STA 261s2005 Assignment 5.5

Here are some extra problems you should do to prepare for the Midterm on Wednesday, Feb. 23d. The questions are practice for the test (and for the final exam). They are not to be handed in.

1. Use the factorization theorem to show that the Maximum Likelihood Estimate can depend on the sample data only through the value(s) of a sufficient statistic.
2. Let $Y_{i}=\beta x_{i}+\epsilon_{i}$, for $i=1, \ldots, n$, where
x_{1}, \ldots, x_{n} are fixed, known constants
are independent and identically distributed $\operatorname{Normal}\left(0, \sigma^{2}\right)$ random variables; the parameters β and σ^{2} are unknown.
(a) Find a Method of Moments estimator of β. Show your work.
i. Is it unbiased?
ii. What is the variance of the estimator?
iii. Is the estimator consistent? (If yes, under what conditions?)
(b) Find a Method of Moments estimator of σ^{2}; show your work. Is it unbiased?
(c) Find the Maximum Likelihood Estimate of β; show your work.
i. What is the variance of the estimator?
ii. Is the estimator consistent? (If yes, under what conditions?)
(d) Find the Maximum Likelihood Estimator of $\widehat{\sigma}^{2}$; show your work. Is it unbiased?
(e) Are $\widehat{\beta}$ and $\widehat{\sigma}^{2}$ jointly sufficient?
(f) Let L be a linear unbiased estimator of β. That is, $L=\sum_{i=1}^{n} a_{i} Y_{i}$, where a_{1}, \ldots, a_{n} are constants, and $E(L)=\beta$. Prove $\operatorname{Var}(\widehat{\beta}) \leq \operatorname{Var}(L)$.
3. This regression model has an intercept. Let $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$, for $i=1, \ldots, n$, where
x_{1}, \ldots, x_{n} are fixed, known constants
$\epsilon_{1}, \ldots, \epsilon_{n}$ are independent and identically distributed $\operatorname{Normal}\left(0, \sigma^{2}\right)$ random variables; the parameters β_{0}, β_{1} and σ^{2} are unknown.
(a) Find the Maximum Likelihood Estimates of β_{0}, β_{1} and σ^{2}; show your work.
(b) Starting with your answer to the question above, show that the Maximum Likelihood Estimate of β_{1} can be written

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

(c) Find $E\left(\widehat{\beta}_{1}\right)$. Is $\widehat{\beta}_{1}$ unbiased?
(d) Find $E\left(\widehat{\beta}_{0}\right)$. Is $\widehat{\beta}_{0}$ unbiased?
(e) Find $\operatorname{Var}\left(\widehat{\beta}_{1}\right)$.
(f) Is $\widehat{\beta}_{1}$ consistent? (If yes, under what conditions?)
(g) Are $\widehat{\beta_{0}}, \widehat{\beta_{1}}$ and $\widehat{\sigma}^{2}$ jointly sufficient for the parameters β_{0}, β_{1} and σ^{2} ? Answer Yes or No and show your work.

