STA 260s20 Assignment Two: Unbiasedness and Consistency

These homework problems are not to be handed in. They are preparation for Quiz 2 (Week of Jan. 20) and Term Test 1. Please try each question before looking at the solution.

- 1. Let X_1, \ldots, X_n be independent Binomial random variables with parameters m = 3 (known) and θ (unknown); see the formula sheet. Let $\widehat{\Theta}_n = \frac{1}{3}\overline{X}_n$.
 - (a) What is the parameter space Ω for this problem?
 - (b) Show that $\widehat{\Theta}_n$ is unbiased.
 - (c) Show that $\widehat{\Theta}_n$ is consistent.
- 2. Let X_1, \ldots, X_n be a random sample from a distribution with density $f(x|\theta) = \theta x^{\theta-1} I(0 < x < 1)$, where the parmeter $\theta > 0$.
 - (a) What is the parameter space Ω for this problem?
 - (b) Is \overline{X}_n an unbiased estimator of θ ? Answer Yes or No and prove your answer.
 - (c) Is \overline{X}_n a consistent estimator of θ ? Answer Yes or No and prove your answer.
- 3. Let X_1, \ldots, X_n be independent random variables with expected value μ and variance σ^2 . Other than that, the distributions of the X_i are unspecified.
 - (a) Show that $S^2 = \frac{\sum_{i=1}^n (X_i \overline{X}_n)^2}{n-1}$ is an unbiased estimator of σ^2 .
 - (b) Suppose that μ is known. Is $\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i \mu)^2$ a biased estimator of σ^2 , or is it unbiased? Show your work.
 - (c) Why does the Law of Large Numbers imply that $\hat{\sigma}_n^2$ is consistent?
 - (d) There is one little hole in the argument for consistency. What is it?
- 4. Let X_1, \ldots, X_n be independent Poisson random variables with unknown parameter λ .
 - (a) What is the parameter space Ω for this problem?
 - (b) Suggest an estimator of λ that is unbiased and consistent.
 - (c) Suggest another estimator of λ . Is it also unbiased? How do you know?
 - (d) Using the definition of a limit, it may easily be shown that if the sequence of constants $a_n \to a$ as an ordinary limit as $n \to \infty$, then $a_n \xrightarrow{p} a$ as a sequence of degenerate random variables. Using this fact and the multivariable version of continuous mapping for convergence in probability, show that S^2 is consistent for λ .
 - (e) Finally, here is a silly estimator: $\hat{\lambda} = (X_1 + X_2)/2$.
 - i. Is $\widehat{\lambda}$ unbiased? Why or why not?
 - ii. Is $\hat{\lambda}$ consistent? Why or why not?
 - iii. Why is $\hat{\lambda}$ silly?

- 5. Let X_1, \ldots, X_n be independent Uniform $(0, \theta)$ random variables.
 - (a) What is the parameter space Ω for this problem?
 - (b) Write the cumulative distribution function $F_{X_i}(x|\theta)$ using indicator functions. Show your work.
 - (c) Let $T_n = \max(X_i)$. Find the cumulative distribution function of T_n . Show your work. Write the final answer using indicator functions.
 - (d) Find the density function of T_n . Write it using indicator functions.
 - (e) Is T_n unbiased for θ ? Answer Yes or No and show your work.
 - (f) Show that T_n is consistent for θ using the definition.
 - (g) Show that T_n is consistent for θ using the variance rule.
 - (h) Give an unbiased estimator of θ based on T_n . That is, fix up T_n a bit so it's unbiased. Call the new estimator $\widehat{\Theta}_1$.
 - (i) Let $\widehat{\Theta}_2 = 2\overline{X}_n$. Show that $\widehat{\Theta}_2$ is unbiased and consistent.
 - (j) In terms of variance, which is preferable, $\widehat{\Theta}_1$ or $\widehat{\Theta}_2$?
- 6. For $i = 1, \ldots, n$, let $Y_i = \beta x_i + \epsilon_i$, where

 x_1, \ldots, x_n are fixed, known constants

 $\epsilon_1, \ldots, \epsilon_n$ are independent and identically distributed Normal $(0, \sigma^2)$ random variables; the parameters β and σ^2 are unknown.

This is a very simple regression model. For example, the x_i values could be drug doses, and the Y_i could be response to the drug. Naturally, the main interest is in β , because β is the connection between dose and response.

- (a) A suggested estimator is $\widehat{\beta}_1 = \frac{\sum_{i=1}^n x_i Y_i}{\sum_{i=1}^n x_i^2}$.
 - i. Is $\widehat{\beta}_1$ unbiased for β ? Answer Yes or No and show your work.
 - ii. Assume that $\lim_{n\to\infty} \frac{1}{\sum_{i=1}^{n} x_i^2} = 0$, which is reasonable for drug doses. Is $\hat{\beta}_1$ consistent for β ? Answer Yes or No and show your work.
- (b) Another suggested estimator is $\hat{\beta}_2 = \frac{\overline{Y}_n}{\overline{x}_n}$.
 - i. Is $\hat{\beta}_2$ unbiased for β ? Answer Yes or No and show your work.
 - ii. Is $\hat{\beta}_2$ consistent for β ? Answer Yes or No and show your work. Note that you can't use the Law of Large Numbers, because the Y_i don't have the same expected value. However, you may assume that $\lim_{n\to\infty} \overline{x}_n = c \neq 0$, which is reasonable for drug doses.
- (c) It is tough to show, but $Var(\hat{\beta}_1) \leq Var(\hat{\beta}_2)$. Do you feel like giving it a try? This will not be on any test or exam.

- 7. Let X_1, \ldots, X_n be independent Exponential (λ) random variables.
 - (a) Suggest a reasonable estimator for λ .
 - (b) It is easy to see that your estimator is consistent. Why?
 - (c) Unbiasedness is another issue. First, derive the distribution of \overline{X}_n and write the density $f_{\overline{X}_n}(\overline{x}|\lambda)$.
 - (d) Now directly calculate $E(1/\overline{X}_n)$. Is this estimator unbiased for λ ?
 - (e) Show that $\frac{n-1}{\sum_{i=1}^{n} X_i}$ is unbiased for λ .
 - (f) Show that $\frac{n-1}{\sum_{i=1}^{n} X_i}$ is consistent for λ .
- 8. Let X_1, \ldots, X_n be independent random variables with expected value μ and variance σ^2 . Other than that, the distributions of the X_i are unspecified. We seek to estimate μ with the linear combination $L = a_1 X_1 + \cdots + a_n X_n = \sum_{i=1}^n a_i X_i$, where a_1, \ldots, a_n are constants.
 - (a) What condition on a_1, \ldots, a_n is required for L to be an unbiased estimator of μ ? Show your work.
 - (b) \overline{X}_n is one such linear combination. What are the coefficients a_1, \ldots, a_n ?
 - (c) Show that the variance of \overline{X}_n is less than the variance of any other unbiased linear combination L. That is, \overline{X}_n is the Best Linear Unbiased Estimator (BLUE).

This assignment was prepared by Jerry Brunner, Department of Mathematical and Computational Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

 $\tt http://www.utstat.toronto.edu/~brunner/oldclass/260s20$