
Chapter 5

Multiple Regression

5.1 Three Meanings of Control

In this course, we will use the word control to refer to procedures designed to reduce
the influence of extraneous variables on our results. The definition of extraneous is “not
properly part of a thing,” and we will use it to refer to variables we’re not really inter-
ested in, and which might get in the way of understanding the relationship between the
explanatory variable and the response variable.

There are two ways an extraneous variable might get in the way. First, it could
be a confounding variable – related to both the explanatory variable and the response
variable, and hence capable of creating masking or even reversing relationships that would
otherwise be evident. Second, it could be unrelated to the explanatory variable and hence
not a confounding variable, but it could still have a substantial relationship to the response
variable. If it is ignored, the variation that it could explain will be part of the ”background
noise,” making it harder to see the relationship between explanatory variable and response
variable, or at least causing it to appear relatively weak, and possibly to be non-significant.

The main way to control potential extraneous variables is by holding them constant. In
experimental control, extraneous variables are literally held constant by the procedure
of data collection or sampling of cases. For example, in a study of problem solving
conducted at a high school, background noise might be controlled by doing the experiment
at the same time of day for each subject (and not when classes are changing). In learning
experiments with rats, males are often employed because their behavior is less variable
than that of females. And a very good example is provided by the TUBES data of Chapter 3,
where experimental conditions were so tightly controlled that there was practically no
available source of variation in growth rate except for the genetic character of the fungus.

An alternative to experimental control is statistical control, which takes two main
forms. One version, subdivision, is to subdivide the sample into groups with identical or
nearly identical values of the extraneous variable(s), and then to examine the relationship
between explanatory and response variable separately in each subgroup – possibly pooling
the subgroup analyses in some way. The analysis of the Berkeley graduate admissions
data in Chapter 4 is our prime example. As another example where the relationship

107



108 CHAPTER 5. MULTIPLE REGRESSION

of interest is between quantitative rather than categorical variables, the correlation of
education with income might be studied separately for men and women. The drawback of
this subdivision approach is that if extraneous variables have many values or combinations
of values, you need a very large sample.

The second form of statistical control, model-based control, is to exploit details of the
statistical model to accomplish the same thing as the subdivision approach, but without
needing a huge sample size. The primary example is multiple linear regression, which is
the topic of this chapter.

5.2 Population Parameters

Recall we said two variables are “related” if the distribution of the response variable
depends on the value of the explanatory variable. Classical regression and analysis of
variance are concerned with a particular way in which the explanatory and response
variables might be related, one in which the population mean of Y depends on the value
of X.

Think of a population histogram manufactured out of a thin sheet of metal. The
point (along the horizontal axis) where the histogram balances is called the expected
value or population mean; it is usually denoted by E[Y ] or µ (the Greek letter mu). The
conditional population mean of Y given X = x is just the balance point of the conditional
distribution. It will be denoted by E[Y |X = x]. The vertical bar — should be read as
”given.”

Again, for every value of X, there is a separate distribution of Y , and the expected
value (population mean) of that distribution depends on the value of X. Furthermore,
that dependence takes a very specific and simple form. When there is only one explanatory
variable, the population mean of Y is

E[Y |X = x] = β0 + β1x. (5.1)

This is the equation of a straight line. The slope (rise over run) is β1 and the intercept
is β0. If you want to know the population mean of Y for any given x value, all you need
are the two numbers β0 and β1.

But in practice, we never know β0 and β1. To estimate them, we use the slope and
intercept of the least-squares line:

Ŷ = b0 + b1x. (5.2)

If you want to estimate the population mean of Y for any given x value, all you need are
the two numbers b0 and b1, which are calculated from the sample data.

This has a remarkable implication, one that carries over into multiple regression. Ordi-
narily, if you want to estimate a population mean, you need a reasonable amount of data.
You calculate the sample mean of those data, and that’s your estimate of the population
mean. If you want to estimate a conditional population mean, that is, the population
mean of the conditional distribution of Y given a particular X = x, you need a healthy
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amount of data with that value of x. For example, if you want to estimate the average
weight of 50 year old women, you need a sample of 50 year old women — unless you are
willing to make some assumptions.

What kind of assumptions? Well, the simple structure of (5.1) means that you can use
formula (5.2) to estimate the population mean of Y for a given value of X = x without
having any data at that x value. This is not “cheating,” or at any rate, it need not be. If

• the x value in question is comfortably within the range of the data in your sample,
and if

• the straight-line model is a reasonable approximation of reality within that range,

then the estimate can be quite good.

The ability to estimate a conditional population mean without a lot of data at any
given x value means that we will be able to control for extraneous variables, and remove
their influence from a given analysis without having the massive amounts of data required
by the subdivision approach to statistical control.

We are getting away with this because we have adopted a model for the data that
makes reasonably strong assumptions about the way in which the population mean of Y
depends on X. If those assumptions are close to the truth, then the conclusions we draw
will be reasonable. If the assumptions are badly wrong, we are just playing silly games.
There is a general principle here, one that extends far beyond multiple regression.

Data Analysis Hint 4 There is a direct tradeoff between amount of data and the strength
(restrictiveness) of model assumptions. If you have a lot of data, you do not need to as-
sume as much. If you have a small sample, you will probably have to adopt fairly restrictive
assumptions in order to conclude anything from your data.

Multiple Regression Now consider the more realistic case where there is more than
one explanatory variable. With two explanatory variables, the model for the population
mean of Y is

E[Y |X = x] = β0 + β1x1 + β2x2,

which is the equation of a plane in 3 dimensions (x1, x2, y). The general case is

E[Y |X = x] = β0 + β1x1 + . . .+ βp−1xp−1,

which is the equation of a hyperplane in p dimensions.

Comments

• Since there is more than one explanatory variable, there is a conditional distribu-
tion of Y for every combination of explanatory variable values. Matrix notation
(boldface) is being used to denote a collection of explanatory variables.
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• There are p − 1 explanatory variables. This may seem a little strange, but we’re
doing this to keep the notation consistent with that of standard regression texts
such as [16]. If you want to think of an explanatory variable X0 = 1, then there are
p explanatory variables.

• What is β0? It’s the height of the population hyperplane when all the explanatory
variables are zero, so it’s the intercept.

• Most regression models have an intercept term, but some do not (X0 = 0); it
depends on what you want to accomplish.

• β0 is the intercept. We will now see that the other β values are slopes.

Consider

E[Y |X = x] = β0 + β1x1 + β2x2 + β3x3 + β4x4

What is β3? If you speak calculus, ∂
∂x3
E[Y ] = β3, so β3 is the rate at which the population

mean is increasing as a function of x3, when other explanatory variables are held constant
(this is the meaning of a partial derivative).

If you speak high school algebra, β3 is the change in the population mean of Y when
x3 is increased by one unit and all other explanatory variables are held constant. Look at

β0 + β1x1 + β2x2 +β3(x3 + 1) +β4x4
− (β0 + β1x1 + β2x2 +β3x3 +β4x4)

(5.3)

= β0 + β1x1 + β2x2 + β3x3 +β3 +β4x4
− β0 − β1x1 − β2x2 − β3x3 −β4x4

= β3

The mathematical device of holding other variables constant is very important. This
is what is meant by statements like “Controlling for parents’ education, parents’ in-
come and number of siblings, quality of day care is still positively related to academic
performance in Grade 1.” We have just seen the prime example of model-based statistical
control — the third type of control in the “Three meanings of control” section that began
this chapter.

We will describe the relationship between Xk and Y as positive (controlling for the
other explanatory variables) if βk > 0 and negative if βk < 0.

Recall from Chapter 3 that a quantity (say w) is a linear combination of quantities
z1, z2 and z3 if w = a1z1+a2z2+a3z3, where a1, a2 and a3 are constants. Common multiple
regression is linear regression because the population mean of Y is a linear combination
of the β values. It does not refer to the shape of the curve relating x to E[Y |X = x]. For
example,



5.3. ESTIMATION BY LEAST SQUARES 111

E[Y |X = x] = β0 + β1x Simple linear regression
E[Y |X = x] = β0 + β1x

2 Also simple linear regression
E[Y |X = x] = β0 + β1x+ β2x

2 + β3x
3 Polynomial regression – still linear

E[Y |X = x] = β0 + β1x+ β2 cos(1/x) Still linear in the β values
E[Y |X = x] = β0 + β1 cos(β2x) Truly non-linear

When the relationship between the explanatory and response variables is best repre-
sented by a curve, we’ll call it curvilinear, whether the regression model is linear or not.
All the examples just above are curvilinear, except the first one.

Notice that in the polynomial regression example, there is really only one explanatory
variable, x. But in the regression model, x, x2 and x3 are considered to be three separate
explanatory variables in a multiple regression. Here, fitting a curve to a cloud of points in
two dimensions is accomplished by fitting a hyperplane in four dimensions. The origins of
this remarkable trick are lost in the mists of time, but whoever thought of it was having
a good day.

5.3 Estimation by least squares

In the last section, the conditional population mean of the response variable was modelled
as a (population) hyperplane. It is natural to estimate a population hyperplane with a
sample hyperplane. This is easiest to imagine in three dimensions. Think of a three-
dimensional scatterplot, in a room. The explanatory variables are X1 and X2. The
(x1, x2) plane is the floor, and the value of Y is height above the floor. Each subject
(case) in the sample contributes three coordinates (x1, x2, y), which can be represented
by a soap bubble floating in the air.

In simple regression, we have a two-dimensional scatterplot, and we seek the best-
fitting straight line. In multiple regression, we have a three (or higher) dimensional
scatterplot, and we seek the best fitting plane (or hyperplane). Think of lifting and
tilting a piece of plywood until it fits the cloud of bubbles as well as possible.

What is the “best-fitting” plane? We’ll use the least-squares plane, the one that
minimizes the sum of squared vertical distances of the bubbles from the piece of plywood.
These vertical distances can be viewed as errors of prediction.

It’s hard to visualize in higher dimension, but the algebra is straightforward. Any
sample hyperplane may be viewed as an estimate (maybe good, maybe terrible) of the
population hyperplane. Following the statistical convention of putting a hat on a popu-
lation parameter to denote an estimate of it, the equation of a sample hyperplane is

β̂0 + β̂1x1 + . . .+ β̂p−1xp−1,

and the error of prediction (vertical distance) is the difference between y and the quantity
above. So, the least squares plane must minimize

Q =
n∑
i=1

(
yi − β̂0 − β̂1xi,1 − . . .− β̂p−1xi,p−1

)2
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over all combinations of β̂0, β̂1, . . . , β̂p−1.
Provided that no explanatory variable (including the peculiar X0 = 1) is a perfect

linear combination of the others, the β̂ quantities that minimize the sum of squares Q
exist and are unique. We will denote them by b0 (the estimate of β0, b1 (the estimate of
β1), and so on.

Again, a population hyperplane is being estimated by a sample hyperplane.

E[Y |X = x] = β0 + β1x1 + β2x2 + β3x3 + β4x4
Ŷ = b0 + b1x1 + b2x2 + b3x3 + b4x4

• Ŷ means predicted Y . It is the height of the best-fitting (least squares) piece of
plywood above the floor, at the point represented by the combination of x values.
The equation for Ŷ is the equation of the least-squares hyperplane.

• “Fitting the model” means calculating the b values.

5.4 Residuals

A residual, or error of prediction, is

ei = Yi − Ŷi.

The residuals (there are n of them) represent errors of prediction. Each one is the vertical
distance of Yi (the value of the response variable) from the regression hyper-plane. It can
be shown that for any regression analysis, the sample mean of the residuals is exactly zero.
A positive residual means over-performance (or under-prediction). A negative residual
means under-performance. Examination of residuals can reveal a lot, since we can’t look
at 12-dimensional scatterplots.

Single-variable plots of the residuals (histograms, box plots, stem and leaf diagrams
etc.) can identify possible outliers. These might reveal data errors or be a source of new
ideas. Theoretically, residuals should be normally distributed, though they are not quite
independent and do not have equal variances. Testing for normality of residuals is an
indirect way of checking the normal assumption of the regression model1. It is easy with
SAS proc univariate. Application of standard time-series diagnostiics to residuals is
promising too.

Outlier Detection

Looking at plots, it is sometimes easy to see residuals that seem very large in absolute
value. But this can be a bit subjective, and it would be nice to know exactly what it
means for a residual to be “big.” There are various ways to re-scale the residuals, so they
have a variance close to one. This way, the value of the residual tells you how many
standard deviations it is from the mean.

1What might a bimodal distribution of residuals indicate?
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When each residual is divided by its standard error (estimated standard deviation) to
standardize, sometimes they are called Studentized, because of the connection to Student’s
t distribution (all the usual t-tests are based on normally distributed quantities divided
by their standard errors). Here are some typical ways to re-scale residuals, along with
fairly standard terminology. Remember that the residuals already have a mean of zero.

• Standardized residuals: Calculate the sample standard deviation of the residuals,
and divide by that. The resulting variable has a sample mean of zero and a sample
variance of one.

• Semi-Studentized residuals: Divide each residual by the square root of Mean
Square Error (MSE) from the regression.

• Studentized residuals: Theoretically, the variances of the residuals are not all
the same. But they are easy to derive. The only problem is that they depend on
the unkown parameter σ2 the common variance of all the conditional distributions
of the response variable in the regression model. So estimate the variance of each
residual bt substituting MSE for σ2, and divide each residual by the square root of
its estimated variance.

• Studentized deleted residuals: These are like Studentized residuals, except that
for each observation (case) in the data, the response variable is estimated from all
the other cases, but not the one in question. That is, one performs n regressions2,
leaving out each observation in turn. Then each response variable value is pre-
dicted from the other n− 1 observations. The difference between the observed and
predicted Yi values are called deleted residuals. Dividing the deleted residuals by
their respective estimated standard deviations, we obtain the Studentized deleted
residuals.

The Studentized deleted residuals deserve extra discussion, and even a bit of notation.
First of all, think of a high-dimensional scatterplot, with a least-squares hyperplane fitting
the points as well as possible. Suppose one of the points is extremely far from the plane.
It’s a true outlier. Not only might the plane be pulled out of an optimal position to
accomodate that one point, but the squared distance of the point from the plane will still
be huge. Thus MSE (roughly, the average squared distance of the points from the plane)
will be inflated. So an ordinary Studentized residual (with

√
MSE somewhere in the

denominator) might not stand out from the pack as much as it should. But a regression
analysis without that point would not only have a larger absolute error of prediction for
the deleted observaton, but the denominator would be based on a smaller Mean Square
Error. This is why the Studentized deleted residual is a promising way to detect potential
outliers.

Another advantage is that if the statistical assumptions of the regression model are
correct, the Studentized deleted residual has a probability distributon that is exactly

2Not literally. There is a mathematical shortcut.
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Student’s t. Probability statements about the other kinds of re-scaled residual are just
approximations.

The predicted value of Yi based on the other n− 1 observations will be denoted Ŷi(i).
Then the deleted residual may be written

di = Yi − Ŷi(i).

The estimated standard deviation of the deleted residual is s{di}; the exact way to cal-
culate it may be left to your favourite software3. Then the Studentized deleted residual
is

ti =
di

s{di}
.

If the regression model is correct, the Studentized deleted residual has a t distribution
with n− p− 1 degrees of freedom.

But what if ti is very large in absolute value? Maybe the observation really comes
from a different population, one where a different regression model applies. Most likely,
in this case the expected value (population mean) of the deleted residual would not be
zero. So the Studentized deleted residual may be used directly as a test statistic. The
null hypothesis is that the regression model is true for observation i, and it will be a
good, sensitive (powerful) test when the model is true for the other observations, but not
observation i.

So it seems clear what we should do. Compare the absolute value of the Studentized
deleted residual to the critical value of a t distribution with n−p−1 degrees of freedom. If
it’s bigger than the critical value, conclude that there’s something funny about observation
i and look into it more closely.

This would be fine if we were only suspicious about one of the n observations, and
we had identified it in advance before looking at the actual data. But in practice we will
be carrying out n non-independent significance tests, and all the discussion of multiple
comparisons in Section 3.4 of Chapter 3 (starting on Page 81) applies. The simplest thing
to do is to apply a Bonferroni correction, and use the 0.05/n significance level in place of
the usual 0.05 level. This means that if the model is correct, the chances of incorrectly
designating one or more observations as outliers will be less than 0.05.

In summary, we let the software calculate the Studentized deleted residuals. Then we
obtain the critical value of a t distribution with n−p−1 degrees of freedom at the 0.05/n
significance level — easy with proc iml. Then we are concerned about an observation
and look into it further if the absolute value of the Studentized deleted residual is bigger
than the critical value. This treatment of outlier detection as a multiple comparison
problem is satisfying and pretty sophisticated.

Studentized deleted residuals have another important application. They are the basis
of prediction intervals, a topic that will be addressed in Section 5.5.

3Details may be found in almost any Regresssion text, such as Neter et al.’s Applied linear statistical
models. [16]
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Plots against other variables

Plot of Y vs Y-hat: corelations cannot be negative, and the square ofthe correlation
coefficient is exactly R2.

• Single variable plots (histograms, box plots, stem and leaf diagrams etc.) can iden-
tify possible outliers. (Data errors? Source of new ideas? What might a bimodal
distribution of residuals indicate?)

• Plot (scatterplot) of residuals versus potential explanatory variables not in the model
might suggest they be included, or not. How would you plot residuals vs a categorical
explanatory variable?

• Plot of residuals vs. variables that are in the model may reveal

– Curvilinear trend (may need transformation of x, or polynomial regression, or
even real non-linear regression)

– Non-constant variance over the range of x, so the response variable may depend
on the explanatory variable not just through the mean. May need transforma-
tion of Y , or weighted least squares, or a different model.

• Plot of residuals vs. Ŷ may also reveal unequal variance.

5.5 Prediction Intervals
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5.6 Categorical Explanatory Variables

5.6.1 Indicator Dummy Variables

Explanatory variables need not be continuous – or even quantitative. For example, sup-
pose subjects in a drug study are randomly assigned to either an active drug or a placebo.
Let Y represent response to the drug, and

x =

{
1 if the subject received the active drug, or
0 if the subject received the placebo.

The model is E[Y |X = x] = β0 + β1x. For subjects who receive the active drug (so
x = 1), the population mean is

β0 + β1x = β0 + β1

For subjects who receive the placebo (so x = 0), the population mean is

β0 + β1x = β0.

Therefore, β0 is the population mean response to the placebo, and β1 is the difference
between response to the active drug and response to the placebo. We are very interested
in testing whether β1 is different from zero, and guess what? We get exactly the same
t value as from a two-sample t-test, and exactly the same F value as from a one-way
ANOVA for two groups.

Exercise Suppose a study has 3 treatment conditions. For example Group 1 gets Drug
1, Group 2 gets Drug 2, and Group 3 gets a placebo, so that the Explanatory Variable is
Group (taking values 1,2,3) and there is some Response Variable Y (maybe response to
drug again).

Sample Question 5.6.1 Why is E[Y |X = x] = β0 + β1x (with x = Group) a silly
model?

Answer to Sample Question 5.6.1 Designation of the Groups as 1, 2 and 3 is com-
pletely arbitrary.

Sample Question 5.6.2 Suppose x1 = 1 if the subject is in Group 1, and zero otherwise,
and x2 = 1 if the subject is in Group 2, and zero otherwise, and E[Y |X = x] = β0 +
β1x1 + β2x2. Fill in the table below.

Group x1 x2 β0 + β1x1 + β2x2
1 µ1 =
2 µ2 =
3 µ3 =
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Answer to Sample Question 5.6.2

Group x1 x2 β0 + β1x1 + β2x2
1 1 0 µ1 = β0 + β1
2 0 1 µ2 = β0 + β2
3 0 0 µ3 = β0

Sample Question 5.6.3 What does each β value mean?

Answer to Sample Question 5.6.3 β0 = µ3, the population mean response to the
placebo. β1 is the difference between mean response to Drug 1 and mean response to
the placebo. β2 is the difference between mean response to Drug 21 and mean response to
the placebo.

Sample Question 5.6.4 Why would it be nice to simultaneously test whether β1 and β2
are different from zero?

Answer to Sample Question 5.6.4 This is the same as testing whether all three pop-
ulation means are equal; this is what a one-way ANOVA does. And we get the same F
and p values (not really part of the sample answer).

Notice that x1 and x2 contain the same information as the three-category variable
Group. If you know Group, you know x1 and x2, and if you know x1 and x2, you know
Group. In models with an intercept term, a categorical explanatory variable with k
categories is always represented by k − 1 dummy variables. If the dummy variables are
indicators, the category that does not get an indicator is actually the most important.
The intercept is that category’s mean, and it is called the reference category, because
the remaining regression coefficients represent differences between the reference category
and the other category. To compare several treatments to a control, make the control
group the reference category by not giving it an indicator.

It is worth noting that all the traditional one-way and higher-way models for analysis
of variance and covariance emerge as special cases of multiple regression, with dummy
variables representing the categorical explanatory variables.

Add a quantitative explanatory variable

Now suppose we include patient’s age in the regression model. When there are both
quantitative and categorical explanatory variables, the quantitative variables are often
called covariates, particularly if the categorical part is experimentally manipulated. Tests
of the categorical variables controlling for the quantitative variables are called analysis of
covariance.

The usual practice is to put the covariates first. So, we’ll let X1 represent age, and let
X2 and X3 be the indicator dummy variables for experimental condition. The model now
is that all conditional distributions are normal with the same variance σ2, and population
mean

E[Y |X = x] = β0 + β1x1 + β2x2 + β3x3.
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Sample Question 5.6.5 Fill in the table.

Group x2 x3 β0 + β1x1 + β2x2 + β3x3
A µ1 =
B µ2 =

Placebo µ3 =

Answer to Sample Question 5.6.5

Group x2 x3 β0 + β1x1 + β2x2 + β3x3
A 1 0 µ1 = (β0 + β2) + β1x1
B 0 1 µ2 = (β0 + β3) + β1x1

Placebo 0 0 µ3 = β0 +β1x1

This is an equal slopes model. That is, there is a least-squares regression line for each
group, with the same slope β1 for each line. Only the intercepts are different. This means
that for any fixed value of x1 (age), the differences among population means are the same.
For any value of age (that is, holding age constant, or controlling for age), the difference
between response to Drug A and the placebo is β2. And controlling for age), the difference
between response to Drug B and the placebo is β3. The three group means are equal for
each constant value of age if (and only if) β2 = β3 = 0. This is the null hypothesis for the
analysis of covariance.

It is easy (and often very useful) to have more than one covariate. In this case we have
parallel planes or hyper-planes. And at any fixed set of covariate values, the distances
among hyperplanes correspond exactly to the differences among the intercepts. This
means we are usually interested in testing null hypotheses about the regression coefficients
corresponding to the dummy variables.

Sample Question 5.6.6 Suppose we want to test the difference between response to Drug
A and Drug B, controlling for age. What is the null hypothesis?

Answer to Sample Question 5.6.6 H0 : β2 = β3

Sample Question 5.6.7 Suppose we want to test whether controlling for age, the aver-
age response to Drug A and Drug B is different from response to the placebo. What is
the null hypothesis?

Answer to Sample Question 5.6.7 H0 : β2 + β3 = 0

Sample Question 5.6.8 Huh? Show your work.

Answer to Sample Question 5.6.8
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1
2
[ (β0 + β2 + β1x1) + (β0 + β3 + β1x1) ] = β0 + β1x1

⇐⇒ β0 + β2 + β1x1 + β0 + β3 + β1x1 = 2β0 + 2β1x1

⇐⇒ 2β0 + β2 + β3 + 2β1x1 = 2β0 + 2β1x1

⇐⇒ β2 + β3 = 0

The symbol ⇐⇒ means “if and only if.” The arrows can logically be followed in both
directions.

This last example illustrates several important points.

• Contrasts can be tested with indicator dummy variables.

• If there are covariates, the ability to test contrasts controlling for the covariates is
very valuable.

• Sometimes, the null hypothesis for a contrast of interest might not be what you
expect, and you might have to derive it algebraically. This can be inconvenient, and
it is too easy to make mistakes.

5.6.2 Cell means coding

When students are setting up dummy variables for a categorical explanatory variable
with p categories, the most common mistake is to define an indicator dummy variable for
every category, resulting in p dummy variables rather than p − 1 — and of course there
is an intercept too, because it’s a regression model and regression software almost always
includes an intercept unless you explicitly suppress it. But then the p population means
are represented by p + 1 regression coefficients, and mathematically, the representation
cannot be unique. In this situation the least-squares estimators are not unique either,
and all sorts of technical problems arise. Your software might try to save you by throwing
one of the dummy variables out, but which one would it discard? And would you notice
that it was missing from your output?

Suppose, however, that you used p dummy variables but no intercept in the regres-
sion model. Then there are p regression coefficients corresponding to the p population
means, and all the technical problems go away. The correspondence between regression
coefficients and population means is unique, and the model can be handy. In particular,
null hypotheses can often be written down immediately without any high school algebra.
Here is how it would look for the study with two drugs and a placebo. The conditional
population means is

E[Y |X = x] = β1x1 + β2x2 + β3x3,

and the table of population means has a very simple form:

Drug x1 x2 x3 β1x1 + β2x2 + β3x3
A 1 0 0 µ1 = β1
B 0 1 0 µ2 = β2

Placebo 0 0 1 µ3 = β3
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The regression coefficients correspond directly to population (cell) means for any num-
ber of categories; this is why it’s called cell means coding. Contrasts are equally easy to
write in terms of µ or β quantities.

Cell means coding works nicely in conjunction with quantitative covariates. In the
drug study example, represent age by X4. Now the conditional population mean is

E[Y |X = x] = β1x1 + β2x2 + β3x3 + β4x4,

and the cell means (for any fixed value of age equal to x4) are

Drug x1 x2 x3 β1x1 + β2x2 + β3x3 + β4x4
A 1 0 0 β1 + β4x4
B 0 1 0 β2 + β4x4

Placebo 0 0 1 β3 + β4x4

This is another equal slopes model, completely equivalent to the earlier one. The regres-
sion coefficients for the dummy variables are the intercepts, and because the lines are
parallel, the differences among population means at any fixed value of x4 are exactly the
differences among intercepts. Note that

• It is easy to write the null hypothesis for any contrast of collection of contrasts.
Little or no algebra is required.

• This extends to categorical explanatory variables with any number of categories.

• With more than one covariate, we have a parallel planes model, and it is still easy
to express the null hypotheses.

• The test statement of proc reg is a particularly handy tool.

5.6.3 Effect Coding

In effect coding there are p − 1 dummy variables for a categorical explanatory variable
with p categories, and the intercept is included. Effect coding look just like indicator
dummy variable coding with an intercept, except that the last (reference) category gets
-1 instead of zero. Here’s how it looks for the hypothetical drug study.

Group x1 x2 E[Y |X = x] = β0 + β1x1 + β2x2
A 1 0 µ1 = β0 + β1
B 0 1 µ2 = β0 + β2

Placebo -1 -1 µ3 = β0 − β1 − β2

To see what the regression coefficients mean, first define µ to be the average of the three
population means. Then

µ =
1

3
(µ1 + µ2 + µ3) = β0,

so that the intercept is the mean of population means — sometimes called the grand
mean. Now we can see right away that



5.6. CATEGORICAL EXPLANATORY VARIABLES 121

• β1 is the difference between µ1 and the grand mean.

• β2 is the difference between µ2 and the grand mean.

• −β1 − β2 is the difference between µ3 and the grand mean.

• Equal population means is equivalent to zero coefficients for all the dummy variables.

• The last category is not a reference category. It’s just the category with the least
convenient expression for the deviation from the grand mean.

• This pattern holds for any number of categories.

In the standard language of analysis of variance, effects are deviations from the grand
mean. That’s why this dummy variable coding scheme is called “effect coding.” When
there is more than one categorical explanatory variable, the average cell mean for a par-
ticular category (averaging across other explanatory variables) is called a marginal mean,
and the so-called main effects are deviations of the marginal means from the grand mean;
these are represented nicely by effect coding. Equality of marginal means implies that all
main effects for the variable are zero, and vice versa.

Sometimes, people speak of testing for the “main effect” of a categorical explanatory
variable. This is a loose way of talking, because there is not just one main effect for a
variable. There are at least two, one for each marginal mean. Possibly, this use of “effect”
blends the effect of an experimental variable with the technical statistical meaning of
effect. However, it’s a way of talking that does no real harm, and you may see it from
time to time in this text.

We will see later that effect coding is very useful when there is more than one cate-
gorical explanatory variable and we are interested in interactions — ways in which the
relationship of an explanatory variable with the response variable depends on the value
of another explanatory variable.

Covariates work nicely with effect coding. There is no need to make a table of expected
values, unless a question explicitly asks you to do so. For example, suppose you add the
covariate X1 = Age to the drug study. The treatment means (which depend on X1 are
as follows:

Group x2 x3 E[Y |X = x] = β0 + β1x1 + β2x2 + β3x3
A 1 0 µ1 = β0 + β2 + β1x1
B 0 1 µ2 = β0 + β3 + β1x1

Placebo -1 -1 µ3 = β0 − β2 − β3 + β1x1

Regression coefficients are deviations from the average conditional population mean (con-
ditional on x1). So, if the regression coefficients for all the dummy variables equal zero, the
categorical explanatory variable is unrelated to the response variable, when one controls
for the covariates.

Finally, it’s natural for a student to wonder: What dummy variable coding scheme
should I use? Use whichever is most convenient. They are all equivalent, if done correctly.
They yield the same test statistics, and the same conclusions.
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5.7 Explained Variation

Before considering any explanatory variables, there is a certain amount of variation in the
response variable. The sample mean is the value around which the sum of squared errors
of prediction is at a minimum, so it’s a least squares estimate of the population mean of
Y when there are no explanatory variables. We will measure the total variation to be
explained by the sum of squared deviations around the mean of the response variable.

When we do a regression, variation of the data around the least-squares plane repre-
sents errors of prediction. It is variation that is unexplained by the regression. But it’s
always less than the variation around the sample mean (Why? Because the least-squares
plane could be horizontal). So, the explanatory variables in the regression have explained
some of the variation in the response variable. Variation in the residuals is variation that
is still unexplained.

Variation to explain: Total Sum of Squares

SSTO =
n∑
i=1

(Yi − Y )2

Variation that the regression does not explain: Error Sum of Squares

SSE =
n∑
i=1

(ei − e)2 =
n∑
i=1

e2i =
n∑
i=1

(Yi − Ŷi)2

Variation that is explained: Regression (or Model) Sum of Squares

SSR =
n∑
i=1

(Yi − Y )2 −
n∑
i=1

(Yi − Ŷi)2 =
n∑
i=1

(Ŷi − Y )2

Regression software (including SAS) displays the sums of squares above in an analysis
of variance summary table. “Analysis” means to “split up,” and that’s what we’re doing
here — splitting up the variation in response variable into explained and unexplained
parts.

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model p− 1 SSR MSR = SSR/(p− 1) F = MSR
MSE

p-value
Error n− p SSE MSE = SSE/(n− p)
Total n− 1 SSTO

Variance estimates consist of sums of squares divided by degrees of freedom. “DF”
stands for Degrees of Freedom. Sums of squares and degrees of freedom each add up to
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Total. The F -test is for whether β1 = β2 = . . . = βp−1 = 0 – that is, for whether any of
the explanatory variables makes a difference.

The proportion of variation in the response variable that is explained by the explana-
tory variables (representing strength of relationship) is

R2 =
SSR

SSTO

The R2 from a simple regression is the same as the square of the correlation coefficient:
R2 = r2. For a general multiple regression, the square of the correlation between the Y
and Ŷ (predicted Y ) values is also equal to R2.

What is a good value of R2? Well, the weakest relationship I can visually perceive
in a scatterplot is around r = .3, so I am unimpressed by R2 values under 0.09. By this
criterion, most published results in the social sciences, and many published results in the
biological sciences are not strong enough to be scientifically interesting. But this is just
my opinion.

5.8 Testing for Statistical Significance in Regression

We are already assuming that there is a separate population defined by each combination
of values of the explanatory variables (the conditional distributions of Y given X), and
that the conditional population mean is a linear combination of the β values; the weights
of this linear combination are 1 for β0, and the x values for the other β values. The
classical assumptions are that in addition,

• Sample values of Y represent independent observations, conditionally upon the val-
ues of the explanatory variables.

• Each conditional distribution is normal.

• Each conditional distribution has the same population variance.

How important are the assumptions? Well, important for what? The main thing we
want to avoid is incorrect p-values, specifically ones that appear smaller than they are –
so that we conclude a relationship is present when really we should not. This ”Type I
error” is very undesirable, because it tends to load the scientific literature with random
garbage.

For large samples, the assumption of normality is not important provided no single
observation has too much influence. What is meant by a “large” sample? It depends on
how severe the violations are. What is “too much” influence? The influence of the most
influential observation must tend to zero as the sample size approaches infinity. You’re
welcome.

The assumption of equal variances can be safely violated provided that the numbers
of observations at each combination of explanatory variable values are large and close to
equal. This is most likely to be the case with designed experiments having categorical
explanatory variables.
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The assumption of independent observations is very important, almost always. Ex-
amples where this does not hold is if a student takes a test more than once, members of
the same family respond to the same questionnaire about eating habits, litter-mates are
used in a study of resistance to cancer in mice, and so on.

When you know in advance which observations form non-independent sets, one option
is to average them, and let n be the number of independent sets of observations. There
are also ways to incorporate non-independence into the statistical model. We will discuss
repeated measures designs, multivariate analysis and other examples later.

5.8.1 The standard F and t-tests

SAS proc reg (like other programs) usually starts with an overall F -test, which tests all
the explanatory variables in the equation simultaneously. If this test is significant, we can
conclude that one or more of the explanatory variables is related to the response variable.

Again like most programs that do multiple regression, SAS produces t-tests for the
individual regression coefficients. If one of these is significant, we can conclude that
controlling for all other explanatory variables in the model, the explanatory variable in
question is related to the response variable. That is, each variable is tested controlling
for all the others.

It is also possible to test subsets of explanatory variables, controlling for all the others.
For example, in an educational assessment where students use 4 different textbooks, the
variable ”textbook” would be represented by 3 dummy variables. These variables could
be tested simultaneously, controlling for several other variables such as parental education
and income, child’s past academic performance, experience of teacher, and so on.

In general, to test a subset A of explanatory variables while controlling for another
subset B, fit a model with both sets of variables, and simultaneously test the b coefficients
of the variables in subset A; there is an F test for this.

This is 100% equivalent to the following. Fit a model with just the variables in subset
B, and calculate R2. Then fit a second model with the A variables as well as the B
variables, and calculate R2 again. Test whether the increase in R2 is significant. It’s the
same F test.

Call the regression model with all the explanatory variables the Full Model, and
call the model with fewer explanatory variables (that is, the model without the variables
being tested) the Reduced Model. Let SSRF represent the explained sum of squares
from the full model, and SSRR represent the explained sum of squares from the reduced
model.

Sample Question 5.8.1 Why is SSRF ≥ SSRR?

Answer to Sample Question 5.8.1 In the full model, if the best-fitting hyperplane had
all the b coefficients corresponding to the extra variables equal to zero, it would fit exactly
as well as the hyperplane of the reduced model. It could not do any worse.

Since R2 = SSR
SSTO

, it is clear that SSRF ≥ SSRR implies that adding explanatory
variables to a regression model can only increase R2. When these additional explanatory
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variables are correlated with explanatory variables already in the model (as they usually
are in an observational study),

• Statistical significance can appear when it was not present originally, because the
additional variables reduce error variation, and make estimation and testing more
precise.

• Statistical significance that was originally present can disappear, because the new
variables explain some of the variation previously attributed to the variables that
were significant, so when one controls for the new variables, there is not enough
explained variation left to be significant. This is especially true of the t-tests, in
which each variable is being controlled for all the others.

• Even the signs of the bs can change, reversing the interpretation of how their vari-
ables are related to the response variable. This is why it’s very important not to
leave out important explanatory variables in an observational study.

The F -test for the full versus reduced model is based on the test statistic

F =
(SSRF − SSRR)/r

MSEF
, (5.4)

where r is the number of variables that are being simultaneously tested. That is, r is the
number of explanatory variables that are in the full model but not the reduced model.
MSEF is the mean square error for the full model: MSEF = SSEF

n−p . Equation 5.4 is a
very general formula. As we will see, all the standard tests in regression and the usual
(fixed effects) Analysis of Variance are special cases of this F -test.

Looking at the Formula for F

Formula 5.4 reveals some important properties of the F -test. Bear in mind that the
p-value is the area under the F -distribution curve above the value of the F statistic.
Therefore, anything that makes the F statistic bigger will make the p-value smaller, and
if it is small enough, the results will be significant. And significant results are what we
want, if in fact the full model is closer to the truth than the reduced model.

• Since there are r more variables in the full model than in the reduced model, the
numerator of (5.4) is the average improvement in explained sum of squares when
we compare the full model to the reduced model. Thus, some of the extra variables
might be useless for prediction, but the test could still be significant at least one of
them contributes a lot to the explained sum of squares, so that the average increase
is substantially more than one would expect by chance.

• On the other hand, useless extra explanatory variables can dilute the contribution
of extra explanatory variables with modest but real explanatory power.
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• The denominator is a variance estimate based on how spread out the residuals are.
The smaller this denominator is, the larger the F statistic is, and the more likely
it is to be significant. Therefore, for a more sensitive test, it’s desirable to control
extraneous sources of variation.

– If possible, always collect data on any potential explanatory variable that is
known to have a strong relationship to the response variable, and include it
in both the full model and the reduced model. This will make the analysis
more sensitive, because increasing the explained sum of squares will reduce the
unexplained sum of squares. You will be more likely to detect a real result
as significant, because it will be more likely to show up against the reduced
background noise.

– On the other hand, the denominator of formula (5.4) for F is MSEF = SSEF
n−p ,

where the number of explanatory variables is p−1. Adding useless explanatory
variables to the model will increase the explained sum of squares by at least
a little, but the denominator of MSEF will go down by one, making MSEF
bigger, and F smaller. The smaller the sample size n, the worse the effect of
useless explanatory variables. You have to be selective.

– The (internal) validity of most experimental research depends on experimental
designs and procedures that balance sources of extraneous variation evenly
across treatments. But even better are careful experimental procedures that
eliminate random noise altogether, or at least hold it to very low levels. Reduce
sources of random variation, and the residuals will be smaller. The MSEF will
be smaller, and F will be bigger if something is really going on.

– Most response variables are just indirect reflections of what the investigator
would really like to study, and in designing their studies, scientists routinely
make decisions that are tradeoffs between expense (or convenience) and data
quality. When response variables represent low-quality measurement, they
essentially contain random variation that cannot be explained. This variation
will show up in the denominator of (5.4), reducing the chance of detecting
real results against the background noise. An example of a response variable
that might have too much noise would be a questionnaire or subscale of a
questionnaire with just a few items.

The comments above sneaked in the topic of statistical power by discussing the
formula for the F -test. Statistical power is the probability of getting significant results
when something is really going on in the population. It should be clear that high power is
good. We have just seen that statistical power can be increased by including important
explanatory variables in the study, by carefully controlled experimental conditions, and
by quality measurement. Power can also be increased by increasing the sample size. All
this is true in general, and does not depend on the use of the traditional F test. Power
and sample size are discussed further in Chapter 8.
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5.8.2 Connections between Explained Variation and Significance
Testing

If you divide numerator and denominator of Equation (5.4) by SSTO, the numerator
becomes (R2

F − R2
R)/s, so we see that the F test is based on change in R2 when one

moves from the reduced model to the full model. But the F test for the extra variables
(controlling for the ones in the reduced model) is based not just on R2

F − R2
R, but on a

quantity that will be denoted by

a =
R2
F −R2

R

1−R2
R

. (5.5)

This expresses change in R2 as a proportion of the variation left unexplained by the
reduced model. That is, it’s the proportion of remaining variation that the additional
variables explain.

This is actually a more informative quantity than simple change in R2. For example,
suppose you’re controlling for a set of variables that explain 80% of the variation in the
response variable, and you test a variable that accounts for an additional 5%. You have
explained 25% of the remaining variation – much more impressive than 5%.

The a notation is non-standard. It’s sometimes called a squared multiple partial
correlation, but the usual notation for partial correlations is intricate and hard to look
at, so we’ll just use a.

You may recall that an F test has two degree of freedom values, a numerator degrees
of freedom and a denominator degrees of freedom. In the F test for a full versus reduced
model, the numerator degrees of freedom is s, the number of extra variables. The denom-
inator degrees of freedom is n− p. Recall that the sample size is n, and if the regression
model has an intercept, there are p − 1 explanatory variables. Applying a bit of high
school algebra to Equation (5.4), we see that the relationship between F and a is

F =

(
n− p
s

)(
a

1− a

)
. (5.6)

so that for any given sample size, the bigger a is, the bigger F becomes. Also, for a given
value of a 6= 0, F increases as a function of n. This means you can get a large F (and if
it’s large enough it will be significant) from strong results and a small sample, or from
weak results and a large sample. Again, examining the formula for the F statistic yields
a valuable insight.

Expression (5.6) for F can be turned around to express a in terms of F , as follows:

a =
sF

n− p+ sF
(5.7)

This is a useful formula, because scientific journals often report just F values, degrees
of freedom and p-values. It’s easy to tell whether the results are significant, but not
whether the results are strong in the sense of explained variation. But the equality (5.7)
above lets you recover information about strength of relationship from the F statistic and
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its degrees of freedom. For example, based on a three-way ANOVA where the response
variable is rot in potatoes, suppose the authors write “The interaction of bacteria by
temperature was just barely significant (F=3.26, df=2,36, p=0.05).” What we want to
know is, once one controls for other effects in the model, what proportion of the remaining
variation is explained by the temperature-by-bacteria interaction?

We have s=2, n − p = 36, and a = 2×3.26
36+(2×3.26) = 0.153. So this effect is explaining

a respectable 15% of the variation that remains after controlling for all the other main
effects and interactions in the model.

5.9 Interactions in Regression: It Depends

Rough draft begins on the next page.



Interactions as Products of Independent Variables

Categorical by Quantitative

An interaction between a quantitative variable and a categorical variable means that differences in E[Y] between

categories depend on the value of the quantitative variable, or (equivalently) that the slope of the lines relating x to

E[Y] are different, depending on category membership.  Such an interaction is represented by products of the

quantitative variable and the dummy variables for the categorical variable.  

For example, consider the metric cars data (mcars.dat).  It has length, weight, origin and fuel efficiency in

kilometers per litre, for a sample of cars.  The three origins are US, Japanese and Other. Presumably these refer to

the location of the head office, not to where the car was manufactured.  

Let's use indicator dummy variable coding for origin, with an intercept.  In an Analysis of Covariance

(ANCOVA), we'd test country of origin controlling, say, for weight.  Letting x represent weight and c1 and c2

the dummy variables for country of origin, the model would be

E[Y] = b0 + b1x + b2c1 + b3c2.

This model assumes no interaction between country and weight.  The following model includes product terms for

the interaction, and would allow you to test it.

E[Y] = β0 + β1x + β2c1 + β3c2 + β4c1x + β5c2x

Country c1 c2 Expected KPL (let x = weight)

U. S. 1 0 (β0 + β2) + (β1+β4)x

Japan 0 0  β0           +  β1        x

European 0 1 (β0 + β3) + (β1+β5)x

It's clear that the slopes are parallel if and only if β4=β5=0, and that in this case the relationship of fuel efficiency

to country would not depend on weight of the car.
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As the program below shows, interaction terms are created by literally multiplying independent variables, and

using products as additional independent variables in the regression equation.

/********************** mcars.sas **************************/
options linesize=79 pagesize=100 noovp formdlim='-';
title 'Metric Cars Data: Dummy Vars and Interactions';

proc format; /* Used to label values of the categorical variables */
     value carfmt    1 = 'US'
                     2 = 'Japanese'
                     3 = 'European' ;
data auto;
     infile 'mcars.dat';
     input id country kpl weight length;
/* Indicator dummy vars: Ref category is Japanese */
     if country = 1 then c1=1;  else c1=0;
     if country = 3 then c2=1;  else c2=0;
     /* Interaction Terms */
     cw1 = c1*weight; cw2 = c2*weight;
     label country = 'Country of Origin'
           kpl = 'Kilometers per Litre';
     format country carfmt.;

proc means;
     class country;
     var weight kpl;

proc glm;
     title 'One-way ANOVA';
     class country;
     model kpl = country;
     means country / tukey;

proc reg;
     title 'ANCOVA';
     model kpl = weight c1 c2;
     country: test c1 = c2 = 0;

proc reg;
     title 'Test parallel slopes (Interaction)';
     model kpl = weight c1 c2 cw1 cw2;
     interac: test cw1 = cw2 = 0;
     useuro:  test cw1=cw2;
     country: test c1 = c2 = 0;
     eqreg:   test c1=c2=cw1=cw2=0;

proc iml; /* Critical value for Scheffe tests */
     critval = finv(.95,4,94) ; print critval;
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/* Could do most of it with proc glm: ANCOVA, then test interaction */

proc glm;
     class country;
     model kpl = weight country;
     lsmeans country;

proc glm;
     class country;
     model kpl = weight country weight*country;

Let's take a look at the output.  First, proc means indicates that the US cars get lower gas mileage, and that weight

is a potential confounding variable.

       COUNTRY  N Obs  Variable  Label                   N          Mean
      ------------------------------------------------------------------
      US           73  WEIGHT                           73       1540.23
                       KPL       Kilometers per Litre   73     8.1583562

      Japanese     13  WEIGHT                           13       1060.27
                       KPL       Kilometers per Litre   13     9.8215385

      European     14  WEIGHT                           14       1080.32
                       KPL       Kilometers per Litre   14    11.1600000
      ------------------------------------------------------------------

   COUNTRY  N Obs  Variable  Label                      Std Dev       Minimum
  ---------------------------------------------------------------------------
  US           73  WEIGHT                           327.7785402   949.5000000
                   KPL       Kilometers per Litre     1.9760813     5.0400000

  Japanese     13  WEIGHT                           104.8370989   891.0000000
                   KPL       Kilometers per Litre     2.3976719     7.5600000

  European     14  WEIGHT                           240.9106607   823.5000000
                   KPL       Kilometers per Litre     4.2440764     5.8800000
  ---------------------------------------------------------------------------

          COUNTRY  N Obs  Variable  Label                      Maximum
         -------------------------------------------------------------
         US           73  WEIGHT                               2178.00
                          KPL       Kilometers per Litre    12.6000000

         Japanese     13  WEIGHT                               1237.50
                          KPL       Kilometers per Litre    14.7000000

         European     14  WEIGHT                               1539.00
                          KPL       Kilometers per Litre    17.2200000
         -------------------------------------------------------------
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The one-way ANOVA indicates that fuel efficiency is significantly related to country of origin; country explains

17% of the variation in fuel efficiency.

                        General Linear Models Procedure

Dependent Variable: KPL   Kilometers per Litre
                                     Sum of            Mean
Source                  DF          Squares          Square  F Value    Pr > F

Model                    2     121.59232403     60.79616201    10.09    0.0001
Error                   97     584.29697197      6.02368012
Corrected Total         99     705.88929600

                  R-Square             C.V.        Root MSE           KPL Mean
                  0.172254         27.90648       2.4543187          8.7948000

The Tukey follow-ups are not shown, but they indicate that only the US-European difference is significant.

Maybe the US cars are less efficient because they are big and heavy. So let's do the same test, controlling for

weight of car. Here's the SAS code.  Note this is a standard Analysis of Covariance, and we're assuming no

interaction.

proc reg;
     title 'ANCOVA';
     model kpl = weight c1 c2;
     country: test c1 = c2 = 0;

Dependent Variable: KPL        Kilometers per Litre

                             Analysis of Variance

                                Sum of         Mean
       Source          DF      Squares       Square      F Value       Prob>F

       Model            3    436.21151    145.40384       51.761       0.0001
       Error           96    269.67779      2.80914
       C Total         99    705.88930

           Root MSE       1.67605     R-square       0.6180
           Dep Mean       8.79480     Adj R-sq       0.6060
           C.V.          19.05728
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                              Parameter Estimates

                      Parameter      Standard    T for H0:
     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

     INTERCEP   1     16.226336    0.76312281        21.263        0.0001
     WEIGHT     1     -0.006041    0.00057080       -10.583        0.0001
     C1         1      1.236147    0.57412989         2.153        0.0338
     C2         1      1.459591    0.64565633         2.261        0.0260

-------------------------------------------------------------------------------

Dependent Variable: KPL
Test: COUNTRY  Numerator:      8.6168  DF:    2   F value:   3.0674
               Denominator:  2.809144  DF:   96   Prob>F:    0.0511

First notice that by including weight, we're now explaining 61% of the variation, while before we explained just

17%. Also, while the effect for country was comfortably significant before we controlled for weight, now it

narrowly fails to reach the traditional criterion (p = 0.0511). But to really appreciate these results, we need to

make a table.

Country c1 c2 E[Y] = β0 + β1x + β2c1 + β3c2

U. S. 1 0 (β0 + β2) + β1x

Japan 0 0  β0           + β1x

European 0 1 (β0 + β3) + β1x

                              Parameter Estimates

                      Parameter      Standard    T for H0:
     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

     INTERCEP   1     16.226336    0.76312281        21.263        0.0001
     WEIGHT     1     -0.006041    0.00057080       -10.583        0.0001
     C1         1      1.236147    0.57412989         2.153        0.0338
     C2         1      1.459591    0.64565633         2.261        0.0260

Observe that both b2 and b3 are positive -- and significant.  Before we controlled for weight, Japanese gas mileage

was a little better than US, though not significantly so.  Now, because b2 estimates β2, and β2 is the population
difference between U.S. and Japanese mileage (for any fixed weight), a positive value of b2 means that once you
control for weight, the U.S. cars are getting better gas mileage than the Japanese -- significantly better, too, if you
believe the t-test and not the F-test.  
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The direction of the results has changed because we controlled for weight.  This can happen. 

Also, may seem strange that the tests for β2 and β3 are each significant individually, but the simultaneous test for

both of them is not.  But this the simultaneous test implicitly includes a comparison between U.S. and European

cars, and they are very close, once you control for weight.

The best way to summarize these results would be to calculate Y-hat for each country of origin, with weight set

equal to its mean value in the sample. Instead of doing that, though, let's first test the interaction, which this

analysis is assuming to be absent. 

proc reg;
     title 'Test parallel slopes (Interaction)';
     model kpl = weight c1 c2 cw1 cw2;

     interac: test cw1 = cw2 = 0;
     useuro:  test cw1=cw2;
     country: test c1 = c2 = 0;
     eqreg:   test c1=c2=cw1=cw2=0;

Dependent Variable: KPL        Kilometers per Litre

                                Sum of         Mean
       Source          DF      Squares       Square      F Value       Prob>F

       Model            5    489.27223     97.85445       42.463       0.0001
       Error           94    216.61706      2.30444
       C Total         99    705.88930

           Root MSE       1.51804     R-square       0.6931
           Dep Mean       8.79480     Adj R-sq       0.6768
           C.V.          17.26062

                              Parameter Estimates

                      Parameter      Standard    T for H0:
     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

     INTERCEP   1     29.194817    4.45188417         6.558        0.0001
     WEIGHT     1     -0.018272    0.00418000        -4.371        0.0001
     C1         1    -12.973668    4.53404398        -2.861        0.0052
     C2         1     -4.891978    4.85268101        -1.008        0.3160
     CW1        1      0.013037    0.00421549         3.093        0.0026
     CW2        1      0.006106    0.00453064         1.348        0.1810
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-------------------------------------------------------------------------------

Dependent Variable: KPL
Test: INTERAC  Numerator:     26.5304  DF:    2   F value:  11.5127
               Denominator:  2.304437  DF:   94   Prob>F:    0.0001

Dependent Variable: KPL
Test: USEURO   Numerator:     33.0228  DF:    1   F value:  14.3301
               Denominator:  2.304437  DF:   94   Prob>F:    0.0003

Dependent Variable: KPL
Test: COUNTRY  Numerator:     24.4819  DF:    2   F value:  10.6238
               Denominator:  2.304437  DF:   94   Prob>F:    0.0001

Dependent Variable: KPL
Test: EQREG    Numerator:     17.5736  DF:    4   F value:   7.6260
               Denominator:  2.304437  DF:   94   Prob>F:    0.0001

Now the coefficients for the dummy variables are both negative, and the coefficients for the interaction terms are

positive. To see what's going on, we need a table and a picture -- of  Y .

 Y  = b0 + b1x + b2c1 + b3c2 + b4c1x + b5c2x

    = 29.194817 - 0.018272x - 12.973668c1 - 4.891978c2 + 0.013037c1x + 0.006106c2x

Country c1 c2 Predicted KPL (let x = weight)

U. S. 1 0 (b0 + b2) + (b1+b4)x      = 16.22 - 0.005235 x

Japan 0 0  b0           +  b1       x       = 29.19 - 0.018272 x

European 0 1 (b0 + b3) + (b1+b5)x       = 24.30 - 0.012166 x

From the proc means output, we find that the lightest car was 823.5kg, while the heaviest was 2178kg.  So we

will let the graph range from 820 to 2180.
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When there were no interaction terms, b2 and b3 represented a main effect for country.  What do they represent

now?

From the picture, it is clear that the most interesting thing is that the slope of the line relating weight to fuel

efficiency is least steep for the U.S.  Is it significant?  0.05/3 = 0.0167.
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Repeating earlier material, ...

                             Parameter Estimates

                      Parameter      Standard    T for H0:
     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

     INTERCEP   1     29.194817    4.45188417         6.558        0.0001
     WEIGHT     1     -0.018272    0.00418000        -4.371        0.0001
     C1         1    -12.973668    4.53404398        -2.861        0.0052
     C2         1     -4.891978    4.85268101        -1.008        0.3160
     CW1        1      0.013037    0.00421549         3.093        0.0026
     CW2        1      0.006106    0.00453064         1.348        0.1810

     useuro:  test cw1=cw2;

Dependent Variable: KPL
Test: USEURO   Numerator:     33.0228  DF:    1   F value:  14.3301
               Denominator:  2.304437  DF:   94   Prob>F:    0.0003

The conclusion is that with a Bonferroni correction, the slope is less (less steep) for US than for either Japanese or

European, but Japanese and European are not significantly different from each other.

Another interesting follow-up would be to use Scheffé tests to compare the heights of the regression lines at many

values of weight; infinitely many comparisons would be protected simultaneously.  This is not a proper follow-up

to the interaction. What is the initial test?
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Quantitative by Quantitative

An interaction of two quantitative variables is literally represented by their product.  For example, consider the

model

E[Y] = β
0
 + β

1
x

1
 + β

2
x

2
 + β

3
x

1
x

2

Hold x
2
 fixed at some particular value, and re-arrange the terms.  This yields

E[Y] =(β
0
 + β

2
x

2
) + (β

1
+ β

3
x

2
 )x

1
.

so that there is a linear relationship between x
1
 and E[Y], with both the slope and the intercept depending on the

value of x
2
.  Similarly, for a fixed value of x

1
,

E[Y] =(β
0
 + β

1
x

1
) + (β

2
+ β

3
x

1
 )x

2
,

and the (linear) relationship of x2 to E[Y] depends on the value of x1.  We always have this kind of symmetry.

Three-way interactions are represented by 3-way products, etc.  Its interpretation would be "the 2-way interaction

depends ..."

Product terms represent interactions ONLY when all the variables involved and all lower order interactions

involving those variables are also included in the model!
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Categorical by Categorical

It is no surprise that interactions between categorical independent variables are represented by products.  If A and

B are categorical variables, IVs representing the A by B interaction are obtained by multiplying each dummy

variable for A by each dummy variable for B.  If there is a third IV cleverly named C and you want the 3-way

interaction, multiply each of the dummy variables for C by each of the products representing the A by B

interaction.  This rule extends to interactions of any order.  

Up till now, we have represented categorical independent variables with indicator dummy variables, coded 0 or 1.

If interactions between categorical IVs are to be represented, it is much better to use "effect coding," so that the

regression coefficients for the dummy variables correspond to main effects.  (In a 2-way design, products of

indicator dummy variables still correspond to interaction terms, but if an interaction is present, the interpretation of

the coefficients for the indicator dummy variables is not what you might guess.)

Effect coding.  There is an intercept.  As usual, a categorical independent variable with k categories is

represented by k-1 dummy variables.  The rule is

Dummy var 1:  First value of the IV gets a 1, last gets a minus 1, all others get zero.

Dummy var 2:  Second value of the IV gets a 1, last gets a minus 1, all others get zero.

. . .

Dummy var k-1:  k-1st value of the IV gets a 1, last gets a minus 1, all others get zero.

Here is a table showing effect coding for Plant from the Greenhouse data.

Country p1 p2 E[Y] = β0 + β1p1 + β2p2

GP159  1  0 µ1 = β0 + β1

Hanna  0  1 µ2 = β0 + β2

Westar -1 -1 µ3 = β0 − β1 − β2

It is clear that µ1 = µ2 = µ3 if and only if β1=β2=0, so it's a valid dummy variable coding scheme even though it

looks strange.
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Country p1 p2 E[Y] = β0 + β1p1 + β2p2

GP159  1  0 µ1 = β0 + β1

Hanna  0  1 µ2 = β0 + β2

Westar -1 -1 µ3 = β0 − β1 − β2

Effect coding has these properties, which extend to any number of categories.

° µ1 = µ2 = µ3 if and only if β1=β2=0.  

° The average population mean (grand mean) is (µ1+µ2+µ3)/3 = β0.

° β1, β2 and -(β1+β2) are deviations from the grand mean.

The real advantage of effect coding is that the dummy variables behave nicely when multiplied together, so that

main effects correspond to collections of dummy variables, and interactions correspond to their products -- in a

simple way. This is illustrated for Plant by MCG analysis, using the full greenhouse data set).

data nasty;

     set yucky;

     /* Two dummy variables for plant */

        if plant=. then p1=.;

        else if plant=1 then p1=1;

        else if plant=3 then p1=-1;

        else p1=0;

     if plant=. then p2=.;

        else if plant=2 then p2=1;

        else if plant=3 then p2=-1;

        else p2=0;
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/* Five dummy variables for mcg */

     if mcg=. then f1=.;

        else if mcg=1 then f1=1;

        else if mcg=9 then f1=-1;

        else f1=0;

     if mcg=. then f2=.;

        else if mcg=2 then f2=1;

        else if mcg=9 then f2=-1;

        else f2=0;

     if mcg=. then f3=.;

        else if mcg=3 then f3=1;

        else if mcg=9 then f3=-1;

        else f3=0;

     if mcg=. then f4=.;

        else if mcg=7 then f4=1;

        else if mcg=9 then f4=-1;

        else f4=0;

     if mcg=. then f5=.;

        else if mcg=8 then f5=1;

        else if mcg=9 then f5=-1;

        else f5=0;

     /* Product terms for the interaction */

        p1f1 = p1*f1; p1f2=p1*f2 ; p1f3=p1*f3 ; p1f4=p1*f4; p1f5=p1*f5;

        p2f1 = p2*f1; p2f2=p2*f2 ; p2f3=p2*f3 ; p2f4=p2*f4; p2f5=p2*f5;

proc reg;

     model meanlng = p1 -- p2f5;

     plant:  test p1=p2=0;

     mcg:    test f1=f2=f3=f4=f5=0;

     p_by_f: test p1f1=p1f2=p1f3=p1f4=p1f5=p2f1=p2f2=p2f3=p2f4=p2f5 = 0;     
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Here is the output from the test statement.  For comparison, it is followed by proc glm output from

model meanlng = plant|mcg.

Dependent Variable: MEANLNG 
Test: PLANT    Numerator: 110847.5637  DF:    2   F value: 113.9032
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001

Dependent Variable: MEANLNG 
Test: MCG      Numerator:  11748.0529  DF:    5   F value:  12.0719
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001

Dependent Variable: MEANLNG 
Test: P_BY_F   Numerator:   4758.1481  DF:   10   F value:   4.8893
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001

-------------------------------------------------------------------------------

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

PLANT                    2     221695.12747    110847.56373   113.90    0.0001
MCG                      5      58740.26456     11748.05291    12.07    0.0001
PLANT*MCG               10      47581.48147      4758.14815     4.89    0.0001

It worked.

Effect coding works as expected in conjunction with quantitative independent variables.  In particular, products of

quantitative and indicator variables still represent interactions.  In fact, the big advantage of effect coding is that

you can use it to test categorical independent variables, and interactions between categorical independent variables

-- in a bigger multiple regression context.
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The discussion of interactions involving two or more categorical explanatory variables
will be continued in Chapter 7. The details begin on page 179.

5.10 Scheffé Tests for Regression

This section provides a brief but very powerful extension of the Scheffé tests to multiple
regression. Suppose the initial hypothesis is that r regression coefficients all are equal
to zero. We will follow up the initial test by testing whether s linear combinations of
these regression coefficients are different from zero; s ≤ r. Notice that now we are testing
linear combinations, not just contrasts. If a set of coefficients are all zero, then any linear
combination (weighted sum) of the coefficients is also zero. Thus the null hypotheses of
the follow-up tests are implied by the null hypotheses of the initial test. As in the case of
Scheffé tests for contrasts in one-way ANOVA, using an adjusted critical value guarantees
simultaneous protection for all the follow-up tests at the same significance level as the
initial test. This means we have proper follow-ups (See Section 3.4.6).

The formula for the adjusted Scheffé critical value is

fSch =
r

s
fcrit, (5.8)

where again, the null hypothesis of the initial test is that r regression coefficients are all
zero, and the null hypothesis of the follow-up test is that r linear combinations of those
coefficients are equal to zero.

Actually, Formula 5.8 is even more general. It applies to testing arbitrary linear
combinations of regression coefficients. The initial test is a test of r linear constraints4 on
the regression coefficients, and the follow-up test is a test of s linear constraints, where
s < r, and the linear constraints of the initial test imply the linear constraints of the
follow-up test5. For an example and more discussion, see the application of Scheffé tests
to the Greenhouse data of Section 7.3.

For convenience, here is a sample of proc iml code to produce a table of adjusted
critical values. Note that numdf= r and dendf= n − p. The example can easily be
modified to fit other problems.

proc iml;

title2 ’Scheffe tests for Regression: Critical values’;

numdf = 3; /* Numerator degrees of freedom for initial test (d) */

dendf = 15; /* Denominator degrees of freedom for initial test (n-d-1) */

alpha = 0.05;

critval = finv(1-alpha,numdf,dendf);

zero = {0 0}; S_table = repeat(zero,numdf,1); /* Make empty matrix */

/* Label the columns */

4A linear constraint is just a statement that some linear combination equals a constant.
5Technically, the weights of the linear combination of regression coefficients in the follow-up test lie

in the linear subspace spanned by the weights of the initial test. These weights include any non-zero
constants. See Hochberg and Tamhane’s (1987) Multiple comparison procedures [13] for more details.
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namz = {"Number of linear combos in followup test"

" Scheffe Critical Value"};

mattrib S_table colname=namz;

do i = 1 to numdf;

s_table(|i,1|) = i;

s_table(|i,2|) = numdf/i * critval;

end;

reset noname; /* Makes output look nicer in this case */

print "Initial test has " numdf " and " dendf "degrees of freedom."

"Using significance level alpha = " alpha;

print s_table;

The Scheffé tests for contrasts in a one-way ANOVA are special cases of this, because
anything you can do with factorial analysis of variance, you can do with dummy variable
regression. It’s very convenient with test statements in proc reg.

Biblographic Citation If you are writing a scientific article and you want to report the
use of Scheffé tests for regression, or even Scheffé tests for more than one contrast in a one-
way design, it is helpful to cite a book or article that contains a fairly thorough explanation
of the theory. But if you look in published Statistics texts, you will have difficulty finding
the Scheffé tests as they are expressed here. Like Scheffé’s original 1953 article [21], most
published texts stick to simultaneous confidence intervals for single contrasts of treatment
means. The general case of multiple regression is covered in Hochberg and Tamhane’s
(1987) monograph Multiple comparison procedures [13]. It’s not very readable to non-
statisticians, and they express everything in terms of simultaneous confidence regions
rather than the equivalent tests. But you can just trust me and cite this classic anyway.

5.11 Measurement error

In a survey, suppose that a respondent’s annual income is “measured” by simply asking
how much he or she earned last year. Will this measurement be completely accurate?
Of course not. Some people will lie, some will forget and give a reasonable guess, and
still others will suffer from legitimate confusion about what constitutes income. Even
physical variables like height, weight and blood pressure are subject to some inexactness of
measurement, no matter how skilled the personnel doing the measuring. Many categorical
variables are subject to classification error ; a case is recorded as being in one category,
but the truth is that it’s in another. In fact, very few of the variables in the typical data
set are measured completely without error.

So, there are really two versions of most variables – the true version and the observed
version. Typically, the relationships we are interested in are relationships among the true
variables, while the statistical analysis is necessarily based upon what we can observe.

In general, when there is a relationship between two true variables, the relationship
also appears between the observed variables, but it is weaker. This means that things
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are not so bad when we are just testing for association between pairs of variables, and
not trying to control for anything. But when we test for a relationship controlling for
some set of variables, we are seeking it in the conditional distributions — that is, in the
joint distributions of the explanatory and response variables, conditional on the values of
the variables for which we are controlling. The unfortunate truth is this. If the control
variables are measured with error, the conditional relationship given the observed variables
need not be the same as the conditional relationship given the true variables.

It’s as if we are trying to hold the control variables steady, but we can’t tell exactly
where they are. So the holding constant does not quite work. This applies to the model-
based control of the classical regression models, and also to control by subdivision (if there
is classification error in the categorical control variables). It even applies to experimental
control, if it is not done very carefully.6

For example, suppose the subjects in a study are adults, and you are testing the
relationship of age to Body Mass Index (BMI)7, controlling for exercise and calorie intake.
The questionnaire measures of exercise and calorie intake are known to be inaccurate.
People exaggerate amount of exercise and under-report calories — and not by a constant
amount. You can’t see these control variables clearly to hold them constant. The result is
that even if age is unrelated to Body Mass Index for every combination of true exercise and
calorie intake, a relationship between age and BMI can exist conditionally upon observed
exercise and calorie intake.

The poison combination Here is the situation that causes multiple regression to fail.
You want to test B controlling for A.

1. A is related to the response variable

2. A and B are related to each other, and

3. A is measured with error.8

In this situation it is very tempting (and common practice) to just use the imperfect
version of A, and try controlling for it with ordinary least-squares regression. But if you
do this, all hell breaks loose. The regression coefficients b are biased estimators of the
true regression coefficients β. Furthermore, the Type I Error can be badly inflated. In
a 2009 paper, Brunner and Austin [3] point out that the problem biased estimation has

6Suppose a drug is being injected into a rat. The amount of drug injected may be exactly the same
for all the rats in a particular experimental condition, but because of microscopic variation in needle
placement and the rats’ circulatory systems, the amount of drug that actually gets into the blood (the
true dosage) may vary quite a bit. I am grateful to Prof. Alison Fleming for this remark.

7Weight in kilograms divided by the square of height in meters. Values above 25 are supposed to
indicate obesity.

8Measurement error in B, the variable of set of variables you are testing, does not matter much. In
fact, it makes the problems described here a little less severe. This is also true of measurement error
in the response variable. All this assumes that the errors of measurement are uncorrelated with each
other. Correlated measurement error, which often arises from sloppy research design, introduces a set of
problems that are usually fatal to correct inference.
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been known since the 1930s. They also show that even for small amounts of measurement
error and moderate sample sizes, the probability of falsely rejecting the null hypothesis
at the 0.05 level can be unacceptably large. As the sample size increases, the probability
of false significance approaches 1.00.

The problem of measurement error can be particularly acute in observational medical
research. There, a common goal is to assess potential risk factors, controlling for known
risk factors. The known risk factors (set A) do matter, and they are generally correlated
with the potential risk factors that are being investigated. Also, the known risk factors
are difficult to measure without error. In this situation, application of standard methods
will often lead to the conclusion that the potential risk factors (set B) are a problem even
when one controls for the known risk factors. Such conclusions are very suspect.

But all is not lost The problem really comes from trying to use regression as a causal
model for observational data. As long as you are interested in prediction rather than
interpretation, there is no problem. The test for whether age is a useful predictor of Body
Mass Index is still valid, even if its usefulness comes from its correlation with true (as
opposed to reported) exercise level. Viewed this way, the measurement error problem is
just another reason why most observational studies cannot provide good evidence that
the explanatory variable causes, or contributes to the response variable.

Also, of one or more categorical explanatory variables are experimentally manipulated,
analysis of covariance can help reduce MSE and makes the analysis more precise, even if
the covariates (control variables) are measured with error. There is no inflation of Type I
Error rate because random assignment breaks up any association between A and B.

Even for purely observational studies, there are statistical methods that incorporate
measurement error into the model, and are not subject to the bias and Type I error
rate problems described here. One example is the structural equation models [2, 14]
popular in the social and (to a lesser degree) in the biological sciences. There are also
more mainstream statistical methods [4, 10, 12] that overlap with structural equation
modeling and have many of the same objectives. But all of these techniques require
additional information (more variables, not just more cases) so that measurement error
can be assessed. For example, it is helpful to have two independent readings of each
explanatory variable. The main point is that it’s never just a question of running different
software. Studies need to be planned differently if measurement error is to be taken into
account.

Rules of discourse A later edition of this text will have a chapter on structural equa-
tion models. In the meantime, we will apply traditional methods with care, and we will be
careful how we talk about things. In any academic discipline, a great deal of the discus-
sion tends to be repetitive, with the participants going back and forth, making points and
counter-points that are well rehearsed, and very similar to what they have read or heard
somewhere. The details may be about the case at hand, but the overall pattern is very
predictable if you know the field. Think of these patterns of discussion as pathways, worn
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into the surface of scientific debate.9 One thing that happens in a university education is
that you are exposed to a fairly large collection of such scripts, and if you learn to apply
them flexibly, it may help you think your way through difficult problems. If not, at least
you sound educated.

Anyway, here are some ways to criticize an observational study based on measurement
error in the explanatory variables.

• Start with “How did you control for . . . ?” The answer will be some version of
subdivision or model-based control.

• Most of the time, it will be obvious that the control variables are measured with
error. If so, ask “How did you take measurement error into account?” You might
get a straight answer.

• If not, ask if they are aware of how ignoring measurement error in the explanatory
variables can result in biased estimation and inflated Type I error rate. Provide
references (given above).

• If they say “Oh, there was just a little measurement error,” observe that if the
sample is large enough, no amount of measurement error is safe. Brunner and
Austin (2009) give a proof.

• If they say “Well, its the best we could do,” you could ask whether its better to say
something incorrect, or to be silent.

In this course, we will carry out classical regression analysis on observational data only
when our primary purpose is prediction, and we will be very careful about the way we
describe the results. We will use regression methods extensively on experimental data.

5.12 Multiple Regression with SAS

It is often good to start with a textbook example, so that interested students can locate
a more technical discussion of what is going on. The following example is based on the
“Dwaine Studios” Example from Chapter 6 of [16]. The cases correspond to photographic
portrait studios in 21 towns. In addition to sales (the response variable), the data file
contains number of children 16 and younger in the community (in thousands of persons),
and per capita disposable income in thousands of dollars. Here is the SAS program.

/* appdwaine1.sas */

title ’Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al’;

title2 ’Just the defaults’;

data portrait;

infile ’/folders/myfolders/dwaine.data’;

9One could make a similar point about political discussion, or even conversations about hockey.
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input kids income sales;

proc reg;

model sales = kids income;

/* model Response variables(s) = Explanatory variable(s); */

Here is the output.
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_______________________________________________________________________________

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 1

Just the defaults

The REG Procedure

Model: MODEL1

Dependent Variable: sales

Number of Observations Read 21

Number of Observations Used 21

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 24015 12008 99.10 <.0001

Error 18 2180.92741 121.16263

Corrected Total 20 26196

Root MSE 11.00739 R-Square 0.9167

Dependent Mean 181.90476 Adj R-Sq 0.9075

Coeff Var 6.05118

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -68.85707 60.01695 -1.15 0.2663

kids 1 1.45456 0.21178 6.87 <.0001

income 1 9.36550 4.06396 2.30 0.0333

Here are some comments on the output file.

• First the ANOVA summary table for the overall F -test, testing all the explanatory
variables simultaneously. In C Total, C means corrected for the sample mean.

• Root MSE is the square root of Mean Square Error (MSE).

• Dep Mean is the mean of the response variable.

• C.V. is the coefficient of variation – the standard deviation divided by the mean.
Who cares?

• R-square is R2

• Adj R-sq: Since R2 never goes down when you add explanatory variables, models
with more variables always look as if they are doing better. Adjusted R2 is an
attempt to penalize the usual R2 for the number of explanatory variables in the
model. It can be useful if you are trying to compare the predictive usefulness of
models with different numbers of explanatory variables.
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• Parameter Estimates are the b values corresponding to the explanatory variables
listed. The one corresponding to Intercept is b0. Standard Error is the (esti-
mated) standard deviation of the sampling distribution of b. It’s the denominator
of the t test in the next column.

• The last column is a two-tailed p-value for the t-test, testing whether the regression
coefficient is zero.

Here are some sample questions based on the output file.

Sample Question 5.12.1 Suppose we wish to test simultaneously whether number of
kids 16 and under and average family income have any relationship to sales. Give the
value of the test statistic, and the associated p-value.

Answer to Sample Question 5.12.1 F = 99.103, p < 0.0001

Sample Question 5.12.2 What can you conclude from just this one test?

Answer to Sample Question 5.12.2 Sales is related to either number of kids 16 and
under, or average family income, or both. But you’d never do this. You have to look at
the rest of the printout to tell what’s happening.

Sample Question 5.12.3 What percent of the variation in sales is explained by number
of kids 16 and under and average family income?

Answer to Sample Question 5.12.3 91.67%

Sample Question 5.12.4 Controlling for average family income, is number of kids 16
and under related to sales?

1. What is the value of the test statistic?

2. What is the p-value?

3. Are the results significant? Answer Yes or No.

4. Is the relationship positive, or negative?

Answer to Sample Question 5.12.4

1. t = 6.868

2. p < 0.0001

3. Yes.

4. Positive.
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Sample Question 5.12.5 Controlling for number of kids 16 and under is average family
income related to sales?

1. What is the value of the test statistic?

2. What is the p-value?

3. Are the results significant? Answer Yes or No.

4. Is the relationship positive, or negative?

Answer to Sample Question 5.12.5

1. t = 2.305

2. p = 0.0333

3. Yes.

4. Positive.

Sample Question 5.12.6 What do you conclude from this entire analysis? Direct your
answer to a statistician or researcher.

Answer to Sample Question 5.12.6 Number of kids 16 and under and average family
income are both related to sales, even when each variable is controlled for the other.

Sample Question 5.12.7 What do you conclude from this entire analysis? Direct your
answer to a person without statistical training.

Answer to Sample Question 5.12.7 Even when you allow for the number of kids 16
and under in a town, the higher the average family income in the town, the higher the
average sales. When you allow for the average family income in a town, the higher the
number of children under 16, the higher the average sales.

Sample Question 5.12.8 A new studio is to be opened in a town with 65,400 children
16 and under, and an average household income of $17,600. What annual sales do you
predict?

Answer to Sample Question 5.12.8 Ŷ = b0+b1x1+b2x2 = -68.857073 + 1.454560*65.4
+ 9.365500*17.6 = 191.104, so predicted annual sales = $191,104.

Sample Question 5.12.9 For any fixed value of average income, what happens to pre-
dicted annual sales when the number of children under 16 increases by one thousand?

Answer to Sample Question 5.12.9 Predicted annual sales goes up by $1,454.

Sample Question 5.12.10 What do you conclude from the t-test for the intercept?
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Answer to Sample Question 5.12.10 Nothing. Who cares if annual sales equals zero
for towns with no children under 16 and an average household income of zero?

The final two questions ask for a proportion of remaining variation, the quantity we
are denoting by a. In the published literature, sometimes all you have are reports of
t-tests for regression coefficients.

Sample Question 5.12.11 Controlling for average household income, what proportion
of the remaining variation is explained by number of children under 16?

Answer to Sample Question 5.12.11 Using F = t2 and plugging into (5.7), we have
a = 1×6.8682

21−3+1×6.8682 = 0.691944, or around 70% of the remaining variation.

Sample Question 5.12.12 Controlling for number of children under 16, what propor-
tion of the remaining variation is explained by average household income?

Answer to Sample Question 5.12.12 a = 2.3052

18+2.3052
= 0.2278994, or about 23%.

These a values are large, but the sample size is small; after all, it’s a textbook example,
not real data. Now here is a program file that illustrates some options, and gives you a
hint of what a powerful tool SAS proc reg can be.
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/* appdwaine2.sas */

title ’Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al’;

title2 ’With bells and whistles’;

data portrait;

infile ’/folders/myfolders/dwaine.data’;

input kids income sales;

proc reg simple corr; /* "simple" prints simple descriptive statistics */

model sales = kids income / ss1; /* "ss1" prints Sequential SS */

output out=resdata predicted=presale residual=resale;

/* Creates new SAS data set with Y-hat and e as additional variables*/

/* Now all the default F-test, in order */

allivs: test kids = 0, income = 0;

inter: test intercept=0;

child: test kids=0;

money: test income=0;

proc iml; /* Income controlling for kids: Full vs reduced by "hand" */

fcrit = finv(.95,1,18); print fcrit;

/* Had to look at printout from an earlier run to get these numbers*/

f = 643.475809 / 121.16263; /* Using the first F formula */

pval = 1-probf(f,1,18);

tsq = 2.305**2; /* t-squared should equal F*/

a = 643.475809/(26196.20952 - 23372);

print f tsq pval;

print "Proportion of remaining variation is " a;

proc glm; /* Use proc glm to get a y-hat more easily */

model sales=kids income;

estimate ’Xh p249’ intercept 1 kids 65.4 income 17.6;

proc print; /* To see the new data set with residuals*/

proc univariate normal plot;

var resale;

proc plot;

plot resale * (kids income sales);

Here are some comments on appdwaine2.sas.

• simple corr You could get means and standard deviations from proc means and
correlations from proc corr, but this is convenient.

• ss1 These are Type I Sums of Squares, produced by default in proc glm. In proc

reg, you must request them with the ss1 option if you want to see them. The
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explanatory variables in the model statement are added to the model in order.
For each variable, the Type I SS is the increase in explained sum of squares that
comes from adding each variable to the model, in the order they appear in the
model statement. The t-tests correspond to proc glm’s Type III sums of squares;
everything is controlled for everything else.

• output creates a new sas data set called resdata. It has all the variables in the
data set portrait, and in addition it has Ŷ (named presale for predicted sales)
and e (named resale for residual of sales).

• Then we have some custom tests, all of them equivalent to what we would get by
testing a full versus reduced model. SAS takes the approach of testing whether s
linear combinations of β values equal s specified constants (usually zero). Again,
this is the same thing as testing a full versus a reduced model. The form of a custom
test in proc reg is

1. A name for the test, 8 characters or less, followed by a colon; this name will
be used to label the output.

2. the word test.

3. s linear combinations of explanatory variable names, each set equal to some
constant, separated by commas.

4. A semi-colon to end, as usual.

If you want to think of the significance test in terms of a collection of linear com-
binations that specify constraints on the β values (this is what a statistician would
appreciate), then we would say that the names of the explanatory variables (includ-
ing the weird variable “intercept”) are being used to refer to the corresponding βs.
But usually, you are testing a subset of explanatory variables controlling for some
other subset. In this case, include all the variables in the model statement, and
set the variables you are testing equal to zero in the test statement. Commas are
optional. As an example, for the test allivs (all explanatory variables) we could
have written allivs: test kids = income = 0;.

• Now suppose you wanted to use the Sequential Sums of Squares to test income con-
trolling for kids. You could use a calculator and a table of the F distribution from
a textbook, but for larger sample sizes the exact denominator degrees of freedom
you need are seldom in the table, and you have to interpolate in the table. With
proc iml (Interactive Matrix Language), which is actually a nice programming en-
vironment, you can use SAS as your calculator. Among other things, you can get
exact critical values and p-values quite easily. Statistical tables are obsolete.

In this example, we first get the critical value for F ; if the test statistic is bigger
than the critical value, the result is significant. Then we calculate F using formula
5.4, and obtain its p-value. This F should be equal to the square of the t statistic
from the printout, so we check. Then we use (5.7) to calculate a, and print the
results.
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• proc glm The glm procedure is very useful when you have categorical explanatory
variables, because it makes your dummy variables for you. But it also can do
multiple regression. This example calls attention to the estimate command, which
lets you calculate Ŷ values more easily and with less chance of error compared to a
calculator or proc iml.

• proc print prints all the data values, for all the variables. This is a small data
set, so it’s not producing a telephone book here. You can limit the variables and
the number of cases it prints; see the manual or Applied statistics and the SAS
programming language [5]. By default, all SAS procedures use the most recently
created SAS data set; this is resdata, which was created by proc reg – so the
predicted values and residuals will be printed by proc print.

• You didn’t notice, but proc glm also used resdata rather than portrait. But it
was okay, because resdata has all the variables in portrait, and also the predicted
Y and the residuals.

• proc univariate produces a lot of useful descriptive statistics, along with a fair
amount of junk. The normal option gives some tests for normality, and textttplot
generates some line-printer plots like boxplots and stem-and-leaf displays. These are
sometimes informative. It’s a good idea to run the residuals (from the full model)
through proc univariate if you’re starting to take an analysis seriously.

• proc plot This is how you would plot residuals against variables in the model. It
the data file had additional variables you were thinking of including in the analysis,
you could plot them against the residuals too, and look for a correlation. My
personal preference is to start plotting residuals fairly late in the exploratory game,
once I am starting to get attached to a regression model.

Here is the output.

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 1

With bells and whistles

The REG Procedure

Number of Observations Read 21

Number of Observations Used 21

Descriptive Statistics

Uncorrected Standard

Variable Sum Mean SS Variance Deviation

Intercept 21.00000 1.00000 21.00000 0 0

kids 1302.40000 62.01905 87708 346.71662 18.62033

income 360.00000 17.14286 6190.26000 0.94157 0.97035

sales 3820.00000 181.90476 721072 1309.81048 36.19130

Correlation
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Variable kids income sales

kids 1.0000 0.7813 0.9446

income 0.7813 1.0000 0.8358

sales 0.9446 0.8358 1.0000

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 2

With bells and whistles

The REG Procedure

Model: MODEL1

Dependent Variable: sales

Number of Observations Read 21

Number of Observations Used 21

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 24015 12008 99.10 <.0001

Error 18 2180.92741 121.16263

Corrected Total 20 26196

Root MSE 11.00739 R-Square 0.9167

Dependent Mean 181.90476 Adj R-Sq 0.9075

Coeff Var 6.05118

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 3

With bells and whistles

The REG Procedure

Model: MODEL1

Dependent Variable: sales

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t| Type I SS

Intercept 1 -68.85707 60.01695 -1.15 0.2663 694876

kids 1 1.45456 0.21178 6.87 <.0001 23372

income 1 9.36550 4.06396 2.30 0.0333 643.47581

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 4

With bells and whistles

The REG Procedure
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Model: MODEL1

Test allivs Results for Dependent Variable sales

Mean

Source DF Square F Value Pr > F

Numerator 2 12008 99.10 <.0001

Denominator 18 121.16263

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 5

With bells and whistles

The REG Procedure

Model: MODEL1

Test inter Results for Dependent Variable sales

Mean

Source DF Square F Value Pr > F

Numerator 1 159.48430 1.32 0.2663

Denominator 18 121.16263

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 6

With bells and whistles

The REG Procedure

Model: MODEL1

Test child Results for Dependent Variable sales

Mean

Source DF Square F Value Pr > F

Numerator 1 5715.50583 47.17 <.0001

Denominator 18 121.16263

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 7

With bells and whistles

The REG Procedure

Model: MODEL1

Test money Results for Dependent Variable sales

Mean

Source DF Square F Value Pr > F

Numerator 1 643.47581 5.31 0.0333

Denominator 18 121.16263

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 8

With bells and whistles

fcrit
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4.4138734

f tsq pval

5.3108439 5.313025 0.0333214

a

Proportion of remaining variation is 0.2278428

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 9

With bells and whistles

The GLM Procedure

Number of Observations Read 21

Number of Observations Used 21

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 10

With bells and whistles

The GLM Procedure

Dependent Variable: sales

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 24015.28211 12007.64106 99.10 <.0001

Error 18 2180.92741 121.16263

Corrected Total 20 26196.20952

R-Square Coeff Var Root MSE sales Mean

0.916746 6.051183 11.00739 181.9048

Source DF Type I SS Mean Square F Value Pr > F

kids 1 23371.80630 23371.80630 192.90 <.0001

income 1 643.47581 643.47581 5.31 0.0333

Source DF Type III SS Mean Square F Value Pr > F

kids 1 5715.505835 5715.505835 47.17 <.0001

income 1 643.475809 643.475809 5.31 0.0333

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 11

With bells and whistles

The GLM Procedure
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Dependent Variable: sales

Standard

Parameter Estimate Error t Value Pr > |t|

Xh p249 191.103930 2.76679783 69.07 <.0001

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept -68.85707315 60.01695322 -1.15 0.2663

kids 1.45455958 0.21178175 6.87 <.0001

income 9.36550038 4.06395814 2.30 0.0333

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 12

With bells and whistles

Obs kids income sales presale resale

1 68.5 16.7 174.4 187.184 -12.7841

2 45.2 16.8 164.4 154.229 10.1706

3 91.3 18.2 244.2 234.396 9.8037

4 47.8 16.3 154.6 153.329 1.2715

5 46.9 17.3 181.6 161.385 20.2151

6 66.1 18.2 207.5 197.741 9.7586

7 49.5 15.9 152.8 152.055 0.7449

8 52.0 17.2 163.2 167.867 -4.6666

9 48.9 16.6 145.4 157.738 -12.3382

10 38.4 16.0 137.2 136.846 0.3540

11 87.9 18.3 241.9 230.387 11.5126

12 72.8 17.1 191.1 197.185 -6.0849

13 88.4 17.4 232.0 222.686 9.3143

14 42.9 15.8 145.3 141.518 3.7816

15 52.5 17.8 161.1 174.213 -13.1132

16 85.7 18.4 209.7 228.124 -18.4239

17 41.3 16.5 146.4 145.747 0.6530

18 51.7 16.3 144.0 159.001 -15.0013

19 89.6 18.1 232.6 230.987 1.6130

20 82.7 19.1 224.1 230.316 -6.2161

21 52.3 16.0 166.5 157.064 9.4356

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 13

With bells and whistles

The UNIVARIATE Procedure

Variable: resale (Residual)

Moments

N 21 Sum Weights 21

Mean 0 Sum Observations 0

Std Deviation 10.442527 Variance 109.046371

Skewness -0.0970495 Kurtosis -0.7942686

Uncorrected SS 2180.92741 Corrected SS 2180.92741

Coeff Variation . Std Error Mean 2.27874622

Basic Statistical Measures

Location Variability
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Mean 0.000000 Std Deviation 10.44253

Median 0.744918 Variance 109.04637

Mode . Range 38.63896

Interquartile Range 15.65166

Tests for Location: Mu0=0

Test -Statistic- -----p Value------

Student’s t t 0 Pr > |t| 1.0000

Sign M 2.5 Pr >= |M| 0.3833

Signed Rank S 1.5 Pr >= |S| 0.9599

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 14

With bells and whistles

The UNIVARIATE Procedure

Variable: resale (Residual)

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.954073 Pr < W 0.4056

Kolmogorov-Smirnov D 0.147126 Pr > D >0.1500

Cramer-von Mises W-Sq 0.066901 Pr > W-Sq >0.2500

Anderson-Darling A-Sq 0.432299 Pr > A-Sq >0.2500

Quantiles (Definition 5)

Quantile Estimate

100% Max 20.215072

99% 20.215072

95% 11.512629

90% 10.170574

75% Q3 9.435601

50% Median 0.744918

25% Q1 -6.216062

10% -13.113212

5% -15.001313

1% -18.423890

0% Min -18.423890

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 15

With bells and whistles

The UNIVARIATE Procedure

Variable: resale (Residual)

Extreme Observations
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------Lowest----- ------Highest-----

Value Obs Value Obs

-18.4239 16 9.75858 6

-15.0013 18 9.80368 3

-13.1132 15 10.17057 2

-12.7841 1 11.51263 11

-12.3382 9 20.21507 5

Stem Leaf # Boxplot

2 0 1 |

1 |

1 0002 4 |

0 99 2 +-----+

0 011124 6 *--+--*

-0 | |

-0 665 3 +-----+

-1 332 3 |

-1 85 2 |

----+----+----+----+

Multiply Stem.Leaf by 10**+1

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 16

With bells and whistles

The UNIVARIATE Procedure

Variable: resale (Residual)

Normal Probability Plot

22.5+ *++++

| +++++

| ++*+*

| **+*+*

2.5+ *****+*

| *+++

| +++**

| ++*+* *

-17.5+ *++++*

+----+----+----+----+----+----+----+----+----+----+

-2 -1 0 +1 +2

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 17

With bells and whistles

Plot of resale*kids. Legend: A = 1 obs, B = 2 obs, etc.
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With bells and whistles

Plot of resale*sales. Legend: A = 1 obs, B = 2 obs, etc.
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Here are some comments.

• proc reg

– In the descriptive statistics produced by the simple option, one of the “vari-
ables” is INTERCEP; it’s our friend X0 = 1. The SAS programmers (or the
statisticians directing them) are really thinking of this as an explanatory vari-
able.

– The Type I (sequential) sum of squares starts with INTERCEP, and a really big
number for the explained sum of squares. Well, think of a reduced model that
does not even have an intercept — that is, one in which there are not only no
explanatory variables, but the population mean is zero. Then add an intercept,
so the full model is E[Y ] = β0. The least squares estimate of β0 is Y , so the
improvement in explained sum of squares is

∑n
i=1(Yi − Y )2 = SSTO. That’s

the first line. It makes sense, in a twisted way.

– Then we have the custom tests, which reproduce the default tests, in order.
See how useful the names of the custom tests can be?

• proc iml: Everything works as advertised. F = t2 except for rounding error, and
a is exactly what we got as the answer to Sample Question 5.12.12.

• proc glm
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– After an overall test, we get tests labelled Type I SS and Type III SS. As
mentioned earlier, Type One sums of squares are sequential. Each variable is
added in turn to the model, in the order specified by the model statement.
Each one is tested controlling for the ones that precede it — except that the
denominator of the F ratio is MSE from the model including all the explanatory
variables.

– When explanatory variables are correlated with each other and with the re-
sponse variable, some of the variation in the response variable is being explained
by the variation shared by the correlated explanatory variables. Which one
should get credit? If you use sequential sums of squares, the variable named
first by you gets all the credit. And your conclusions can change radically as
a result of the order in which you name the explanatory variables. This may
be okay, if you have strong reasons for testing A controlling for B and not the
other way around.

In Type Three sums of squares, each variable is controlled for all the others.
This way, nobody gets credit for the overlap. It’s conservative, and valuable.
Naturally, the last lines of Type I and Type III summary tables are identical,
because in both cases, the last variable named is being controlled for all the
others.

– I can never remember what Type II and Type IV sums of squares are.

– The estimate statement yielded an Estimate, that is, a Ŷ value, of 191.103930,
which is what we got with a calculator as the answer to Sample Question 5.12.8.
We also get a t-test for whether this particular linear combination differs sig-
nificantly from zero — insane in this particular case, but useful at other times.
The standard error would be very useful if we were constructing confidence
intervals or prediction intervals around the estimate, but we are not.

– Then we get a display of the b values and associated t-tests, as in proc reg.
proc glm produces these by default only when none of the explanatory vari-
ables is declared categorical with the class statement. If you have categorical
explanatory variables, you can request parameter estimates with the parms

option.

• proc print output is self-explanatory. If you are using proc print to print a large
number of cases, consider specifying a large page size in the options statement.
Then, the logical page length will be very long, as if you were printing on a long roll
of paper, and SAS will not print a new page header with the date and title and so
on every 24 line or 35 lines or whatever.

• proc univariate: There is so much output to explain, I almost can’t stand it. I’ll
just hit a few high points here.

– T:Mean=0 A t-test for whether the mean is zero. If the variable consisted of
difference scores, this would be a matched t-test. Here, because the mean of
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residuals from a multiple regression is always zero as a by-product of least-
squares, t is exactly zero and the p-value is exactly one.

– M(Sign) Sign test, a non-parametric equivalent to the matched t.

– Sgn Rank Wilcoxon’s signed rank test, another non-parametric equivalent to
the matched t.

– W:Normal A test for normality. As you might infer from Pr<W, the associated
p-value is the lower tail area of some distribution. If p < 0.05, conclude that
the data are not normally distributed.

The assumptions of the hypothesis tests for multiple regression imply that the
residuals are normally distributed, though not quite independent. The lack of
independence makes the W test a bit too likely to indicate lack of normality. If
the test is non-significant, can one conclude that the data are normal? This is
an example of a more general question: When can one conclude that the null
hypothesis is true? This question was discussed a bit in Chapter 1. Here are
two additional comments about the tests for normality:

∗ Like most tests, the W test for normality is much more sensitive when
the sample size is large. So failure to observe a significant departure from
normality does not imply that the data really are normal, for a small
sample like this one (n=21).

∗ In an observational study, residuals can appear non-normal because im-
portant explanatory variables have been omitted from the full model.

– Extremes are the 5 highest and 5 lowest scores. Very useful for locating outliers.
The largest residual in this data set is 20.21507; it’s observation 5.

– Normal Probability Plot is supposed to be straight-line if the data are nor-
mal. Even though I requested pagesize=35, this plot is pretty squashed. Basi-
cally it’s useless.

• proc plot Does not show much of anything in this case. This is basically good
news, though again the data are artificial. The default plotting symbol is A; if two
points get too close together, they are plotted as B, and so on.

Here are a few sample questions.

Sample Question 5.12.13 What is the mean of the average household incomes of the
21 towns?

Answer to Sample Question 5.12.13 $17,143

Sample Question 5.12.14 Is this the same as the average income of all the households
in the 21 towns?

Answer to Sample Question 5.12.14 No way.
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Sample Question 5.12.15 The custom test labelled MONEY is identical to what default
test?

Answer to Sample Question 5.12.15 The t-test for INCOME. F = t2, and the p-value
is the same.

Sample Question 5.12.16 In the proc iml output, what can you learn from comparing
F to FCRIT?

Answer to Sample Question 5.12.16 p < 0.05

Sample Question 5.12.17 For a town with 68,500 children 16 and under, and an aver-
age household income of $16,700, does the full model over-predict or under-predict sales?
By how much?

Answer to Sample Question 5.12.17 Under-predict by $12,784. This is the first resid-
ual produced by proc print.
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