Sample Questions: Joint Distributions Part Two

STA256 Fall 2018. Copyright information is at the end of the last page.

1. Let X and Y be continuous random variables. Prove that X and Y are independent if and only if $f_{x y}(x, y)=f_{x}(x) f_{y}(y)$.
2. Let X and Y be discrete random variables. Prove that if $p_{x y}(x, y)=p_{x}(x) p_{y}(y)$, then X and Y are independent.
3. Let X and Y be discrete random variables. Prove that if X and Y are independent, then $p_{x y}(x, y)=p_{x}(x) p_{y}(y)$.
4. Let $p_{x y}(x, y)=\frac{|x-2 y|}{19}$ for $x=1,2,3$ and $y=1,2,3$, and zero otherwise.
(a) What is $p_{y \mid x}(1 \mid 2)$?
(b) What is $p_{x \mid y}(1 \mid 2)$?
(c) Are x and y independent? Answer Yes or No and prove your answer.
5. Let $f_{x, y}(x, y)= \begin{cases}2 e^{-(x+y)} & \text { for } 0 \leq x \leq y \text { and } y \geq 0 \\ 0 & \text { otherwise }\end{cases}$
(a) Find $f_{x \mid y}(x \mid y)$.
(b) Are X and Y independent? Answer Yes or No and prove your answer.
6. Let $X \sim \operatorname{Poisson}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poisson}\left(\lambda_{2}\right)$ be independent. Using the convolution formula, find the probability mass function of $Z=X+Y$ and identify it by name.
7. Let $X \sim \operatorname{Binomial}\left(n_{1}, p\right)$ and $Y \sim \operatorname{Binomial}\left(n_{2}, p\right)$ be independent. Using the convolution formula, find the probability mass function of $Z=X+Y$ and identify it by name.
8. Let X and Y be independent exponential random variables with parameter λ. Using the convolution formula, find the probability density function of $Z=X+Y$ and identify it by name.
9. Let X_{1} and X_{2} be independent standard normal random variables. Find the probability density function of $Y_{1}=X_{1} / X_{2}$.
10. Use the Jacobian method to prove the convolution formula for continuous random variables.
11. Show that the normal probability density function integrates to one.
12. Prove $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
13. Let X_{1}, \ldots, X_{n} be independent random variables with probability density function $f(x)$ and cumulative distribution function $F(x)$. Let $Y=\max \left(X_{1}, \ldots, X_{n}\right)$. Find the density $f_{y}(y)$.
14. Let X_{1}, \ldots, X_{n} be independent random variables with probability density function $f(x)=e^{-x}$ for $x \geq 0$. Let $Y=\max \left(X_{1}, \ldots, X_{n}\right)$. Find the density $f_{y}(y)$.
15. Let X_{1}, \ldots, X_{n} be independent random variables with probability density function $f(x)$ and cumulative distribution function $F(x)$. Let $Y=\min \left(X_{1}, \ldots, X_{n}\right)$. Find the density $f_{y}(y)$.

This handout was prepared by Jerry Brunner, Department of Mathematical and Computational Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website:

```
http://www.utstat.toronto.edu/~
```

