STA 2101/442 Assignment 1 (Review)

- 1. Which statement is true? (Quantities in **boldface** are matrices of constants.)
 - (a) A(B+C) = AB + AC
 - (b) $\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{B}\mathbf{A} + \mathbf{C}\mathbf{A}$
 - (c) Both a and b
 - (d) Neither a nor b
- 2. Which statement is true?
 - (a) $a(\mathbf{B} + \mathbf{C}) = a\mathbf{B} + a\mathbf{C}$
 - (b) $a(\mathbf{B} + \mathbf{C}) = \mathbf{B}a + \mathbf{C}a$
 - (c) Both a and b
 - (d) Neither a nor b
- 3. Which statement is true?
 - (a) $(\mathbf{B} + \mathbf{C})\mathbf{A} = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$
 - (b) $(\mathbf{B} + \mathbf{C})\mathbf{A} = \mathbf{B}\mathbf{A} + \mathbf{C}\mathbf{A}$
 - (c) Both a and b
 - (d) Neither a nor b
- 4. Which statement is true?
 - (a) $(\mathbf{AB})' = \mathbf{A}'\mathbf{B}'$
 - (b) $(\mathbf{AB})' = \mathbf{B}'\mathbf{A}'$
 - (c) Both a and b
 - (d) Neither a nor b
- 5. Which statement is true?
 - (a) $\mathbf{A}'' = \mathbf{A}$
 - (b) $\mathbf{A}^{\prime\prime\prime} = \mathbf{A}^{\prime}$
 - (c) Both a and b
 - (d) Neither a nor b

- 6. Suppose that the square matrices **A** and **B** both have inverses. Which statement is true?
 - (a) $(\mathbf{AB})^{-1} = \mathbf{A}^{-1}\mathbf{B}^{-1}$
 - (b) $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$
 - (c) Both a and b
 - (d) Neither a nor b
- 7. Which statement is true?
 - (a) (A + B)' = A' + B'
 - (b) $(\mathbf{A} + \mathbf{B})' = \mathbf{B}' + \mathbf{A}'$
 - (c) (A + B)' = (B + A)'
 - (d) All of the above
 - (e) None of the above
- 8. Which statement is true?
 - (a) $(a+b)\mathbf{C} = a\mathbf{C} + b\mathbf{C}$
 - (b) $(a+b)\mathbf{C} = \mathbf{C}a + \mathbf{C}b$
 - (c) $(a+b)\mathbf{C} = \mathbf{C}(a+b)$
 - (d) All of the above
 - (e) None of the above
- 9. Recall that A symmetric means $\mathbf{A} = \mathbf{A}'$. Let X be an n by p matrix. Prove that $\mathbf{X}'\mathbf{X}$ is symmetric.
- 10. Recall that an inverse of the matrix **A** (denoted \mathbf{A}^{-1}) is defined by two properties: $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$ and $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$. Prove that inverses are unique, as follows. Let **B** and **C** both be inverses of **A**. Show that $\mathbf{B} = \mathbf{C}$.
- 11. Let **X** be an *n* by *p* matrix with $n \neq p$. Why is it incorrect to say that $(\mathbf{X}'\mathbf{X})^{-1} = \mathbf{X}^{-1}\mathbf{X}'^{-1}$?
- 12. Suppose that the square matrices **A** and **B** both have inverses. Prove that $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$. You have two things to show.
- 13. Let **A** be a non-singular square matrix. Prove $(\mathbf{A}^{-1})' = (\mathbf{A}')^{-1}$.
- 14. Using Question 13, prove that the if the inverse of a symmetric matrix exists, it is also symmetric.
- 15. Let **A** be a square matrix with the determinant of **A** (denoted $|\mathbf{A}|$) equal to zero. What does this tell you about \mathbf{A}^{-1} ? No proof is required here.

- 16. Let **a** be an $n \times 1$ matrix of real constants. How do you know $\mathbf{a}'\mathbf{a} \ge 0$?
- 17. Let **X** be an $n \times p$ matrix of constants. Recall the definition of linear independence. The columns of **X** are said to be *linearly dependent* if there exists a $p \times 1$ vector $\mathbf{v} \neq \mathbf{0}$ with $\mathbf{X}\mathbf{v} = \mathbf{0}$. We will say that the columns of **X** are linearly *independent* if $\mathbf{X}\mathbf{v} = \mathbf{0}$ implies $\mathbf{v} = \mathbf{0}$.
 - (a) Show that if the columns of X are linearly dependent, then the columns of X'X are also linearly dependent.
 - (b) Show that if the columns of \mathbf{X} are linearly dependent, then the rows of $\mathbf{X}'\mathbf{X}$ are linearly dependent.
 - (c) Show that if the columns of X are linearly independent, then the columns of X'X are also linearly independent. Use Problem 16 and the definition of linear independence.
- 18. Let \mathbf{A} be a square matrix. Show that if the columns of \mathbf{A} are linearly dependent, \mathbf{A}^{-1} cannot exist. Hint: \mathbf{v} cannot be both zero and not zero at the same time.
- 19. Recall the spectral decomposition of a square symmetric matrix (For example, a variance-covariance matrix). Any such matrix Σ can be written as $\Sigma = \mathbf{P} \Lambda \mathbf{P}'$, where \mathbf{P} is a matrix whose columns are the (orthonormal) eigenvectors of Σ , Λ is a diagonal matrix of the corresponding (non-negative) eigenvalues, and $\mathbf{P'P} = \mathbf{PP'} = \mathbf{I}$.
 - (a) Let Σ be a square symmetric matrix with eigenvalues that are all strictly positive.
 - i. What is Λ^{-1} ?
 - ii. Show $\Sigma^{-1} = \mathbf{P} \Lambda^{-1} \mathbf{P}'$
 - (b) Let Σ be a square symmetric matrix, and this time some of the eigenvalues might be zero.
 - i. What do you think $\Lambda^{1/2}$ might be?
 - ii. Define $\Sigma^{1/2}$ as $\mathbf{P} \Lambda^{1/2} \mathbf{P}'$. Show $\Sigma^{1/2}$ is symmetric.
 - iii. Show $\Sigma^{1/2}\Sigma^{1/2} = \Sigma$.

(c) Now return to the situation where the eigenvalues of the square symmetric matrix Σ are all strictly positive. Define $\Sigma^{-1/2}$ as $\mathbf{P}\Lambda^{-1/2}\mathbf{P}'$, where the elements of the diagonal matrix $\Lambda^{-1/2}$ are the reciprocals of the corresponding elements of $\Lambda^{1/2}$.

i. Show that the inverse of $\Sigma^{1/2}$ is $\Sigma^{-1/2}$, justifying the notation. ii. Show $\Sigma^{-1/2}\Sigma^{-1/2} = \Sigma^{-1}$.

- (d) The (square) matrix Σ is said to be *positive definite* if $\mathbf{a}'\Sigma\mathbf{a} > 0$ for all vectors $\mathbf{a} \neq \mathbf{0}$. Show that the eigenvalues of a symmetric positive definite matrix are all strictly positive. Hint: the \mathbf{a} you want is an eigenvector.
- (e) Let Σ be a symmetric, positive definite matrix. Putting together a couple of results you have proved above, establish that Σ^{-1} exists.