-curve (ZC) 39 45 7 0 91

af =5
P-curve (PC) 0 45 5 4 54 P-curve (PC) 0 45 5 6 56
P-uniform (PU) 0 0 0 0 0 P-uniform (PU) 0 0 5 1 6
MaxLike (ML) 40 45 0 36 121  MaxLike (ML) 40 40 0 34 114
Z-curve (ZzC) 38 45 5 0 88 Z-curve (zC) 38 42 8 0 88

In our simulations, the variance of effect size after selection was fixed at 0.30, the high
heterogeneity value in Section 4.2. Sample size after selection was Poisson distributed with
expected value exp(fy + f1es). Mean effect size after selection and the parameters [y and
[1 were selected to achieve (a) Desired population mean power after selection, (b) Desired
population correlation between effect size and sample size after selection, and (c¢) Population
mean sample size of 86 after selection at the mean effect size. Details are given in the
Technical Supplement.

Three values of population mean power (0.25, 0.50 and 0.75), five values of the number
of test statistics k£ (100, 250, 500, 1000 and 2000) and five values of the correlation between
sample size and effect size (0.0, -0.2, -0.4, -0., -0.8) were varied in a factorial design, with ten
thousand simulated data sets in each combination of values. All four estimation methods
were applied to each simulated data set, with three random starting values for maximum
likelihood.

Table 8 shows means and standard deviations of estimated population mean power as a
function of true population mean power and the standard deviation of effect size. In this
table, the estimates were based on £ = 1,000 test statistics. Maximum likelihood tends
to overestimate power when true power is high or low but not as much when true power
equals 0.5. Correlation between sample size and effect size does not appear to matter much.
P-curve and p-uniform produce estimates that are much too high on average.

Table 9 shows mean absolute error of estimation when estimates are based on k = 1,000
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Table 8: Means and standard deviations of estimated power with beta effect size and corre-
lated sample size and effect size: k = 1,000 F-tests with numerator df = 1

Mean Standard Deviation
Population Mean Power = 0.25
Correlation Correlation
-0.8  -0.6 -0.4  -0.2 0.0 -0.8  -0.6 -0.4  -0.2 0.0
P-curve 0.407 0.405 0.403 0.403 0.402 P-curve 0.043 0.044 0.043 0.044 0.044
P-uniform 0.853 0.852 0.852 0.852 0.852 P-uniform 0.003 0.004 0.003 0.004 0.004
MaxLike  0.302 0.301 0.300 0.300 0.300 MaxLike  0.015 0.015 0.015 0.015 0.015
Z-curve 0.232 0.231 0.230 0.231 0.230 Z-curve 0.015 0.015 0.015 0.015 0.015
Population Mean Power = 0.50
Correlation Correlation
-0.8  -0.6 -0.4  -0.2 0.0 -0.8  -0.6 -0.4  -0.2 0.0
P-curve 0.839 0.840 0.841 0.841 0.841 P-curve 0.022 0.022 0.022 0.022 0.022
P-uniform 0.906 0.906 0.906 0.906 0.906 P-uniform 0.004 0.004 0.004 0.004 0.004
MaxLike  0.532 0.533 0.533 0.534 0.534 MaxLike  0.018 0.018 0.019 0.019 0.019
Z-curve 0.493 0.494 0.495 0.495 0.495 Z-curve 0.023 0.023 0.023 0.023 0.023
Population Mean Power = 0.75
Correlation Correlation
-0.8  -0.6 -0.4  -0.2 0.0 -0.8  -0.6 -0.4  -0.2 0.0
Pcurve 0.990 0.991 0.992 0.992 0.992 Pcurve 0.002 0.002 0.002 0.002 0.002
Puniform  0.964 0.966 0.966 0.967 0.967 Puniform  0.003 0.003 0.003 0.003 0.003
MaxLike  0.826 0.832 0.836 0.838 0.840 MaxLike  0.016 0.016 0.015 0.015 0.015
Zcurve 0.785 0.790 0.793 0.794 0.796 Zcurve 0.013 0.013 0.013 0.012 0.012

test statisitics. It shows maximum likelihood to be consistently less accurate than z-curve,
though not as bad as p-curve and p-uniform. Correlation between sample size and effect size
appears to have little effect. Table 9 shows the results only for £ = 1,000 test statistics, but
results are very similar for the other values of k. Full details are given in the supplementary
materials.

Within each of the 5 x 3 x 5 = 75 combinations of correlation between sample size and
effect size, population mean power and number of tests on which the estimates are based,
there are six pairwise comparisons of mean absolute error for the four estimation methods.
The resulting 450 matched Z-tests were protected with a Bonferroni correction at the joint
0.001 significance level. The full set of Z statistics may be found in the supplementary
materiaals.

Table 10 counts the wins. While Table 9 shows results just for estimates based on
k = 1,000 tests, Table 10 pools the results for all five values of k, because they were extremely
similar. These results show that when the distributional assumptions of maximum likelihood
are violated, it can be less accurate than z-curve. Maximum likelihood still beat p-curve and
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Table 9: Mean Absolute Error of estimation with beta effect size and correlated sample size
and effect size: k= 1,000 F-tests with numerator df =1

Correlation

-0.8 -06 -04 -0.2 0.0

Population Mean Power = 0.25
P-curve 15.67 15.49 15.33 15.30 15.24
P-uniform 60.26 60.24 60.23 60.22 60.22
MaxLike 517 511 5.05 5.05 5.01
Z-curve 237 241 247 248 2.50

Population Mean Power = 0.50
P-curve 33.88 33.99 34.07 34.09 34.11
P-uniform 40.59 40.61 40.63 40.63 40.64
MaxLike 325 334 342 343 3.46
Z-curve 1.92  1.91 1.89 190 1.89

Population Mean Power = 0.75
P-curve 24.04 24.13 24.18 24.21 24.24
P-uniform 21.43 21.56 21.63 21.67 21.72
MaxLike 7.62 823 856 876 8.97
Z-curve 3.51  4.01 427 443 4.59

p-uniform in every comparison, as did z-curve.

Table 10: Number of times row method is significantly more accurate than column method
with beta effect size and correlated sample size and effect size: F-tests with numerator df = 1

P-curve P-uniform MaxLike Z-curve Total

P-curve 0 50 0 0 50
P-uniform 25 0 0 0 25
MaxLike 75 75 0 5 155
Z-curve 75 75 69 0 219

4.4 Full Heterogeneity

When population mean power in a field of study is being estimated, there will typically be
heterogeneity not just in sample size and effect size, but also in the tests on which estimates
are based. The distribution of sample size is unlikely to be Poisson, the distribution of effect
size will not be gamma and the null hypothesis will be true with non-zero probability. Our
full heterogeneity simulation examines the performance of the four methods in this situation.
Given the performance of p-curve and p-uniform in the previous scenario, we do not expect
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these methods to perform well. A more important question is how z-curve and maximum
likelihood perform when they are faced with full heterogeneity.

Sample size and degrees of freedom In the simulations so far, sample sizes have been
Poisson distributed. While the Poisson distribution is a widely accepted model for count
data (Johnson, Kemp and Koch, 2005), sample size may be more dispersed and skewed than
the Poisson in practice when a variety of research designs are employed. Figure 2 compares
the Poisson distribution with mean 86 to a histogram of 7,000 approximate sample sizes
based on denominator degrees of freedom in the journal Psychological Science (give years).
These are preliminary data and not a random sample, but we believe they are closer to
reality than the Poisson when a full range of topics is being investigated.

Figure 2: Poisson versus Psychological Science Sample Sizes
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The Psychological Science data consist of 7,000 pairs of numerator and denominator
degrees of freedom. Actual sample sizes were not collected in this preliminary attempt at
data mining, so sample size was approximated by n = df; + dfs + 1. Numerator degrees of
freedom were limited to ten or fewer, and the data were edited so that sample size ranged
from 20 to 500, with a mean of 86.

In this simulation, eighty percent of the tests were F-tests, and twenty percent were chi-
squared. For the F-tests, (df1,df>) pairs were randomly sampled with replacement from the
Psychological Science data. The degrees of freedom for the chi-squared tests were randomly
sampled with replacement from the df; values. Sample size was selected with replacement,
independently of degrees of freedom.
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Effect size In this set of simulations, effect size has a mixed continuous-discrete distribu-
tion. With probability 0.10, effect size equals zero, so that the null hypothesis is exactly true.
With probability 0.05, effect size has a standard exponential distribution shifted by one; in
this case the minimum effect size is over twice Cohen’s (1988) “high” value, representing
manipulation checks and other “findings” that are too good to be true. The other 0.85 prob-
ability is devoted to a beta distribution, with parameters chosen to make population mean
power after selection either 0.25, 0.50 or 0.75. No special attempt was made to hold the
standard deviation of effect size constant, but all values were above Section 4.2’s high value
of 0.30. Sample size and effect size are independent after selection, so that before selection
they are non-independent.

Figure 3 shows the distribution of effect size after selection and and the resulting distri-
bution of power after selection. It is evident that the effect of heterogeneity in sample size
and effect size is increased heterogeneity in power. Since power is bounded by 0.05 and one,
its distribution is forced to the extremes.
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Figure 3: Distributions of effect size and power after selection under full heterogeneity
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Average performance The p-curve, p-uniform, maximum likelihood and z-curve methods
were used to estimate the means of the power distributions depicted in Figure 3. Maximum
likelihood continued to assume a gamma distribution for effect size, and three sets of ran-
dom starting values for the gamma parameters were employed. Table 11 shows means and
standard deviations of the estimates. The p-uniform method yields estimates that are much
too high. P-curve also over-estimates mean power, though to a much lesser degree than p-
uniform. Over-estimation by p-curve is more pronounced when true population mean power
is high. Maximum likelihood and z-curve also yield mildly biased estimates, though not in

a consistent direction across conditions.

Table 11: Means and standard deviations of estimated population mean power under full

heterogeneity
Mean Standard Deviation
Population Mean Power = 0.25
Number of Tests Number of Tests
100 250 500 1000 2000 100 250 500 1000 2000
P-curve 0.280 0.280 0.283 0.288 0.292 P-curve 0.072 0.051 0.037 0.027 0.020
P-uniform 0.691 0.776 0.823 0.856 0.877 P-uniform 0.155 0.107 0.077 0.054 0.039
MaxLike  0.267 0.267 0.268 0.269 0.269 MaxLike  0.046 0.029 0.020 0.015 0.012
Z-curve 0.251 0.240 0.234 0.232 0.230 Z-curve 0.064 0.042 0.032 0.025 0.020
Population Mean Power = 0.50
Number of Tests Number of Tests
100 250 500 1000 2000 100 250 500 1000 2000
P-curve 0.561 0.571 0.577 0.581 0.585 P-curve 0.063 0.040 0.029 0.020 0.015
P-uniform 0.807 0.861 0.891 0.911 0.923 P-uniform 0.090 0.060 0.042 0.030 0.022
MaxLike  0.473 0.468 0.465 0.463 0.462 MaxLike  0.054 0.035 0.025 0.019 0.015
Z-curve 0.517 0.505 0.497 0.491 0.487 Z-curve 0.071 0.047 0.035 0.026  0.020
Population Mean Power = 0.75
Number of Tests Number of Tests
100 250 500 1000 2000 100 250 500 1000 2000
Pcurve 0.828 0.836 0.840 0.842 0.844 Pcurve 0.034 0.020 0.014 0.010 0.007
Puniform 0.921 0.945 0.956 0.964 0.968 Puniform  0.035 0.022 0.015 0.011 0.008
MaxLike  0.740 0.736 0.734 0.731 0.730 MaxLike  0.045 0.030 0.022 0.016 0.012
Zcurve 0.764 0.756 0.750 0.745 0.740 Zcurve 0.042 0.030 0.023 0.0180 .014
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Absolute error of estimation Table 12 shows mean absolute differences between the
estimates and mean power, multiplied by 100. The p-uniform estimates are unacceptable,
and p-curve is clearly less accurate than maximum likelihood or z-curve.

Table 12: Mean Absolute Error of Estimation under Full Heterogeneity

Number of Tests
100 250 500 1000 2000
Population Mean Power = 0.25
P-curve 6.27 4.68 4.05 4.00 4.25
P-uniform 44.14 52.57 57.35 60.56 62.67
MaxLike 3.87 266 223 203 1.99

Z-curve 5.13 353 295 260 2.43
Population Mean Power = 0.50
P-curve 739 721 767 810 8.50

P-uniform 30.67 36.14 39.13 41.06 42.30
MaxLike 4.81 384 3.67 3.74 3.79
Z-curve 593 3.78 281 223 1.98
Population Mean Power = 0.75
P-curve 7.88 862 899 924 941
P-uniform 17.11 19.48 20.61 21.36 21.84
MaxLike 3.67 261 216 2.03 2.07
Z-curve 3.64 245 1.81 148 1.38

Within each of the 15 combinations of power and number of tests, there are six potential pair-
wise comparisons of mean accuracy. These comparisons were carried out using large-sample
two-sided matched Z-tests with a Bonferroni correction at the joint 0.001 level. As would be
anticipated from Table 12, p-uniform was significantly less accurate than the other methods
in all comparisons, and p-curve was significantly less accurate than maximum likelihood and
z-curve in all comparisons.

Table 13 counts significant wins and losses; z-curve prevails over maximum likelihood by a
score of seven to six. Five of maximum likelihood’s six wins occur when the true population
mean power is 0.25. In this setting, the z-curve estimate appears to settle down to 0.23
rather than 0.25 as the number of tests k£ on which the estimate is based increases. This is
not a serious error in practice. Note that while the distributional assumptions of maximum
likelihood are violated in this simulation, it still performs approximately as well as z-curve.

4.5 A conservative bootstrap confidence interval for z-curve

Estimates should always be accompanied by confidence intervals, to give an idea of their
precision. For z-curve, the most natural choice is a bootstrap confidence interval. The
bootstrap (Efron 1981, Efron and Tibshirani 1993) is based on re-sampling from the observed
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Table 13: Number of times row method is significantly more accurate than column method
under full heterogeneity

P-curve P-uniform MaxLike Z-curve Total

P-curve 0 15 0 0 15
P-uniform 0 0 0 0 0

MaxLike 15 15 0 6 36
Z-curve 15 15 7 0 37

data with replacement, calculating a statistic on each re-sampled data set, and using the
histogram of the resulting values as an approximation to the sampling distribution of the
statistic. In this case the statistic is the z-curve estimate. Our choice is the percentile
confidence interval method, which assumes that the sampling distribution of the estimate is
symmetric, and centered on the quantity being estimated. Here, we re-sampled test statistics
and computed z-curve estimates B = 500 times. The 95 percent bootstrap confidence interval
ranges from the 2.5 percentile to the 97.5 percentile of the estimates.

Especially when samples are small, it is important to verify that a proposed 95% confi-
dence interval contains the true value 95% of the time. This is called the coverage of the
confidence interval. In a pilot study, we found that the coverage of the 95% bootstrap confi-
dence interval was sometimes less than 95%. For example, notice in Table 11 that the mean
estimate for power = 0.25 and k£ = 2,000 is 0.23 rather than 0.25. The sampling distribution
of the z-curve estimate is nicely symmetric as required by the bootstrap method, but it is
centered on 0.23 and not 0.25. The resulting coverage of the confidence interval is roughly
84% when it should be 95. With increasing volume of data, the width of the confidence
interval would shrink and the coverage would decrease to zero.

Reviewing the average z-curve estimates from all the simulations, we determined that the
the bias of the z-curve estimate is seldom more than two percentage points, and never more
than two percentage points for larger samples. Thus an easy fix of the confidence interval
is to decrease the lower limit by 0.02 and increase the upper limit by 0.02. This yields our
conservative bootstrap confidence interval.

We tested the conservative bootstrap confidence interval in the setting of full heterogene-
ity, with 10,000 simulated datasets in each combination of three values of true population
mean power (again, the distributions in Figure 3), and seven values of the number of test
statistics, ranging from k = 25 to k = 2, 000.

Table 14 gives the coverage values. Even for k = 25 its performance is respectable. The
table shows that the conservative bootstrap confidence interval is indeed conservative under
most circumstances. When the estimates are based on larger numbers of test statistics, it
behaves more like a 99 percent confidence interval. For estimates based on fewer than 25
test statistics, it might be helpful to increase the correction factor from 0.02 to 0.025.
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Table 14: Coverage of the 95% conservative bootstrap confidence interval

Population Number of Tests

Mean Power 25 50 100 250 500 1000 2000
0.25 95.78 97.13 98.02 98.69 98.76 98.35 97.95
0.50 94.58 95.51 96.79 98.27 99.11 99.28 99.15
0.75 93.21 94.81 96.83 98.85 99.37 99.73 99.58

Table 15 shows mean upper and lower confidence limits. The upper limit is the top number in
each cell, and the lower limit is the bottom number. For example, when the true population
mean power is 0.75 and the z-curve estimate is based on k = 100 test statistics, the average
confidence interval will range from 0.65 to 0.85. This may be sufficient precision for some
purposes, but it is desirable to base estimates on a larger number of test statistics if possible.

Table 15: Average Upper and Lower Confidence limits

Population Number of Tests
Mean Power 25 50 100 250 500 1000 2000
0.25 0.54 046 0.40 0.35 032 0.30 0.29
0.06 0.09 0.11 0.14 0.16 0.17 0.17
0.50 0.76 0.71 0.67 0.62 0.58 0.56 0.55
0.26 032 036 0.39 041 042 0.43
0.75 0.89 0.87 0.85 0.83 0.81 0.80 0.79

0.55 061 0.65 0.67 0.68 0.69 0.69

5 Application to the Replication Project data

Of the 100 original studies in the OSC (2015) Replication Project, three were null results
(failures to reject the null hypothesis), and in an additional four studies the original result
was only “marginally” significant, with p-values ranging from 0.051 to 0.073. These were set
aside, because the methods discussed in this paper require p < 0.05. Of the remaining 93
studies, five were eliminated for other reasons, leaving 88. Of these, thirty-four tests or 39%
were significant on replication.

Most of the test statistics for the originally reported tests were F' or chi-squared. The
remainder were converted by squaring ¢ statistics to obtain F's, and squaring Z statistics
t obtain chi-squared with one degree of freedom. Input to z-curve was simply the set of
p-values. For the other three methods, test statistics were divided into subsets according
to the type of test (F or chi-squared) and the (numerator) degrees of freedom. Estimates
were calculated for each subset, and then combined as a weighted sum, using the observed
proportions of the subsets as weights.
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The estimates of population mean power were 0.68 for p-curve, 0.76 for p-uniform, 0.59
for maximum likelihood and 0.66 for z-curve. The 95% confidence interval for z-curve was
from 0.49 to 0.79. While k = 88 test statistic is not a large number, it is still notable that
all the estimates of population mean power were substantially greater than the observed
replication rate. In retrospect this should not be surprising. The estimation methods and
simulations assume that hypotheses are tested once, published if and only if the results
are significant, and then the studies leading to significant results are replicated exactly in
every detail. When these conditions are not satisfied, the probability of significance upon
replication will typically be diminished. More detail is given in the Discussion section.

6 Discussion

In this paper, we have compared four methods for estimating population mean power after
selection for significance: p-curve, p-uniform, maximum likelihood and z-curve. P-curve
(Simonsohn et al., 2014b) and p-uniform (van Assen et al., 2014) are slight adaptations
of methods for estimating a fixed effect size. Maximum likelihood is a generic approach
to estimation for any parametric model, and z-curve is new. Based on a set of large-scale
simulation studies, we conclude that z-curve is the most accurate method when there is
substantial heterogeneity in effect size and the distribution of effect size is unknown. It
is also the most convenient, requiring only a set of p-values as input. Estimates should
be accompanied by confidence intervals. We describe a conservative bootstrap confidence
interval for z-curve and verify by simulation that it has good coverage even for small samples.

In a meta-analysis of studies testing exactly the same hypothesis with very similar subject
populations, it is reasonable to assume that effect size is a single fixed constant, while sample
size of course may vary. This is the setting for which p-curve and p-uniform were designed.
Here, all the methods performed reasonably well in our simulations. The most accurate
method was maximum likelihood, followed by p-uniform. Then we introduced heterogeneity
in effect size. In this situation, maximum likelihood estimates are based on a parametric
model for the distribution of effect size, and also for the relationship between sample size
and effect size. We carried out another large-scale simulation experiment in which effect
size was gamma distributed and independent of sample size before selection. Maximum
likelihood made full use of these features. When heterogeneity in effect size was moderate
to high, maximum likelihood was by far the most accurate method in spite of numerical
difficulties. The next most accurate was z-curve, which performed acceptably but not as
well as maximum likelihood. The effect of high heterogeneity on p-uniform was particularly
severe, leading to very high estimated mean power almost regardless of the true value.

In practice, the probability distribution of effect size will never be known, and effect
size may well be related to sample size. To test the robustness of maximum likelihood, we
conducted a study in which effect size was beta distributed (limited to values between zero
and one, in contrast to the assumed right-skewed gamma distribution), and the population
correlation between sample size ranged from zero to -0.8. Maximum likelihood continued to
assume a gamma distribution for effect size and zero correlation between sample size and
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effect size. Here, z-curve was clearly more accurate than maximum likelihood, which in turn
still out-performed p-curve and p-uniform. There is clear evidence that maximum likelihood
estimation of power is sensitive to violation of distributional assumptions; correlation be-
tween sample size and effect size had little effect. In another simulation where effect size was
right skewed but not gamma distributed, z-curve and maximum likelihood performed about
equally well. We conclude that since the distribution of effect size is always unknown and
moderate heterogeneity in effect size cannot be ruled out, the preferred method of estimating
population mean power from published results is z-curve.

Some important statistical features of z-curve require further investigation. One is the
question of independence. In all he simulations, the input p-values were independent. While
z-curve does not formally assume independent inputs, the bootstrap confidence interval
definitely does. Further simulations could provide reassurance (or raise a warning flag)
about the performance of the method when clusters of p-values come from tests conducted
on the same raw data set. Another unresolved issue is how well the method performs for
tests that do not have one of the common non-central distributions under the alternative
hypothesis. The most important case is in classical repeated measures ANOVA, where many
test statistics have central I’ distributions when the null hypothesis is true, but multiples of
a central F' when the null hypothesis is false and power is greater than 0.05. Preliminary
results are encouraging, but a full simulation study is needed.

When we applied z-curve and the other methods to the OSC replication data, we ob-
tained estimates that were not extremely different from one another, suggesting moderate
heterogeneity in effect size. The estimate for z-curve was 0.66 compared to a much lower
empirical replication rate of 0.39. Because the estimate was based on a fairly modest num-
ber of studies, the confidence interval was wide, ranging from 0.49 to 0.79. Though the 39%
replication rate is also subject to sampling error, it is clear that mean power was quite a bit
greater than actual replicability.

While the gap between mean power and replicability is greater than we anticipated, still
it is be expected. Both the simulations and the theory behind the estimation methods are
based on a simplified and idealized model of the research process, one that makes strong
assumptions about how published test statistics are generated. First, it is assumed that
hypotheses are formulated in advance, and results are published if and only if p < 0.05. But
as we know too well, not all submitted papers are published. Any tendency on the part
of reviewers to select “interesting” (that is, unexpected) results for publication may at the
same time select phenomena with small or zero effect sizes.

Second, it is assumed that studies are replicated exactly in every detail, so that when a
result is significant and is reported, the power of the test on replication remains identical
to what it was in the original study. The replications in the OSC project were certainly
not exact in most cases. The subject populations were usually different, and even sample
sizes were sometimes changed — for reasons that no doubt seemed good at the time. There
is evidence that in general, the effect sizes in replication studies tend to be lower than in
the original studies (need reference). This probably held true in the OSC project too. For
a multitude of possible reasons including weaker expectancy effects (Rosenthal, 1966) in
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the replication studies, the mean power of the tests on replication in the OSC project may
well have been less than they were in the original studies. We suspect that this is true of
replications in general, and is not limited to the OSC replication project.

Third, the estimation methods and the simulations make no allowance for the kind of
exploratory statistical analysis that capitalizes on chance, and makes statistical significance
a near certainty. The terms “vibration effects” (loannidis, 2008), “False-Positive Psychol-
ogy” (Simmons, Nelson and Simonsohn, 2011) “p-hacking” (Simonsohn et al., 2014a) and
“Questionable Research Practices” (Schimmack, 2012) have been used. Here, we will call it
p-hacking. We have no doubt that the practice of p-hacking is widespread and that it reduces
the average true power of published studies. The question is how it influences estimates of
power.

Here are two competing hypotheses. One possibility is that p-hacking is just another form
of selection for significance, essentially searching at random through a set of possibilities much
like the original unselected population, and stopping once it finds a test that is significant. In
this case, estimation methods that allow for selection (publication bias) also automatically
allow for p-hacking. Simonsohn et al. (2014b) report some simulations that suggest optimism
about the effect of p-hacking upon p-curve estimates of effect size. Similar but larger-scale
simulations are needed for mean power.

Another perspective on p-hacking is less comforting. In selection for significance, it may
be that if one test is not significant, the next will happen upon a large effect, or employ a
large sample size. The resulting power will be higher. But in p-hacking, the data analyst is
testing roughly the same hypothesis over and over in different ways (perhaps using different
covariates or discarding different “outliers”) until something works. True (as opposed to
estimated) effect size will not change much, and neither will sample size. In the end, average
power will not be affected much at all by a selection process that essentially selects everything.
The positive effects of selection for significance upon average power will be lost, and the power
of published findings will be distributed much like power before selection. By Principle 5, the
effect of p-hacking upon mean power will be largest when power before selection is widely
dispersed and low on average. Unfortunately, this is the setting where p-hacking would be
most helpful for professional advancement. It is quite possible that the discrepancy between
estimated mean power and replication rate in the OSC data arose from p-hacking.

Whatever the source of the discrepancy, it is clear that that estimates of mean power
provide conservative estimates of replicability. When they are low, one may be assured that
replicability is still lower. By mining the published literature for genuine probability samples
of p-values and then applying z-curve, it will be possible to determine where the replicability
problem is most acute in the scientific literature. It would be prohibitively expensive to
do this by literally replicating random samples of studies. Estimating mean power is the
answer, and z-curve is the current state of the art.
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