Name _____

Student Number _____

Tutorial Section _____

STA 256 f2018 Test 3

Question	Value	Score			
1	15				
2	25				
3	30				
4	15				
5	15				
Total = 100 Points					

15 points

1. Let X and Y be discrete random variables, so that to calculate expected values, you use summation. Show that if X and Y are independent, then Cov(X, Y) = 0. Be very clear about where you use independence. In your answer, draw an arrow to the place where you use independence, and write "This is where I use independence." If you need something that is not on the formula sheet, prove it.

25 points 2. Let X_1 and X_2 be independent continuous random variables with densities

$$f_{x_1}(x_1) = \begin{cases} e^{-x_1} & \text{for } x_1 \ge 0\\ 0 & \text{for } x_1 < 0 \end{cases} \quad \text{and} \quad f_{x_2}(x_2) = \begin{cases} e^{-x_2} & \text{for } x_2 \ge 0\\ 0 & \text{for } x_2 < 0 \end{cases}$$

(a) Find the joint density of $Y_1 = \frac{X_1}{X_2}$ and $Y_2 = X_2$. Do not forget to indicate where the joint density is non-zero.

(b) Find the density of $Y_1 = \frac{X_1}{X_2}$. Do not forget to indicate where the density of Y_1 is non-zero.

 $30 \ points$

- 3. Let X_1, \ldots, X_n be independent random variables with expected value μ and variance σ^2 . Their distribution is unspecified, but it might not be normal. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, the sample mean.
 - (a) Find $E(\overline{X})$. Show your work. Circle your answer.

(b) Find $Var(\overline{X})$. Show your work. Circle your answer.

(c) Suppose X_1, \ldots, X_n are normally distributed. Use moment-generating functions to find the distribution of \overline{X} , including the parameters. Show your work. At the end of your answer, write " $\overline{X} \sim$ " ... and write the distribution.

15 points 4. The discrete random variables X and Y have joint distribution

	x = 1	x = 2	x = 3	x = 4	x = 5
y = 1	1/14	1/14	1/14	1/14	1/14
y = 2	0	1/14	1/14	1/14	1/14
y = 3	0	0	1/14	1/14	1/14
y = 4	0	0	0	1/14	1/14

(a) What is E(Y)? The answer is a number. Show your work.

(b) What is E(Y|X=3)? The answer is a number.

(c) What is E(X|Y=3)? The answer is a number.

15 points

- 5. Let X have a Poisson distribution with parameter $\lambda > 0$.
 - (a) For what values of λ does E(X!) exist?

(b) For values of λ satisfying the condition you gave above, what is E(X!)? The answer is a formula involving λ . Show your work. Circle your answer.