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Introduction

The lady and the tea
From Fisher’s The design of experiments, first published in 1935

Once upon a time, there was a British lady who claimed that she could
tell from the taste which had been poured into the cup first, the tea or
the milk. So Fisher designed an experiment to test it.

Eight cups of tea were prepared.

In four, the tea was poured first.

In the other four, the milk was poured first.

Other features of the cups of tea (size, temperature, etc.) were
held constant.

Cups were presented in a random order (critical).

The lady tasted them, and judged.

She knew there were four of each type.
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Introduction

The null hypothesis

The null hypothesis is that the lady has no ability to taste the
difference.

If so, all possible ways of lining up the lady’s judgements and the
truth about the tea cups should be equally likely.

Equally likely because of the random order of presentation.

The test statistic is the number of correct judgements.

What is the distribution of the test statistic under the null
hypothesis?
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Introduction

Data file

Truth Judgement

1 tea milk

2 milk tea

3 milk milk

4 milk milk

5 tea tea

6 tea tea

7 tea milk

8 milk tea

Under H0, the reasons for the lady’s judgements are unknown, except
that they have nothing to do with the truth.

The judgements are what they are; they are fixed.

Because of randomization, all 8! = 40, 320 permutations of the cups are
equally likely, and each one has its own number of correct judgements.

But there are lots of repeats.
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Introduction

Counting argument

How many ways are there to choose 4 cups to put the tea in first?(
8
4

)
= 70

All are equally likely.

Only one lines up perfectly with the lady’s judgements.

The chances of this under H0 are 1
70 = 0.0143 < 0.05.

So H0 would be rejected at α = 0.05 if she guessed perfectly.
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Introduction

Fisher’s exact test

Testing association of two binary variables.

Unlike the tea-teasing example, no requirement of 50-50 split.

Numbers of A = Yes, No and B = Yes, No are fixed.

Subject to those restrictions, the count in one cell is free to vary
(df = 1).

Number in the (Yes, Yes) cell is one-to-one with the odds ratio.

If counts in the (Yes, Yes) cell were completely random subject to
the restriction of row and column totals (that’s H0), what’s the
probability of getting such a large (or small) oddes ratio?

p-values are exact probabilities based on the hypergeometric
distribution.

Large samples are not required.
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Permutation Tests

The idea
Thank you Mr. Fisher

Experimental study, with random assignment of units to
conditions.

Under H0, the treatment has no effect at all.

The process producing values of y is unspecified.

Except that it has nothing to do with experimental condition.

The particular values of the response variable are what they are.

The only reason for differences among conditions is the random
assignment.
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Permutation Tests

The permutation distribution

Pick a test statistic (more on that later).

Under H0, all the ways of distributing y values into experimental
conditions are equally likely.

Each re-arrangement (permutation) of the y values produces a
value of the test statistic.

Compute the test statistic for each re-arrangement.

Relative frequencies are the permutation distribution of the test
statistic.

Make a histogram.
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Permutation Tests

Another example from Fisher’s Design of experiments

Darwin’s experiment on self-fertilized versus cross-fertilized corn
plants:

Plants are grown in 15 pairs, one cross and one self-fertilized.

Response variable is height.

Calculate differences.

Do a matched t-test, or . . .
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Permutation Tests

A randomization test for matched pairs

Fisher wishes the self-fertilized plants had been randomly assigned to be on
either the left or the right. Otherwise he loves the experiment.

Under null hypothesis that self-fertilized versus cross-fertilized does not matter
at all, only chance determined whether A was subtracted from B or B was
subtracted from A.

So the absolute value of the difference is what it is, but the plus or minus sign
is by chance alone (under H0).

Test statistic is sum of the differences.

There are 215 = 32, 768 ways to swap the plus and minus signs, all equally
likely under H0.

Calculate the sum of differences for each one, yielding a permutation
distribution for the test statistic under H0.

The p-value is the proportion of these that equal or exceed in absolute value
the sum of differences Darwin observed: D = 314.

Fisher’s answer is p = 0.05267, compared to p = 0.0497 from a t-test.

He used his brain as well as doing a lot of tedious calculation.
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Permutation Tests

Permutation Distribution for Darwin's Plant Data

Sum of Differences
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Permutation Tests

Permutation p-value

The permutation test p-value is the proportion of values in the
permutation distribution that equal or exceed the observed value of the
test statistic from the un-scrambled data — in the direction(s) of the
alternative hypothesis.
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Permutation Tests

Advantages of the permutation test idea

Simplicity. The distribution theory is elementary.

Test is distribution-free under the null hypothesis. There is no
assumption of the normal or any other distribution.

Some non-parametric methods depend on large sample sizes for
their validity. Permutation tests do not. Even for tiny samples,
the chance of false significance cannot exceed 0.05.

p-values are exact and not asymptotic.

There is no pretense of random sampling from some imaginary
population.

All the probability comes from random assignment.

Random assignment actually happens. Random sampling often
does not.
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Permutation Tests

More comments

Applies to observational studies too.

The null hypothesis is that the explanatory variable(s) and
response variable(s) are independent.

It’s even better than that. Bell and Doksum (1967) proved that
any valid distribution-free test of independence must be a
permutation test (maybe a permutation test in disguise).

It doesn’t matter if data are categorical or quantitative. By
scrambling the data, any possible relationship between
explanatory and response variables is destroyed.

If either explanatory or response variable is multivariate, scramble
vectors of data.
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Permutation Tests

What is “the” test statistic?

It’s up to you.

No matter what you choose, the chance of wrongly rejecting the
null hypothesis cannot exceed α = 0.05.

One good choice is a descriptive statistic that accurately reflects
the phenomenon as you understand it.

Could that number (or greater) have been produced by random
assignment or random sampling? No doubt.

The question is, how unlikely is this?

The answer is given by the permutation p-value.
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Permutation Tests

Choice of test statistic

We are testing a null hypothesis based on the value of the test
statistic.

The probability of wrongly rejecting H0 (and making a false
discovery) is limited to α = 0.05. Good.

Some test statistics are better than others, depending on how H0

is false: Statistical power.

See Good (1994) Permutation tests.

Traditional test statistics are a popular choice, and usually a good
choice.

When the assumptions happen to be approximately satisfied, they
often are nearly optimal.
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Permutation Tests

To summarize

A permutation test is conducted by following these three steps.

1 Compute some test statistic using the set of original observations.

2 Re-arrange the observations in all possible orders, computing the
test statistic each time. Re-arrangement corresponds exactly to
the details of random assignment.

3 Calculate the permutation test p-value, which is the proportion of
test statistic values from the re-arranged data that equal or exceed
the value of the test statistic from the original data. Or, locate the
critical value(s) in the permutation distribution.
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Permutation Tests

Using the p-value from a traditional test
As the test statistic

The p-value from a traditional test is sometimes a more convenient
test statistic than the original test statistic.

p-value is 1− 1 function of the test statistic, so the permutation
p-value is the same.

The permutation p-value is the proportion of p-values from the
scrambled data that are less than or equal to the observed p-value.

That’s exactly the cdf of the permutation distribution of p-values.

One-sided, two-sided does not matter.

Handy for multiple comparisons (More later).
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Permutation Tests

Fisher said
Statistical methods for research workers, 1936

Actually, the statistician does not carry

out this very tedious process but his

conclusions have no justification beyond

the fact they could have been arrived at

by this very elementary method.

See Cox and Reid (2000) The Theory of the Design of Experiments for
the research literature.
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Permutation Tests

Scab disease data
Illustrating Fisher’s claim

Permutation Distribution of the F Statistic

F statistic

D
en
si
ty

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

3.61

21 / 42



Permutation Tests

Scab disease data
Illustrating Fisher’s claim

Permutation Distribution of the F Statistic

F statistic
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Permutation Tests

The approximation is not always so good
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Permutation Tests

Permutation Distribution of the F Statistic
Permutation Distribution of the F Statistic
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Permutation Tests

Permutation Distribution versus Theoretical F Distribution

F statistic
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Permutation Tests

Permutation Distribution versus Theoretical F Distribution

F statistic
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Permutation Tests

It was the outlier

Approximation was excellent for exponential data.
Awful for absolute Cauchy not rounded.
Likert scale: 7-point scale, strongly disagree to strongly agree.
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Permutation Tests

n = 7 for each of three treatments
0.0542 of the permutation distribution is above the F critical vlue

Permutation Distribution of the F Statistic with Likert Data

F statistic
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Permutation Tests

n = 30 for each of three treatments
0.0472 of the permutation distribution is above the F critical vlue

Permutation Distribution of the F Statistic with Likert Data

F statistic
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Permutation Tests

Main drawback of permutation tests are that they’re
hard to compute

Fisher considered permutation tests to be mostly hypothetical, but
that was before computers.

Even with computers, listing all the permutations can be out of
the question, and combinatoric simplification may be challenging.
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Permutation Tests

Scab disease

Eight plots of land in the control condition.

Four plots in each of 6 experimental conditions.

Total n = 32.

This is a small sample.

There are 32!
8! 4! 4! 4! 4! 4! 4! ways to place the observed data into

treatment conditions.

Calculate the F statistic for each one.

SAS will do it. Or anyway, it will try.
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Permutation Tests

Calculate the F statistic for each re-arrangement of the
data

32!

8! 4! 4! 4! 4! 4! 4!
= 34, 149, 454, 710, 484, 113, 000, 000

That’s a big number.

Maybe we can distribute the computation among lots of
computers.

World population is approximately 7.51 billion.

That’s 34149454710484113/7510 ≈ 4.547× 1012 calculations per
person.

If they all had computers and could do one test every 0.01 seconds,

It would take around 1,441.9 years to finish the job.
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Permutation Tests

Some problems can be figured out in advance

If both explanatory and response variable are binary (an
important case), Fisher derived the permutation distribution of
the number of observations in the Yes, Yes cell (equivalent to the
odds ratio) based on the hypergeometric distribution.

The result is called Fisher’s exact test.

For non-binary response variables, one can convert the data to
ranks.

Then, permutation distributions can be figured out in advance.

All the common non-parametric rank tests are permutation tests
carried out on ranks.

33 / 42



Randomization Tests

Randomization tests: A modern solution

Scramble the values of the response variable in a random order,
leaving the explanatory variable values in place.

Compute the test statistic for the randomly shuffled data.

We have randomly sampled a value of the test statistic from its
permutation distribution.

Carry out the procedure a large number of times.

By the Law of Large Numbers, the permutation p-value is
approximated by the proportion of randomly generated values that
exceed or equal the observed value of the test statistic.

This proportion is the p-value of the randomization test.

The p-value of a randomization test is an estimate of the p-value of
the corresponding permutation test.

SAS does this (among other options) in proc npar1way.

With a confidence interval for the permutation test p-value.
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Multiple Comparisons

Multiple Comparisons
Using randomization

You could Bonferroni protect a collection of randomization tests,
but this is better.

It’s not conservative.

You do need to know what all the tests are, in advance.
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Multiple Comparisons

Use a standard p-value as the test statistic

Permutation Distribution of the p-value

p-value
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Multiple Comparisons

p-values

Have a family of tests, and an observed p-value from each one.

The event that at least one p-value is less than some critical value
is the event that the minimum is less than the critical value.

If the distribution of the test statistic is continuous and H0 is true,
p-values are uniformly distributed on (0, 1).

It’s easy to derive the distribution of the minimum of a collection
of independent uniforms.

Except the p-values are not independent.
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Multiple Comparisons

The randomization test solution
Approximate permutation distribution for a family of tests

Randomly permute the data, scrambling y against x.

Calculate p-values for all the tests and take the minimum.

Repeat.

The result is a randomization distribution of minimum p-values.

This is an approximation of the corresponding permutation
distribution.

Compare each observed p-value to the distribution of the
minimum.

The proportion of minimum p-values at or below any given
observed p-value is an adjusted p-value.

If all null hypotheses are true, the probability of getting at least
one adjusted p-value less than 0.05 equals 0.05.

Give or take discreteness and Monte Carlo sampling error.

proc multtest does this.
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Bootstrap

Bootstrap (Efron, 1979)
For comparison

If the sample size is large enough, the histogram of the sample
data is a lot like the histogram of the entire population.

Thus, sampling from the sample with replacement is a lot like
sampling from the population.

Sampling from the sample is called resampling.
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Bootstrap

Bootstrap distribution

One can approximate the sampling distribution of a statistic as follows.

Select a random sample of size n from the sample data, with
replacement.

Compute the statistic from the resampled data.

Do this over and over again, accumulating the values of the
statistic.

A histogram of the values you have accumulated will resemble the
sampling distribution of the statistic.

Use it to construct tests and confidence intervals.
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Bootstrap

Bootstrap vs. Randomization tests
Similarities and differences

Both are computer-intensive Monte Carlo methods based on
random number generation.

Neither requires any assumption about the distribution of the
data.

Both substitute computing power for probability theory.

Bootstrap assumes random sampling and is justifiable only as
n→∞, though it often seems to work well with moderate sample
sizes.

Randomization tests do not assume random sampling and are
exact for small samples (almost).
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Bootstrap

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The LATEX source
code is available from the course website:

http://www.utstat.toronto.edu/∼brunner/oldclass/441s20
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