The mlogit package has already been downloaded.

```r
> library(mlogit)
Loading required package: Formula
Loading required package: statmod
Loading required package: lmtest
Loading required package: zoo

Attaching package: ‘zoo’

The following object(s) are masked from ‘package:base’:

  as.Date, as.Date.numeric

Loading required package: maxLik
Loading required package: miscTools
Loading required package: MASS
> math =
read.table("http://www.utstat.toronto.edu/~brunner/312f12/code_n_data/mathcat.data")
> math[1:3,]
  hsgpa hsengl hscalc   course passed outcome
1  78.0     80    Yes Mainstrm     No  Failed
2  66.0     75    Yes Mainstrm    Yes  Passed
3  80.2     70    Yes Mainstrm    Yes  Passed

> # Try a simple logistic regression.

The explanatory vars can be characteristics of the individual case (individual specific), or of the
alternative (alternative specific) -- that is the value of the response variable.

The mlogit function requires its own special type of data frame, and there are two data formats:
`"wide" and `"long." When there are individual specific variables and lots of individuals, the wide
format may be preferable, and we'll have n rows, which is what we're accustomed to. But if there are
response-specific covariates, each such variable requires a separate column for each value of the
response variable.

The mlogit.data function converts ordinary data frames to a type required by mlogit. I can only
make the long format work.
> # Try a simple logistic regression.
> math0 = math[,c(1,5)]; math0[1:3,]
> hsgpa passed
> 1  78.0     No
> 2  66.0    Yes
> 3  80.2    Yes
> # Make an mlogit data frame in long format
> long0 = mlogit.data(math0,shape="wide",choice="passed")
> head(long0)
> hsgpa passed chid alt
> 1.No   78.0   TRUE    1  No
> 1.Yes  78.0  FALSE    1 Yes
> 2.No   66.0  FALSE    2  No
> 2.Yes  66.0   TRUE    2 Yes
> 3.No   80.2  FALSE    3  No
> 3.Yes  80.2   TRUE    3 Yes

Model description (formula) is more complex than for \texttt{glm}, because the models are more complex. Have the \texttt{mformula} function. It provides for individual specific variables (the kind we use) and two kinds of alternative specific variables. Can provide 3 parts, separated by vertical bars. The first and third are alternative specific. If we stick to individual-specific vars, we can leave off the last, like this:

> simple0 = mlogit(passed ~ 0 | hsgpa, data=long0); summary(simple0)

Call: mlogit(formula = passed ~ 0 | hsgpa, data = long0, method = "nr", print.level = 0)

Frequencies of alternatives:  
<table>
<thead>
<tr>
<th></th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.40102</td>
<td>0.59898</td>
<td></td>
</tr>
</tbody>
</table>

nr method  
5 iterations, 0h:0m:0s  
g'(-H)^-1g = 0.000119  
successive fonction values within tolerance limits

Coefficients:  
|                     | Estimate | Std. Error | t-value | Pr(>|t|) |
|---------------------|----------|------------|---------|---------|
| Yes:(intercept)     | -15.210112 | 1.998398 | -7.6112 | 2.709e-14 *** |
| Yes:hsgpa           | 0.197734 | 0.025486 | 7.7587 | 8.660e-15 *** |

---  
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-Likelihood: -221.72  
McFadden R^2: 0.16436  
Likelihood ratio test: chisq = 87.221 (p.value = < 2.22e-16)
Coefficients:

| Estimate | Std. Error | t-value | Pr(>|t|) |
|----------|------------|---------|----------|
| Yes:(intercept) | -15.210112 | 1.998398 | -7.6112 | 2.709e-14 *** |
| Yes:hsgpa | 0.197734 | 0.025486 | 7.7587 | 8.660e-15 *** |

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-Likelihood: -221.72
McFadden R^2: 0.16436
Likelihood ratio test: chisq = 87.221 (p.value = < 2.22e-16)

> # Compare
> summary(glm(passed~hsgpa,family=binomial,data=math))

Call: glm(formula = passed ~ hsgpa, family = binomial, data = math)

Deviance Residuals:

<table>
<thead>
<tr>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.5152</td>
<td>-1.0209</td>
<td>0.4435</td>
<td>0.9321</td>
<td>2.1302</td>
</tr>
</tbody>
</table>

Coefficients:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| (Intercept) | -15.21013 | 1.99832 | -7.6111 | 2.71e-14 *** |
| hsgpa | 0.197734 | 0.025486 | 7.7587 | 8.56e-15 *** |

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 530.66 on 393 degrees of freedom
Residual deviance: 443.43 on 392 degrees of freedom
AIC: 447.43

> anova(glm(passed~hsgpa,family=binomial,data=math))

Terms added sequentially (first to last)

<table>
<thead>
<tr>
<th>Df Deviance Resid. Df Resid. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
</tr>
<tr>
<td>hsgpa</td>
</tr>
</tbody>
</table>
> # Excellent. Now try simple regression with a 3-category outcome.
> # I think I have to make an mlogit data frame with just the vars I want.
> # First try to make reference category of outcome Failed.
> # Setting contrasts had no effect.
> # Change the alphabetical order
> outcome = as.character(math$outcome)
> for(j in 1:length(outcome))
+   {if(outcome[j]=='Disappeared') outcome[j]='Gone'}
> math$outcome = factor(outcome)
> math1 = math[,c(1,6)]
> long1 = mlogit.data(math1,shape="wide",choice="outcome")
> head(long1)

```
hsgpa outcome chid alt
1.Failed 78 TRUE 1 Failed
1.Gone 78 FALSE 1 Gone
1.Passed 78 FALSE 1 Passed
2.Failed 66 FALSE 2 Failed
2.Gone 66 FALSE 2 Gone
2.Passed 66 TRUE 2 Passed
```

> head(math)

```
hsgpa hsengl hscalc course passed outcome
1 78.0 80 Yes Mainstrm No Failed
2 66.0 75 Yes Mainstrm Yes Passed
3 80.2 70 Yes Mainstrm Yes Passed
4 81.7 67 Yes Mainstrm Yes Passed
5 86.8 80 Yes Mainstrm Yes Passed
6 76.7 75 Yes Mainstrm Yes Passed
```
> simple1 = mlogit(outcome ~ 0 | hsgpa, data=long1)
> summary(simple1)

Call:
mlogit(formula = outcome ~ 0 | hsgpa, data = long1, method = "nr",
        print.level = 0)

Frequencies of alternatives:
   Failed    Gone  Passed
0.15482 0.24619 0.59898

nr method
5 iterations, 0h:0m:0s
g'(-H)^-1g = 1.09E-05
successive fonction values within tolerance limits

Coefficients :
                           Estimate  Std. Error t-value   Pr(>|t|)  
Gone:(intercept)     1.904226    2.744979  0.6937  0.48790
Passed:(intercept) -13.393063    2.570453 -5.2104 1.884e-07 ***
Gone:hsgpa          -0.018816    0.035775 -0.5260  0.59890
Passed:hsgpa         0.186437    0.033018  5.6465 1.637e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-Likelihood: -326.96
McFadden R^2:  0.11801
Likelihood ratio test: chisq = 87.497 (p.value = < 2.22e-16)

> # Estimate probabilities for a student with HSGPA = 90

> betahat1 = simple1$coefficients; betahat1
  Gone:(intercept) Passed:(intercept)     Gone:hsgpa     Passed:hsgpa
     1.90422575  -13.39305637  -0.01881621     0.18643711
attr("fixed")
  Gone:(intercept) Passed:(intercept)     Gone:hsgpa     Passed:hsgpa
     FALSE   FALSE     FALSE  FALSE
# Estimate probabilities for a student with HSGPA = 90

\[
\begin{align*}
\pi_1 &= \frac{e^{L_1}}{1 + e^{L_1} + e^{L_2}} \\
\pi_2 &= \frac{e^{L_2}}{1 + e^{L_1} + e^{L_2}} \\
\pi_k &= \frac{1}{1 + e^{L_1} + e^{L_2}}
\end{align*}
\]

\[\text{betahat1}
\]

\[
\begin{array}{cc}
\text{Gone:(intercept)} & \text{Passed:(intercept)} \\
1.90422575 & -13.39305637 \\
\text{Gone:hsgpa} & \text{Passed:hsgpa} \\
-0.01881621 & 0.18643711
\end{array}
\]

\text{attr(,"fixed")}

\[
\begin{array}{cc}
\text{Gone:(intercept)} & \text{Passed:(intercept)} \\
\text{Gone:hsgpa} & \text{Passed:hsgpa} \\
\text{FALSE} & \text{FALSE} \\
\text{FALSE} & \text{FALSE}
\end{array}
\]

\[\text{gpa} = 90\]

\[\text{L1} = \text{betahat1}[1] + \text{betahat1}[3]*\text{gpa} \quad \# \text{Gone}\]

\[\text{L2} = \text{betahat1}[2] + \text{betahat1}[4]*\text{gpa} \quad \# \text{Passed}\]

\[\text{denom} = 1+\exp(\text{L1})+\exp(\text{L2})\]

\[\text{pihat1} = \exp(\text{L1})/\text{denom} \quad \# \text{Gone}\]

\[\text{pihat2} = \exp(\text{L2})/\text{denom} \quad \# \text{Passed}\]

\[\text{pihat3} = 1/\text{denom} \quad \# \text{Failed}\]

\[\text{rbind(pihat1, pihat2, pihat3)}\]

\[
\begin{array}{c}
\text{Gone:(intercept)} \\
\text{pihat1} & 0.03883621 \\
\text{pihat2} & 0.92970789 \\
\text{pihat3} & 0.03145590
\end{array}
\]
> # More interesting full model. First the data frame, without passed.
> long = mlogit.data(math[,c(1:4,6)],shape="wide",choice="outcome")
> fullmod = mlogit(outcome ~ 0 | hsgpa+hsengl+hscalc+course, data=long)
> summary(fullmod)

Call:
mlogit(formula = outcome ~ 0 | hsgpa + hsengl + hscalc + course, 
    data = long, method = "nr", print.level = 0)

Frequencies of alternatives:
   Failed   Gone  Passed
0.15482 0.24619 0.59898

nr method
5 iterations, 0h:0m:0s
g'(-H)^-1g = 0.000216
successive fonction values within tolerance limits

Coefficients :
                 Estimate Std. Error t-value Pr(>|t|)
Gone:(intercept)  2.5734410  2.8288386  0.9097   0.36297
Passed:(intercept) -14.0411854  2.7005870 -5.1993 2.000e-07 ***
Gone:hsgpa        -0.0079779  0.0413277 -0.1930   0.84693
Passed:hsgpa       0.2157706  0.0382179  5.6458 1.644e-08 ***
Gone:hsengl       -0.0067241  0.0251049 -0.2678   0.78882
Passed:hsengl     -0.0399811  0.0228733 -1.7479   0.08047 .
Gone:hscalcYes    -0.3902775  0.6742796 -0.5788   0.56272
Passed:hscalcYes  1.0009683  0.8215247  1.2184   0.22306
Gone:courseElite  -2.0666545  0.9836801 -2.1009   0.03565 *
Passed:courseElite 0.6032839  0.8044316  0.7500   0.45328
Gone:courseMainstrm -0.6834686  0.5560854 -1.2291   0.21905
Passed:courseMainstrm 0.4086564  0.6339142  0.6447   0.51915
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-Likelihood: -312.26
McFadden R^2:  0.15766
Likelihood ratio test: chisq = 116.89 (p.value = < 2.22e-16)
> # Making Mainstream (3d cat) the ref category for course
> # rubs out the nice names, and all |Z|<2
> # Test Course controlling for HS variables
> nocourse = mlogit(outcome ~ 0 | hsgpa+hsengl+hscalc, data=long)
> summary(nocourse)

Call:
mlogit(formula = outcome ~ 0 | hsgpa + hsengl + hscalc, data = long,
method = "nr", print.level = 0)

Frequencies of alternatives:
  Failed  Gone  Passed
0.15482 0.24619 0.59898

nr method
5 iterations, 0h:0m:0s
g'(-H)^-1g = 1.83E-05
successive fonction values within tolerance limits

Coefficients:

|                | Estimate | Std. Error | t-value | Pr(>|t|) |
|----------------|----------|------------|---------|----------|
| Gone:(intercept) | 2.3477e+00 | 2.7951e+00 | 0.8399 | 0.40094 |
| Passed:(intercept) | -1.3892e+01 | 2.6802e+00 | -5.1830 | 2.183e-07 *** |
| Gone:hsgpa       | -1.4534e-02 | 4.0858e-02 | -0.3557 | 0.72205 |
| Passed:hsgpa     | 2.1798e-01  | 3.8092e-02  | 5.7224  | 1.050e-08 *** |
| Gone:hsengl      | -9.7165e-04 | 2.4331e-02 | -0.0399 | 0.96815 |
| Passed:hsengl    | -4.1906e-02 | 2.2615e-02 | -1.8530 | 0.06389 .|
| Gone:hscalcYes   | -7.7280e-01 | 6.0002e-01 | -1.2880 | 0.19776 |
| Passed:hscalcYes | 1.2320e+00  | 7.6885e-01  | 1.6024  | 0.10907 |

---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-Likelihood: -318.19
McFadden R^2: 0.14166
Likelihood ratio test: chisq = 105.03 (p.value = < 2.22e-16)
> 116.89-105.03 # Diff between Likelihood ratio tests, df=4
[1] 11.86
> # Better
> nocourse$logLik
'log Lik.' -318.1931 (df=8)
> fullmod$logLik
'log Lik.' -312.2625 (df=12)
> G2 = -2 * as.numeric(nocourse$logLik - fullmod$logLik); G2
[1] 11.86122
> pval = 1-pchisq(G2,df=4) # Two betas for each dummy variable.
> pval
[1] 0.01841369

> # Let's keep course and hsgpa. Do we need hsengl and hscalc?
> coursegpa = mlogit(outcome ~ 0 | hsgpa+course, data=long)
> G2 = -2 * as.numeric(coursegpa$logLik - fullmod$logLik); G2
[1] 8.457276
> pval = 1-pchisq(G2,df=4) # df=4 again
> pval
[1] 0.07619288

Conclusion: Let's keep just course and hsgpa.