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1. Ten students are standing in line. If they lined up completely at random, what is the4 points
probability that Romeo is standing next to Juliet? The answer is a number. Circle
your answer.

2. A box of 25 Valentine’s Day chocolates has 10 that are cream filled and 15 that are4 points
not cream filled. If you eat 7 chocolates at random, what is the probability that you
get exactly 2 cream filled? Just write down the answer. There is no need to simplify.

Continued on page 3
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3. In this question, you will show that if the events A and B are independent, then Ac10 points
and Bc are independent.

(a) In symbols, not words, but symbols, what are you trying to show? If you don’t
have this right, it is hard to imagine how you could get any marks.

(b) Now do the proof. You do not have to use the tabular format from the first part
of the course. You will be using several facts from the formula sheet, but you
don’t have to specifically cite them.

Continued on page 4
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Continue the answer to Question 3 if necessary.

Continued on page 5
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4. Let X have a Uniform(0,1) distribution, and let Y = − lnX. Find the density fy(y).8 points
Show your work. In your final answer, do not forget to specify where the density of
Y is non-zero.

Continued on page 6
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5. There is a continuous version of Bayes’ Theorem, which says fy|x(y|x) =
fx|y(x|y)fy(y)∫∞

−∞ fx|y(x|t)fy(t) dt
.8 points

Prove it. It’s helpful to start with the right-hand side.

Continued on page 7
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6. Let X have a beta distribution with parameters α and β. Calculate E(X). Simplify!10 points
For full marks, no gamma functions should appear in your answer. Remember that
Γ(α+ 1) = αΓ(α). Circle your answer.

Continued on page 8
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7. The random variables X1 and X2 are independent. X1 has a gamma distribution18 points
with parameters α = a and λ = 1, and X2 has a gamma distribution with parameters
α = b and λ = 1. Let Y1 = X1

X1+X2
and Y2 = X1 +X2.

(a) Give the joint density of Y1 and Y2. Factor, separating y1 and y2 as much as
possible. In your final statement of the answer to this part, specify where the
joint density is non-zero.

Continued on page 9
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Continue the answer to Question 7a if necessary.

Continued on page 10



STA256H5F Page 10 of 14

(b) Find fy1(y1), the marginal density of Y1. Again, do not forget to specify where
the density is non-zero.

(c) Identify the distribution of Y1 by name; it is on the formula sheet.

Continued on page 11
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8. Let X have a binomial distribution with parameters n and p.12 points

(a) Derive the moment-generating function of X. Show your work.

(b) Use the moment-generating function (which is also on the formula sheet) to
obtain E(X). Show some work and circle your answer.

Continued on page 12
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9. Let X1, . . . , Xn be independent exponential random variables with parameter λ > 0.10 points
The sample mean is X = 1

n

∑n
i=1Xi. Find the distribution of X. Show your work.

Identify the distribution by name; it is on the formula sheet. What are the parameters?
Note that this question is asking for the exact distribution of X. It is not a Central
Limit Theorem problem.

Continued on page 13
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10. Question 9 was not a Central Limit Theorem problem, but this one is. In Question 9,8 points
the exponential distribution of Xi means that E(Xi) = 1

λ and V ar(Xi) = 1
λ2

. If λ = 1
2

and n = 49, find the approximate probability that X > 2.5. The answer is a number.
Circle your answer.

Continued on page 14
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11. Let X1, . . . , Xn be independent random variables from a distribution with E(Xi) = µ8 points
and V ar(Xi) = σ2. Prove the Law of Large Numbers, which says that for all ε > 0,
limn→∞ P (|Xn − µ| ≥ ε) = 0.

You may use the facts that E(Xn) = µ and V ar(Xn) = σ2

n .

Total Marks = 100 points


