STA 261s2005 Assignment 10

Do this assignment in preparation for the quiz on Wednesday, March 30th. The questions are practice for the quiz, and are not to be handed in.

- 1. Show that when a critical region is based on the Neyman-Pearson Lemma, it will depend on \mathbf{x} only through the value of a sufficient statistic.
- 2. Let C be a most powerful critical region of size α for testing the simple null hypothesis $H_0: \theta = \theta_0$ against the simple alternative $H_1: \theta = \theta_1$. Let $\theta_0 \in \Theta_0$, and $P_{\theta}(\mathbf{X} \in C) \leq P_{\theta_0}(\mathbf{X} \in C)$ for all $\theta \in \Theta_0$. Show that C is also most powerful for testing the *composite* null hypothesis $H_0: \theta \in \Theta_0$ against the simple alternative.
- 3. In this unfamiliar but reasonable regression model, the effect of x is linear as usual, but each member of the population has his or her own individual slope. That makes the slope a random variable, because if you took another sample, you'd get another collection of slopes. Accordingly,

Let $Y_i = x_i B_i$, for $i = 1, \ldots, n$, where

- x_1, \ldots, x_n are fixed, known constants
- B_1, \ldots, B_n are independent and identically distributed Normal (β, σ^2) random variables.
- The parameters β and σ^2 are unknown.
- The data consist of n pairs (x_i, Y_i) . The slopes B_i are not given directly.
- Yes, there is no error term. Don't worry.

We wish to test $H_0: \beta = \beta_0$ against $H_1: \beta \neq \beta_0$.

- (a) What is Θ ?
- (b) What is \mathfrak{X} ?
- (c) What is Θ_0 ? Is it simple or composite?
- (d) What is Θ_1 ? Is it simple or composite?
- (e) Find the distribution of $\frac{1}{n} \sum_{i=1}^{n} \frac{Y_i}{x_i}$.
- (f) Find the constant k so that the following test will be size α :

$$C = \left\{ \mathbf{x} \in \mathcal{X} : \left| \frac{\sqrt{n(n-1)} [(\frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{x_i}) - \beta_0]}{\sqrt{\sum_{i=1}^{n} [y_i/x_i - (\frac{1}{n} \sum_{j=1}^{n} \frac{y_j}{x_j})]^2}} \right| > k \right\}$$

Hint: Let $W_i = Y_i/x_i$. What is the distribution of W_i ? Write the critical region in terms of w_i values.

4. Now modify the last example so that that the slopes have an exponential distribution with parameter $\beta > 0$ (just to clarify, $E[B_i] = \beta$). This is supposed to model a situation where the random slopes are known to be positive.

- (a) What is the length of **X**?
- (b) Find the distribution of $V = \frac{2}{\theta} \sum_{i=1}^{n} \frac{Y_i}{x_i}$.
- (c) Use the Neyman-Pearson Lemma to find a size α test of $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1 < theta_0$.
- (d) Why is your test uniformly most powerful for testing H_0 against $H_1: \theta < \theta_0$?
- (e) Find the power function of your test. Is it increasing or decreasing?
- (f) Consider $H_0: \theta \ge \theta_0$ against $H_1: \theta = \theta_1 < \theta_0$. Draw a rough sketch of Θ , Θ_0, Θ_1 and $\pi(\theta)$. Why does your picture show that the test is size α for the composite null hypothesis?
- (g) Denoting the critical region of your test by C, answer True or False: $P_{\theta}(\mathbf{X} \in D) \leq P_{\theta}(\mathbf{X} \in C)$ for all $\theta \in \Theta_1$, where D is any size α critical region for testing the *composite* null hypothesis.
- 5. Let $Y_i = x_i + \epsilon_i$, for $i = 1, \ldots, n$, where
 - x_1, \ldots, x_n are fixed, known constants
 - $\epsilon_1, \ldots, \epsilon_n$ are independent and identically distributed Normal $(0, \sigma^2)$ random variables; the parameter σ^2 is unknown.
 - The data consist of n pairs (x_i, Y_i) . The error terms ϵ_i are not given directly.

We wish to test $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 = \sigma_1^2 < \sigma_0^2$. Use the Neyman-Pearson Lemma to find the most powerful size α test.

6. Let X_1, \ldots, X_{n_1} be a random sample from a distribution with density

$$f(x;\tau) = \sqrt{\frac{\tau}{2\pi}}e^{-\frac{\tau}{2}x^2}$$
, where $\tau > 0$.

- (a) Let $Y = \tau \sum_{i=1}^{n} X_i^2$. What is the distribution of Y?
- (b) Consider the null hypothesis $H_0: \tau = \tau_0$ against $H_1: \tau = \tau_1 > \tau_0$. Find the most powerful size α critical region. Call it C.
- (c) Now consider $H_0: \tau = \tau_0$ against $H_1: \tau > \tau_0$. Why do you know that C is *uniformly* most powerful for this situation?
- (d) Find the power function $\pi(\tau) = P_{\tau}(\mathbf{X} \in C)$.
- (e) Is this function increasing, or is it decreasing? Prove it.
- (f) Finally, consider $H_0 : \tau \leq \tau_0$ against $H_1 : \tau > \tau_0$. Draw a rough sketch of Θ , Θ_0 , Θ_1 and $\pi(\theta)$. Why does your picture show that the test is size α for the composite null hypothesis?
- (g) Let *D* be another size α test of this null versus this alternative. Show $P_{\theta}(\mathbf{X} \in D) \leq P_{\theta}(\mathbf{X} \in C)$ for all $\theta \in \Theta_1$.
- 7. Look again at Exercise 12.9, only this time the sample size is n.
 - (a) Show $\prod_{i=1}^{n} X_i$ is sufficient for θ .
 - (b) Show $\sum_{i=1}^{n} \ln X_i$ is also sufficient for θ .

- (c) Find the distribution of $-\ln X_i$. Show your work.
- (d) What is the distribution of $-\sum_{i=1}^{n} \ln X_i$?
- (e) What is the distribution of $-2\theta \sum_{i=1}^{n} \ln X_i$?

At this point we are on such familiar ground that we should stop.

8. Do Exercises 12.28, 12.30, 12.35, 12.38. For 12.38, Yes or No answers are enough.