% \documentclass[serif]{beamer} % Serif for Computer Modern math font. \documentclass[serif, handout]{beamer} % Handout to ignore pause statements \hypersetup{colorlinks,linkcolor=,urlcolor=red} \usefonttheme{serif} % Looks like Computer Modern for non-math text -- nice! \setbeamertemplate{navigation symbols}{} % Suppress navigation symbols % \usetheme{Berlin} % Displays sections on top \usetheme{Frankfurt} % Displays section titles on top: Fairly thin but still swallows some material at bottom of crowded slides %\usetheme{Berkeley} \usepackage[english]{babel} \usepackage{amsmath} % for binom % \usepackage{graphicx} % To include pdf files! % \definecolor{links}{HTML}{2A1B81} % \definecolor{links}{red} \setbeamertemplate{footline}[frame number] \mode \title{Sets\footnote{ This slide show is an open-source document. See last slide for copyright information.}} \subtitle{STA 256: Fall 2019} \date{} % To suppress date \begin{document} \begin{frame} \titlepage \end{frame} \begin{frame} \frametitle{Statistical Experiment} \framesubtitle{This vocabulary is not in the text} A statistical experiment is a procedure whose outcome is not known in advance with certainty. \pause \vspace{3mm} Sample Space: set of outcomes $s \in S$ \pause \begin{itemize} \item Sell 500 lottery tickets, pick the winning number. \pause\\ $S = \{1, 2, \ldots, 500 \}$ \pause \item Hold your breath as long as you can. \pause \\ $S = \{t: t \geq 0 \}$ \pause \item Pick coin or die from jar, roll or toss. \pause \\ $S = \{H,T,1,2,3,4,5,6 \}$ \end{itemize} \end{frame} \begin{frame} \frametitle{Event: Set of outcomes, $A \subset S$} %\framesubtitle{} \pause \begin{center} \includegraphics[width=2in]{Venn} \end{center} \pause \begin{itemize} \item $A \cap B = \{s \in S:s \in A \mbox{ and } s \in B \}$ \pause \item $A \cup B = \{s \in S:s \in A \mbox{ or } s \in B \}$ \pause \item $A^c = \{s \in S: s \notin A \}$ \pause \item $A \cap B^c = \{s \in S: s \in A \mbox{ and } s \notin B \}$ \end{itemize} \end{frame} \begin{frame} \frametitle{Disjoint sets} %\framesubtitle{} \begin{itemize} \item $A$ and $B$ are said to be \emph{disjoint} if $A \cap B = \emptyset $ \pause \item The idea is that $A$ and $B$ have no elements in common; they do not overlap. \pause \begin{center} \includegraphics[width=2in]{Venn2} \end{center} \pause \item However, recall that the null set is a subset of every set: $\emptyset \subseteq A$. \pause \item So $\emptyset \cap A = \emptyset$. \pause \item And the null set is also disjoint from every set. \end{itemize} \end{frame} \begin{frame} \frametitle{Set Laws} \framesubtitle{No proofs, just Venn diagrams at most} \pause \begin{itemize} \item Commutative: $A \cup B = B \cup A$, $A \cap B = B \cap A$ \pause \item Associative \begin{itemize} \item $(A \cup B) \cup C = A \cup (B \cup C)$, \item $(A \cap B) \cap C = A \cap (B \cap C)$ \end{itemize} \pause \item Distributive (like multiplication) \begin{itemize} \item $A \cap (B \cup C) \pause = (A \cap B) \cup (A \cap C)$ \pause \item $A \cup (B \cap C) \pause = (A \cup B) \cap (A \cup C)$ \end{itemize} \end{itemize} % The distributive laws will go on the formula sheet. \end{frame} \begin{frame} \frametitle{De Morgan Laws} \framesubtitle{Not in the text} \pause \begin{itemize} \item $(A \cap B)^c = A^c \cup B^c$ \item $(A \cup B)^c = A^c \cap B^c$ \item Rule: complement and flip $\cup\cap$ \end{itemize} \end{frame} \begin{frame} \frametitle{Extend the notation to larger number of sets} \framesubtitle{Not in the text} \pause Distributive laws \begin{itemize} \item $A \cap \left(\cup_{j=1}^n B_j\right) = \cup_{j=1}^n (A \cap B_j)$\pause, or even \item $A \cap \left(\cup_{j=1}^\infty B_j\right) = \cup_{j=1}^\infty (A \cap B_j)$ \pause \item[] and \pause \item $A \cup \left(\cap_{j=1}^n B_j\right) = \cap_{j=1}^n (A \cup B_j)$ \item $A \cup \left(\cap_{j=1}^\infty B_j\right) = \cap_{j=1}^\infty (A \cup B_j)$ \end{itemize} \pause De Morgan Laws (complement and flip) \begin{itemize} \item $(\cap_{j=1}^\infty A_j)^c = \cup_{j=1}^\infty A_j^c$ \item $(\cup_{j=1}^\infty A_j)^c = \cap_{j=1}^\infty A_j^c$ \end{itemize} \end{frame} \begin{frame} % \frametitle{{\color{red} WARNING} } \pause %\framesubtitle{} \begin{center} {\color{red} \LARGE WARNING!} \end{center} \pause \begin{itemize} \item Addition and subtraction apply only to numbers. They are not set operations. \pause \item For example, if $A$ and $B$ are sets, then $A+B$ is not defined. \pause \item $A+B$ is not the same as $A \cup B$. \pause \item Because what is $A+A-A$? \pause \item[] \item Some very bad probability proofs use addition and subtraction of sets. \pause \item Such proofs will receive a {\color{red} zero}. \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Copyright Information} This slide show was prepared by \href{http://www.utstat.toronto.edu/~brunner}{Jerry Brunner}, Department of Statistical Sciences, University of Toronto. It is licensed under a \href{http://creativecommons.org/licenses/by-sa/3.0/deed.en_US} {Creative Commons Attribution - ShareAlike 3.0 Unported License}. Use any part of it as you like and share the result freely. The \LaTeX~source code is available from the course website: \vspace{5mm} \href{http://www.utstat.toronto.edu/~brunner/oldclass/256f19} {\small\texttt{http://www.utstat.toronto.edu/$^\sim$brunner/oldclass/256f19}} \end{frame} \end{document} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $ = \{s \in S: \}$ \begin{frame} \frametitle{} \pause %\framesubtitle{} \begin{itemize} \item \pause \item \pause \item \end{itemize} \end{frame}