% STA 260 Formula sheet \documentclass [11pt]{article} % \pagestyle{empty} % No page numbers \usepackage{amsmath} \usepackage{pdfpages} % To include possibly multi-page pdf documents: \includepdf{NormalTable.pdf} \usepackage{graphicx} % For example \includegraphics[width=3in]{Pictures/density1} \usepackage{comment} \oddsidemargin=-.5in % Good for US Letter paper \evensidemargin=-.5in \textwidth=6.3in \topmargin=-0.5in \headheight=0.2in \headsep=0.5in \textheight=9.0in \begin{document} \begin{center} {\LARGE \hspace{20mm} \textbf{STA 260 Formulas and Tables}}\\ \end{center} \vspace{7 mm} \noindent %\renewcommand{\arraystretch}{2.0} \begin{tabular}{lll} %%%%%%%%%%%%%%%%%%%%%%%%%%%% Math %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $ \displaystyle \sum_{k=j}^{\infty} a^k = \frac{a^j}{1-a}$ & $ \displaystyle \sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$ & $\displaystyle (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$ \\ &&\\ % Space $\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha-1} \, dt$ & $\Gamma(\alpha+1) = \alpha \, \Gamma(\alpha)$ & $\Gamma(\frac{1}{2}) = \sqrt{\pi} $ \hspace{5mm} $\displaystyle \lim_{n \rightarrow \infty}\left(1 + \frac{x}{n}\right)^n = e^x$ \\ &&\\ % Space $I_{_A}(x) \stackrel{def}{=} \left\{ \begin{array}{ll} 1 & \mbox{for } x \in A \\ 0 & \mbox{for } x \notin A \end{array} \right. $ & $I(x \in A) \stackrel{def}{=} \left\{ \begin{array}{ll} 1 & \mbox{for } x \in A \\ 0 & \mbox{for } x \notin A \end{array} \right. $ & $g(x)I(x \in A) = \left\{ \begin{array}{ll} g(x) & \mbox{for } x \in A \\ 0 & \mbox{for } x \notin A \end{array} \right. $ \\ &&\\ % Space %%%%%%%%%%%%%%%%%%%%%%%%%%%% Densities, PMFs and CDFs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $F_{_X}(x) \stackrel{def}{=} P(X \leq x)$ & $F_{_X}(x) = \displaystyle \int_{-\infty}^x f_{_X}(t) \, dt$ & $F_{_X}(x) = \displaystyle \sum_t I(t \leq x) \, p_{_X}(t)$ \\ &&\\ % Space $p_{_X}(x) = \displaystyle \sum_y p_{_{X,Y}}(x,y)$ & $p_{_{Y|X}}(y|x) \stackrel{def}{=} \frac{p_{_{X,Y}}(x,y)}{p_{_X}(x)}$ & $p_{_X}(x) = \displaystyle \sum_y p_{_{X|Y}}(x|y) \, p_{_Y}(y)$ \\ &&\\ % Space $f_{_X}(x) = \displaystyle \int_{-\infty}^\infty f_{_{X,Y}}(x,y) \, dy$ & $f_{_{Y|X}}(y|x) \stackrel{def}{=} \frac{f_{_{X,Y}}(x,y)} {f_{_X}(x)}$ & $f_{_X}(x) = \displaystyle \int_{-\infty}^\infty f_{_{X|Y}}(x|y) \, f_{_Y}(y) \, dy$ \\ &&\\ % Space %%%%%%%%%%%%%%%%%%%%%%%%%%%% Expected value, variance and covariance %%%%%%%%%%%%%%%%% $E(X) \stackrel{def}{=} \displaystyle \sum_x x \, p_{_X}(x)$ & $E(g(X)) = \displaystyle \sum_x g(x) \, p_{_X}(x)$ & $E(g(X,Y)) = \displaystyle \sum_x \sum_y g(x,y) \, p_{_{X,Y}}(x,y)$ \\ &&\\ % Space $E(X) \stackrel{def}{=} \displaystyle \int_{-\infty}^\infty x \, f_{_X}(x) \, dx$ & $E(g(X)) = \displaystyle \int_{-\infty}^\infty g(x) \, f_{_X}(x) \, dx$ & $E(g(X,Y)) = \displaystyle \int_{-\infty}^\infty \int_{-\infty}^\infty g(x,y) \, f_{_{X,Y}}(x,y) \, dx \, dy$ \\ &&\\ % Space $Var(X) \stackrel{def}{=} E\left( (X-\mu)^2 \right)$ & $Var(X) = E(X^2)-[E(X)]^2$ & $Var(aX) = a^2Var(X)$ \\ &&\\ % Space \multicolumn{3}{l} {$Var(aX+bY) = a^2Var(X)+b^2Var(Y)+2abCov(X,Y)$} \\ &&\\ % Space \multicolumn{3}{l} {$Cov(X,Y) \stackrel{def}{=} E[(X-\mu_{_X})(Y-\mu_{_Y})] \hspace{10mm} Cov(X,Y) = E(XY) - E(X)E(Y)$ } \\ &&\\ % Space \multicolumn{3}{l} {$Cov(aX,bY) = ab \, Cov(X,Y)$ \hspace{10mm} $Cov\left( \sum_{i=1}^n X_i, \sum_{j=1}^m Y_j \right) = \sum_{i=1}^n \sum_{j=1}^m Cov(X_i,Y_j)$} \\ &&\\ % Space \multicolumn{3}{l} {$Var\left(\sum_{i=1}^n a_iX_i \right) = \sum_{i=1}^n a_i^2Var(X_i) \, + \, \sum\sum_{i \neq j} a_ib_j Cov(X_i,X_j)$ } \\ &&\\ % Space \multicolumn{3}{l} {If $X_1, \ldots, X_n$ are independent, $Var\left(\sum_{i=1}^n X_i \right) = \sum_{i=1}^n Var(X_i)$} \\ &&\\ % Space %%%%%%%%%%%%%%%%%%%%%%%%%%%% MGFs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $M_{_X}(t) \stackrel{def}{=} E(e^{Xt})$ & $M_{_X}^{(k)}(0) = E(X^k)$~ & \\ &&\\ % Space $M_{_{aX}}(t) = M_{_X}(at)$ & \multicolumn{2}{l} {$M_{_{\sum X_i}}(t) = \prod_{i=1}^n M_{_{X_i}}(t)$ if the $X_i$ are independent.} \\ % &&\\ % Space % \multicolumn{3}{l} { If $Y=Y_1+Y_2$ with $Y_1$ and $Y_2$ independent, $Y\sim\chi^2(\nu_1+\nu_2)$, $Y_2\sim\chi^2(\nu_2)$ then $Y_1\sim\chi^2(\nu_1)$.}\\ \end{tabular} %\renewcommand{\arraystretch}{1.0} \pagebreak \renewcommand{\arraystretch}{1.5} \begin{tabular}{lcl} %%%%%%%%%%%%%%%%%%%%%%%%%%%% Limits %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \multicolumn{3}{l} {\emph{Convergence in probability}: } \\ \multicolumn{3}{l} {$T_n \stackrel{p}{\rightarrow} c$ means for all $\epsilon>0$, $\displaystyle \lim_{n \rightarrow \infty}P\{|T_n-c|\geq\epsilon\} = 0 \Leftrightarrow \lim_{n \rightarrow \infty}P\{|T_n-c| < \epsilon\} = 1$ } \\ \multicolumn{3}{l} {Variance rule: If $\displaystyle \lim_{n \rightarrow \infty}E(T_n) = c$ and $\displaystyle \lim_{n \rightarrow \infty}Var(T_n) = 0$, then $T_n \stackrel{p}{\rightarrow} c$. } \\ \multicolumn{3}{l} {Law of Large Numbers: $\overline{X}_n \stackrel{p}{\rightarrow} \mu = E(X_i)$. } \\ \multicolumn{3}{l} {Continuous mapping: If $T_n \stackrel{p}{\rightarrow} c$ and $g(x)$ is continuous at $x=c$, then $g(T_n) \stackrel{p}{\rightarrow} g(c)$ } \\ \multicolumn{3}{l} {\emph{Convergence in Distribution}: } \\ \multicolumn{3}{l} {$X_n \stackrel{d}{\rightarrow} X$ means $\displaystyle \lim_{n \rightarrow \infty}F_{_{X_n}}(x) = F_{_X}(x)$ at every point where $F_{_X}(x)$ is continuous.} \\ $\overline{X}_n = \frac{1}{n}\sum_{i=1}^nX_i$ && $S^2 = \frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X}_n)^2$ \\ \multicolumn{3}{l} {Central Limit Theorem: If $X_1, \ldots, X_n \stackrel{ind}{\sim} \, ?(\mu,\sigma^2)$, then $Z_n = \frac{\sqrt{n}(\overline{X}_n-\mu)}{\sigma} \stackrel{d}{\rightarrow} Z \sim$ Normal (0,1).} \\ \multicolumn{3}{l} { \hspace{28mm} If $X_1, \ldots, X_n \stackrel{ind}{\sim} \, ?(\mu,\sigma^2)$ and $\widehat{\sigma}^2_n \stackrel{p}{\rightarrow} \sigma^2$, then $\frac{\sqrt{n}(\overline{X}_n-\mu)}{\widehat{\sigma}_n} \stackrel{d}{\rightarrow} Z \sim$ Normal (0,1).} \\ $\overline{X}_n \pm z_{1-\alpha/2} \, \frac{\widehat{\sigma}_n}{\sqrt{n}}$ & $T = \frac{Z}{\sqrt{Y/\nu}} \sim t(\nu)$ & $\overline{X} \pm t_{1-\alpha/2} \, \frac{S}{\sqrt{n}}$ \\ \end{tabular} \renewcommand{\arraystretch}{1.0} \vspace{2mm} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Distributions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \( \begin{array}{lllcc} \mbox{Distribution} & ~~~~~~f_{_X}(x|\theta) \mbox{ or } p_{_X}(x|\theta) & M_{_X}(t) & E(X) & Var(X) \\ \hline \\ \mbox{Bernoulli} & \theta^x (1-\theta)^{1-x} I(x = 0, 1) & \theta e^t + 1-\theta & \theta & \theta (1-\theta) \\[2 mm] \mbox{Binomial} & \binom{m}{x} \theta^x (1-\theta)^{m-x} I(x = 0, \ldots, m) & (\theta e^t + 1-\theta)^m & m\theta & m \theta (1-\theta) \\[2 mm] \mbox{Poisson} & \frac{e^{-\lambda}\lambda^x}{x!} I(x = 0, 1, \ldots) & e^{\lambda(e^t-1)} & \lambda & \lambda \\[2 mm] \mbox{Geometric} & (1-\theta)^x \theta \, I(x = 0, 1, \ldots) & \theta\left( 1 - (1-\theta)e^t \right)^{-1} & \frac{1-\theta}{\theta} & \frac{1-\theta}{\theta^2} \\[2 mm] \mbox{Exponential} & \lambda e^{-\lambda x} \, I(x > 0) & (1 - \frac{t}{\lambda})^{-1} & \frac{1}{\lambda} & \frac{1}{\lambda^2} \\[2 mm] \mbox{Gamma} & \frac{\lambda^\alpha}{\Gamma(\alpha)} e^{-\lambda x} x^{\alpha - 1} \, I(x > 0) & (1 - \frac{t}{\lambda})^{-\alpha} & \frac{\alpha}{\lambda} & \frac{\alpha}{\lambda^2} \\[2mm] \mbox{Chi-squared } (\chi^2) & \frac{1}{2^{\nu/2}\Gamma(\nu/2)} e^{-x/2} x^{\nu/2 - 1}I(x > 0) & (1-2t)^{-\nu/2} & \nu & 2 \nu \\[2 mm] \mbox{Normal} & \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2 \sigma^2}} & e^{\mu t + \frac{1}{2}\sigma^2 t^2} & \mu & \sigma^2 \\[2 mm] \mbox{Uniform} & \frac{1}{R-L} I(L < x < R) & \frac{e^{R t}-e^{L t}}{t(R - L)} & \frac{L+R}{2} & \frac{(R - L)^2}{12} \\[2 mm] \mbox{Beta} & \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \, x^{\alpha-1} (1-x)^{\beta-1} \, I(00)$. \hspace{5mm} If $X \sim $ N($\mu,\sigma^2$), $\frac{X-\mu}{\sigma} \sim$ N(0,1) \vspace{2mm} \noindent A \emph{random sample} is a collection of independent and identically distributed random variables $X_1, \ldots, X_n$. Write $X_1, \ldots, X_n \stackrel{i.i.d}{\sim} P_\theta,~\theta \in \Omega$. $\theta$ is the \emph{parameter}, and $\Omega$ is the \emph{parameter space}. \vspace{2mm} \noindent An estimator $T_n = T_n(X_1, \ldots, X_n)$ is said to be \emph{unbiased} for $\theta$ if $E(T_n)=\theta$ for all $\theta \in \Omega$. \vspace{2mm} \noindent An estimator $T_n = T_n(X_1, \ldots, X_n)$ is said to be \emph{consistent} for $\theta$ if $T_n \stackrel{p}{\rightarrow} \theta$ for all $\theta \in \Omega$. \vspace{2mm} \noindent Method of Moments: Substitute sample moments for population moments and put hats on. \vspace{2mm} \noindent Least squares: Minimize $Q(\theta) = \sum_{i=1}^n \left(Y_i-E_\theta(Y_i)\right)^2$ \pagebreak % Minmum and maximum? \noindent If $X_1, \ldots, X_n$ is a random sample from an Exponential$(\lambda)$ distribution, % then \\ \begin{itemize} \item $\overline{X}_n \sim$ Gamma$(n,n\lambda)$. \item $Y = 2n\lambda\overline{X}_n \sim \chi^2(2n)$. \end{itemize} \vspace{3mm} \noindent If $W=W_1+W_2$ with $W_1$ and $W_2$ independent, $W\sim\chi^2(\nu_1+\nu_2)$, $W_2\sim\chi^2(\nu_2)$ then $W_1\sim\chi^2(\nu_1)$. \vspace{3mm} \noindent $t = \frac{Z}{\sqrt{W/\nu}} \sim t(\nu)$ \hspace{20mm} $F = \frac{W_1/\nu_1}{W_2/\nu_2} \sim F(\nu_1,\nu_2)$ \vspace{3mm} \noindent If $X_1, \ldots, X_n$ is a random sample from a Normal$(\mu,\sigma^2)$ distribution, then \begin{itemize} \item $\widehat{\mu} = \overline{X}_n$ and $\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n(X_i-\overline{X}_n)^2 = \left(\frac{n-1}{n} \right)S^2$. \item $\overline{X}_n$ and $S^2$ are independent. \item $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$. \item $t = \frac{\sqrt{n}(\overline{X}-\mu)}{S} \sim t(n-1)$ \end{itemize} \vspace{3mm} % Two-sample \noindent If $X_1, \ldots, X_{n_1} \stackrel{i.i.d.}{\sim}$ Normal$(\mu_1,\sigma_1^2)$ and $Y_1, \ldots, Y_{n_2} \stackrel{i.i.d.}{\sim}$ Normal$(\mu_2,\sigma_2^2)$ with $X_i$ independent of $Y_i$, then \begin{itemize} \item $F = \frac{S^2_1/\sigma^2_1}{S^2_2/\sigma^2_2} \sim F(n_1-1,n_2-1)$. \item $T = \frac{\overline{X}-\overline{Y} - (\mu_1-\mu_2)} {S_p \sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \sim t(n_1+n_2-2)$ provided $\sigma^2_1=\sigma^2_2$, where $S_p = \sqrt{\frac{(n_1-1)S^2_1 + (n_2-1)S^2_2 }{n_1+n_2-2}}$. \end{itemize} \vspace{3mm} \noindent For $j = 1, \ldots, k$ and $i = 1, \ldots n_j$, $X_{i,j} \stackrel{ind}{\sim} N(\mu_j,\sigma^2)$. Let $\overline{X}_{\mbox{.}} = \sum_{j=1}^k\left(\frac{n_j}{n}\right) \overline{X}_j$. \\ $SSTO=SSB+SSW$, where $SSTO = \sum_{j=1}^k\sum_{i=1}^{n_j}(X_{i,j}-\overline{X}_{\mbox{.}})^2$, $SSB = \sum_{j=1}^k n_j(\overline{X}_j - \overline{X}_{\mbox{.}})^2$ and $SSW = \sum_{j=1}^k \sum_{i=1}^{n_j} (X_{i,j} - \overline{X}_j )^2$. $R^2 = \frac{SSB}{SSTO}$. \vspace{1mm} \noindent Under $H_0: \mu_1 = \cdots \mu_k$, $F = \frac{SSB/(k-1)}{SSW/(n-k)} = \left(\frac{n-k}{k-1}\right) \left(\frac{R^2}{1-R^2}\right) \sim F(k-1,n-k)$. \vspace{4mm} \noindent $\lambda(\mathbf{x}) = \frac{L(\widehat{\theta}_0,\mathbf{x})} {L(\widehat{\theta},\mathbf{x})}$, $C_k = \{\mathbf{x} \in S: \lambda(\mathbf{x}) \leq k \}$, where $0